I recently posted two new articles on the arXiv.
- Conditional Density Operators and the subjectivity of quantum operations
- Cloning and Broadcasting in Generic Probabilistic Theories
Enjoy!
This page shows my blog. For information about me use the menus above or:
I recently posted two new articles on the arXiv.
Enjoy!
I am currently visiting the Centre for Quantum Compuatation at the University of Cambridge. I’ll be back in Waterloo on 6th January 2007.
I have been busy reorganizing my mini-web empire, as you can see if you look at my swanky new website. Part of this has to do with the fact that I occasionally want to write about things other than the foundations of quantum mechanics, but I don’t want to burden the loyal readers of Quantum Quandaries with such trivia. Therefore, I have started two new blogs.
The first is my announcements blog. This mainly exists to serve the news feed on my website, and it will contain announcements every time I submit a paper to the arXiv, update a paper, get published, visit somewhere for a long time, unify quantum theory with general relativity etc. I won’t announce the details of every paper I write on this blog as well, unless I think the paper is interesting for people into quantum foundations (actually, on that topic you might like this recent paper and also this one). I hope you will appreciate my goal of always keeping this blog strictly on topic, bucking the trend to use blogs mainly for shameless self promotion. Of course, you are welcome to become a regular reader of my announcements blog as well, but I am under no illusions that it will appeal to anyone except maybe my mother.
Secondly, I have started another blog called Academic Tech. This should satisfy my inner geek, as it is about the uses of computers, technology and the net in academia. If you want to know about software and web tools that you can do amazing things with then you might want to read it. However, quantum theory still holds the vast majority of my attention, so articles for this blog will probably be posted much more frequently.
I don’t normally like to just list new papers without commenting on them, but I don’t have much reading time at the moment so here are two that look interesting.
Firstly, Andrew Steane has a new paper entitled “Context, spacetime loops, and the interpretation of quantum mechanics”, which was written for the Ghirardi festschrift. Steane is best known for his work on quantum error correction, fault tolerance and ion trap quantum computing, which may not engender a lot of confidence in his foundational speculations. However, the abstract looks interesting and the final sentence: “A single universe undergoing non-unitary evolution is a viable interpretation.” would seem to fit with my “Church of the smaller Hilbert space” point of view. Steane has also addressed foundational issues before in his paper “A quantum computer only needs one universe”, and I like the title even if I am not familiar with the contents. Both of these are on my reading list, so expect further comments in the coming weeks.
The second paper is a survey entitled “Philosophical Aspects of Quantum Information Theory” by Chris Timpson. The abstract makes it seem like it would be a good starting point for philosophers interested in the subject. Timpson is one of the most careful analysers of quantum information on the philosophy side of things, so it should be an interesting read.
Posted in Quantum Quandaries
Tagged Andrew Steane, Chris Timpson, foundations, papers, quantum
FOLKLORE:
When I was but a young undergrad student, I read some interesting books about the history and foundations of quantum theory. In those books the Solvay conferences played a major role, particularly the 5th conference in 1927. I was informed that the official part of the proceedings was largely insignificant, and that all the action centred around the debates that took place between Bohr and Einstein, in which Einstein repeatedly tried to undermine the uncertainty principle via a series of thought experiments, but Bohr was always quick to respond with a correct analysis of the experiment that showed uncertainty to be triumphant. This always put in my mind a picture similar to da Vinci’s “Last Supper”, with Bohr playing the role of Jesus, regailaing his many disciples with the moral parable of the day over dinner.
Another piece of folklore concerns the Ph.D. thesis of one Prince Louis de Broglie. This contained the famous de Broglie relation that gives the wavelength of the waves to be associated with matter particles. The story goes that the thesis was on the verge of being rejected, but was saved by Einstein’s recommendation, who was the only person to recognize the deep significance of the relation. As the story is told, it is hardly surprising, because the contents of the rest of the thesis is never explained. One is left to imagine a document that could only have been about 10 pages long, which intrroduces the relation and then explains some of its consequences. That may seem stong enough for a very good Phys. Rev. article, but is hardly enough to warrant a Ph.D.
LIFE:
Since those distant days of my youth, I have attended many a physics conference myself. I now recognise that it is the general rule, almost without exception, that the participants regard the discussions they have outside the talks as being much more important and interesting than anything that was said in the talks themselves. This rule holds regardless of the actual inherent interest of the topics under discussion. In fact, it is quite common to find some of the older participants banging on about some Hamiltonian they wrote down in the 1970s, whereas the young guns are talking about something genuinely new and interesting, the significance of which is not understood by the older guys yet. It is also extremely unlikely to find the entire group of conference participants, however small that group may be, listening in rapt attention to the discussion of just two people over dinner (if only because there are simply some groups of people who don’t get on with each other, and others who are more interested in going to the pub), and it is equally unlikely that that conversation represents the only interesting thing going on at the conference.
Also, it goes without saying really that I don’t know of anyone who got their Ph.D. for a 10 page paper, however great the idea contained therein happens to be.
