Tag Archives: relativity

Q+ hangout: Chris Richardson

Here are the details of the next Q+ hangout.

Date/time: 22nd April 2014 2pm BST/UTC+1

Speaker: Chris Richardson (University of Liege)

Title: On the Uncertainty of the Ordering of Nonlocal Wavefunction Collapse when Relativity is Considered

Abstract: The temporal measurement order and therefore the originator of the instantaneous collapse of the wavefunction of a spatiality entangled particle pair can change depending on the reference frame of an observer. This can lead to a paradox in which its seems that both measurements collapsed the wavefunction before the other. We resolve this paradox by demonstrating how attempting to determine the order of measurement of the entangled pair introduces uncertainty which makes the measurement order impossible to know.

To watch the talk live, go to the event page at the appointed hour.

To keep up to date on the latest news about Q+ hangouts you can follow us on:

or visit our website.

Q+ Hangout: Ivette Fuentes

Here are the details of the next Q+ hangout.

Date/time: Tue. 26th March 2pmGMT/UTC

Speaker: Ivette Fuentes (University of Nottingham)

Title: Quantum information processing in spacetime

Abstract:

Cutting-edge experiments in quantum communications are reaching regimes where relativistic effects can no longer be neglected. For example, there are advanced plans to use satellites to implement teleportation and quantum cryptographic protocols. Relativistic effects can be expected at these regimes: the Global Positioning System (GPS), which is a system of satellites that is used for time dissemination and navigation, requires relativistic corrections to determine time and positions accurately.

Therefore, it is timely to understand what are the effects of gravity and motion on entanglement and other quantum properties exploited in quantum information.

In this talk I will show that entanglement can be created or degraded by gravity and non-uniform motion. While relativistic effects can degrade the efficiency of teleportation between moving observers, the effects can also be exploited in quantum information. I will show that the relativistic motion of a quantum system can be used to perform quantum gates. Our results, which will impact future space-based experiments, can be demonstrated in table-top experiments using superconducting circuits.

To watch the talk live go to http://gplus.to/qplus at the appointed hour.

To keep up to date on the latest news about Q+ hangouts, you can follow us on:

or visit our website.