REALITY:
Currently, I am about half way through reading “Quantum Theory at the Crossroads”, the new book by Bacciagaluppi and Valentini about the 1927 Solvay conference. The second half of the book is an English translation of the proceedings, but equally interesting is the new analysis of the conference discussions from a modern point of view, contained in the first half. Here are some things I found particularly interesting.
– The only witnesses to the famous Bohr-Einstein debates were Heisenberg and Ehrenfest. The usuall account of these debates comes directly from an article written by Bohr many years after the conference took place. Heisenberg roughly confirms the account, also in recollections written many years later. The only account written shortly after the conference is a letter written by Ehrenfest, which seems to confirm that Bohr was triumphant in the debates, but gives no details.
– Bacciagaluppi and Valentini argue that it is highly unlikely that Einstein’s main target was the uncertainty relations. This is because, outside of Bohr’s account of the conference discussions, Einstein hardly mentions the uncertainty relations as a point of concern in any of his correspondence or published works. Instead, they argue, it is likely that he was trying to get at the point that the concept of separability was incompatible with quantum theory, which was later crystallized in the EPR argument. In fact, Einstein gives an argument in this direction also in the published general discsussion at the conference. It seems likely that Bohr missed this point, just as he seemed to miss the point years later in his published response to the EPR argument.
– At the time of the conference, the consolidation of quantum theory was far from complete. Three approaches were discussed in the talks: de Broglie’s pilot wave theory, Schrödinger’s wave mechanics and Heisenberg’s matrix mechanics (with additions by Born). Despite the fact that “equivalence proofs” between wave and matrix mechanics had been published at the time of the conference, they were treated as distinct theories, which could potentially make different predictions. This is because, at the time, Schrödinger did not accept Born’s statistical hypothesis for wave mechanics, which was not yet formulated for arbitrary observables in any case. Also, Heisenberg and Born did not accept the fundamental significance of the time-dependent Schrödinger equation, and still clung to a view of matrix meachanics as describing the transition probabilities for systems always to be thought of as being in definite stationary states. In fact, it seems that the only person at the conference who presented something that we would now regard as being empirically equivalent to modern quantum theory was de Broglie.
– This was not recognized at the conference, partly because de Broglie did not realize that one sometimes has to treat the apparatus as a quantum system in pilot wave theory in order to get equivalence with standard quantum theory. Also, there was as yet desciption of spin within de Broglie’s theory, but on the other hand this same objection could be levelled at wave mechanics. Finally, de Broglie himself regarded the theory as provisional, since it was not relativistic and involved waves in configuration space rather than ordinary 3d space. He placed great significance on ideas for a better theory, which were far from complete at the time of the presentation.
– Schrödinger emphasizes that de Broglie’s work was a major inspiration for his wave equation. In particular, de Broglie’s idea of unifying the variational principles of Newtonian mechanics with those of geometrical optics, was used in the derivation of the equation.
– de Broglie presented his pilot-wave theory for multiparticle systems, not just for single particles as is commonly thought.
In light of this and other arguments, Bacciagaluppi and Valentini argue that the time is ripe for a revision of the usual textbook history of quantum mechanics, and in particular of de Broglie’s contribution . Those who believe that the history of science should be written with the same objective standards that we hope to uphold for science itself, rather than simply being written by the victors, are well-advised to read this book.
I have left the sunny climbs of Canada for a few months, in favor of the eternally sweltering UK.
In fact, I am visiting the University of Cambridge, which reminds me of the following quote from Stephen Hawking:
“When I hear of Schrödinger’s cat, I reach for my gun.”
Although attributed to him, I wasn’t able to find the source, so if anyone knows it then please let me know.
The quote has 3 possible interpretations (at least that’s less than quantum theory):
Whichever meaning is intended, I think I ought to be careful what I talk about in public around here.
Anyone who read the comments on my last post will know that von Neumann is something of a hero of mine. Here’s a question that sometimes bothers me – why didn’t von Neumann think of quantum computing? Compare his profile with that of Feynman, who did think up quantum computing, and then ask yourself which one of them you would have bet on to come up with the idea.
None of this is meant as a slight against Feynman – he was certainly brilliant at everything he did scientifically – but it is clear that von Neumann was better positioned to come up with the idea much earlier on. Here are some possible explanations that I can think of:
As a von Neumann fan, I’d like to think that something other than the first explanation is true, but I am prepared to admit that he might have missed something that ought to have been obvious to him. Hopefully, someday a historian of science will take it upon themselves to trawl the von Neumann archives looking for the answer.
Here’s what this year’s foundational conference calendar looks like at the moment:
If anyone knows of any other relevant meetings then please let me know and I’ll post an update.
The Shtetl Optimizer informs me that there has not been enough contemplation of Quantum Quandaries for his taste recently. Since there has not been a lot of interesting foundational news, the only sensible thing to do is to employ the usual blogger’s trick of cut, paste, link and plagiarize other blogs for ideas.
Scott recently posted a list of papers on quantum computation that a computer science student should read in order to prepare themselves for research in quantum complexity. Now, so far, nobody has asked me for a list of essential readings in the Foundations of Quantum Theory, which is incredibly surprising given the vast numbers of eager grad students who are entering the subject these days. In a way, I am quite glad about this, since there is no equivalent of “Mike and Ike” to point them towards. We are still waiting for a balanced textbook that gives each interpretation a fair hearing to appear. For now, we are stuck trawling the voluminous literature that has appeared on the subject since QM cohered into its present form in the 1920’s. Still, it might be useful to compile a list of essential readings that any foundational researcher worth their salt should have read.
Since this list is bound to be several pages long, today we will stick to those papers written before the outbreak of WWII, when physicists switched from debating foundational questions to the more nefarious applications of their subject. This is not enough to get you up to the cutting edge of modern research, so more specialized lists on particular topics will be compiled when I get around to it. I have tried to focus on texts that are still relevant to the debates going on today, so many papers that were important in their time but fairly uncontroversial today, such as Born’s introduction of the probability rule, have been omitted. Still, it is likely that I have missed something important, so feel free to add your favourites in the comments with the proviso that it must have been published before WWII.
Many of the important papers are translated and reproduced in:
Somewhat bizzarely it is out of print, but you should find a copy in your local university library.
I am also informed that Anthony Valentini and Guido Bacciagaluppi have recently finished translating the proceedings of the 5th Solvay conference (1927), which is famous for the Bohr-Einstein debates, and produced one of the most well-known photos in physics. It should be worth a read when it comes out. A short video showing many of the major players at the 1927 Solvay conference is available here.
Update: A draft of the Valentini & Bacciagaluppi book has just appeared here.
The other day I was surfing on Chris Fuchs’ website, looking for a journal reference to one of his papers. I noticed that there is a new addition to his compendia of emails about the foundations of quantum mechanics. Now, depending on your temperament, you either love or hate reading such things. Certainly, the ideas are not as carefully formulated as they would be in a scientific paper, and some might find this annoying. Also, if you get annoyed by reading things that you don’t agree with, and you are bound to find at least something you don’t agree with unless your name is Chris Fuchs, then this is not for you. On the other hand, it does give some insight into how a fellow thinker about foundations formulates, develops and changes his ideas, which is something that most scientists go to great lengths to hide from public view. It also gives you an idea of his influences, and it is the reactions of other people to the emails and the quotes from philosophers that I will never be motivated to read myself, that really bring the thing to life. Speaking of the latter, I liked this quotation from William James – if anyone knows the source then please let me know:
The history of philosophy is to a great extent that of a certain clash of human
temperaments. Undignified as such a treatment may seem to some of my colleagues,
I shall have to take account of this clash and explain a good many of the divergencies
of philosophies by it. Of whatever temperament a professional philosopher is, he tries,
when philosophizing, to sink the fact of his temperament. Temperament is no conventionally
recognized reason, so he urges impersonal reasons only for his conclusions. Yet
his temperament really gives him a stronger bias than any of his more strictly objective
premises. It loads the evidence for him one way or the other, making a more sentimental
or more hard-hearted view of the universe, just as this fact or that principle would. He
trusts his temperament. Wanting a universe that suits it, he believes in any representation
of the universe that does suit it. He feels men of opposite temper to be out of key
with the world’s character, and in his heart considers them incompetent and ‘not in it,’
in the philosophic business, even though they may far excel him in dialectical ability.
Yet in the forum he can make no claim, on the bare ground of his temperament,
to superior discernment or authority. There arises thus a certain insincerity in our
philosophic discussions: the potentest of all our premises is never mentioned. I am
sure it would contribute to clearness if in these lectures we should break this rule and
mention it, and I accordingly feel free to do so.
It seems to me that the quote would still make sense if one replaced “philosophy” by “theoretical physics”. Now, before I get accused of being on the loony left of postmodernism and sociology of science, let me clarify that I do believe that the role of experiment is a big difference between the two subjects, and it is capable of resolving issues much more conclusively than argument alone. However, each physicist has to choose what topic to work on and which ideas and methods are most likely to lead to success. Despite the successes of the great edifice of modern theoretical physics, there are still dozens of possible views on which aspects of it are the most important and on why it all works in the first place. The temperament of the physicist plays a large role in coloring her/his attitude to such issues. For example, something as simple as the level of respect for authority can play an enormous role. This is evident in the currently ongoing debate about the success/failure of string theory (which I don’t claim to have enough expertise to say anything sensible about by the way) and in differing attitudes to whether the foundations of quantum mechanics is an important subject for a physicist to understand, or a load of metaphysical hogwash.
It takes all types to make the subject go forward, and it would be a boring life if we all agreed exactly what needed doing and how to go about doin it. However, I do think that if we paid greater attention to the fact that there need not be entirely scientific reasoning behind our differing points of view, and that this is OK – even normal – then that would help to diffuse some of the great controversies of modern science.