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Abstract

This thesis addresses the connections between quantum entanglement and quantum

dynamics. The central theme is that there is a resource contained in interactions

between quantum systems, as described by Hamiltonians, Unitary operators and

measurements, that can be classified and quantified in a similar way to entangle-

ment in quantum states. In particular, the problem of using an interaction Hamil-

tonian to simulate the action of another Hamiltonian efficiently via local operations

is addressed and, for two qubits, the results can be conveniently summarized by a

majorization-like partial order on the space of Hamiltonians.

Secondly, the relationship between interaction resources and entanglement is

analyzed by considering the ability of a unitary operator to generate entanglement.

Analytic results are presented for the case of a single application of a two-qubit

unitary where the system acted upon is not entangled to any ancillary systems.

Numerical results are presented for the case where such ancillas are present. The

notion of processing multiple copies of a unitary operator collectively is discussed

and is shown to be unnecessary for generating the maximum amount of entanglement

per application of the operation.

Finally, a different kind of connection between dynamics and entanglement is in-

vestigated by finding ways in which the entanglement properties of unknown, multi-

party quantum states can be determined efficiently by measurements on multiple

copies of the state. Specifically, networks for directly measuring invariants under

local unitary transformations and stochastic local operations and classical commu-

nication are presented and their efficiency is compared to alternative methods based

on estimating the coefficients of the state.
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Chapter 1

Introduction

Despite the fact that quantum theory is now almost a century old, it is only

recently that its most counter-intuitive implications have been found to have

practical applications. Specifically, there is currently a revolution in the fields

of information processing and computation because quantum systems appear

to have radically different computational abilities from systems that obey clas-

sical physics. Of particular significance, is an efficient algorithm found by Shor

[84], that uses quantum mechanics to factorize composite numbers. This is a

problem of great interest in cryptography, and is generally thought to be im-

possible to solve efficiently using an ordinary classical computer.

At the most basic level, this revolution has come about by replacing the

classical unit of information, the bit or cbit, by its quantum equivalent, the

qubit. A cbit is a physical system that can be prepared in one of two definite

states, usually denoted by 0 and 1. In contrast, a quantum two-level system

or qubit has a continuous range of definite states in which it can be prepared,

called pure states.

One of the central goals of information theory is to find efficient ways of

achieving basic communication tasks between two or more separated parties1.

Such communication tasks include the transmission of messages and the dis-

1The standard convention of naming the first two parties Alice and Bob will be used in
this thesis.
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Chapter 1. Introduction

tribution of secure keys for cryptography. The parties will typically have some

communication resources available to them, which they would like use as effi-

ciently as possible.

For example they may have classical resources, such as telephone lines, to

send cbits to one another. These classical channels may introduce noise into

the signal, but this can be compensated for by encoding some redundancy into

the data, for example by sending each cbit three times and deciding on the

true value by majority vote. One may then ask what is the minimum number

of bits that have to be sent through the noisy channel in order to communicate

1 cbit perfectly. Another way of stating this is to say that the noisy channel

can be used to simulate the perfect channel and the number of uses required

to do this quantifies the amount of communication resources contained in the

channel, relative to the perfect channel (see [30] for details).

Quantum mechanics introduces new resources into the framework, such as

quantum channels for sending qubits to one another. An example might be

an optical fibre for sending single-photons. One may then ask questions about

the resource content of these quantum channels. For example, how many uses

of a noisy quantum channel does it take to simulate a perfect one? There are

also new types of question that can be introduced, such as how many uses of

a quantum channel does it take to simulate a classical one and can a classical

channel be used to simulate a quantum one?2

In addition to qubit channels, there are many other features of quantum

mechanics that do not exist in classical physics and one of the most important

of these is entanglement. Entanglement has a long history in quantum me-

chanics and it is responsible for many of the most counter intuitive features of

the theory, particularly the EPR paradox [39] and Bell’s proof of non-locality

[7]. For a long time, it was regarded as a problematic concept and the major-

ity of research that tackled the issue was aimed at highlighting its seemingly

paradoxical implications. However, more recently, it has been realized that

2For general introductions to quantum information theory see [74, 78].
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1.1. The Quantum Formalism

entanglement can be turned to our advantage and regarded as a new kind

of resource in information theory. Also, from a practical point of view, ex-

periments in many quantum systems are starting to reach the stage where

entanglement can be manipulated in a controlled way.

The central theme of this thesis is that quantum dynamics can be quan-

tified as a resource in a similar way to entanglement. Before introducing this

concept, the basic formalism of quantum mechanics is reviewed in §1.1, in

part to establish the notation used throughout the rest of this thesis. Then,

in §1.2 the formalism for discussing composite systems and entanglement is

reviewed and some important applications of entanglement: teleportation and

superdense coding, are introduced in §1.2.1. Some of the ways in which en-

tanglement can be quantified as a resource are reviewed in §1.3. The idea of

using quantum dynamics as a resource is introduced in §1.4 and illustrated

with some examples of quantum gates in §1.5. The introduction concludes in

§1.6 with an overview of the main results presented in this thesis.

1.1 The Quantum Formalism

1.1.1 Quantum States

The state of a quantum system is described by a positive semi-definite density

operator, ρ, on a Hilbert space, H. B (H) will be used to denote the space

of linear operators on the Hilbert space H, so these conditions can be written

as ρ ∈ B (H) , ρ ≥ 0. It is usually required that ρ is normalized such that

Tr(ρ) = 1.

In the special case where ρ is of rank 1, the state is pure and it can alterna-

tively be represented by a vector |ψ〉 ∈ H, where ρ = |ψ〉 〈ψ|. In doing so, an

arbitrary global phase is introduced, since |ψ〉 and eiθ |ψ〉 have the same den-

sity matrix. The choice of this phase does not affect the physical predictions

that can be made about the state, so it can be chosen to have any convenient

3



Chapter 1. Introduction

value. In what follows, H will usually be finite dimensional.

The most basic system in quantum information theory is the qubit, for

which H = C2, a 2 dimensional complex Hilbert space. The standard or-

thonormal basis for C2, often called the computational basis, is given by

|0〉 =


 1

0


 , |1〉 =


 0

1


 (1.1)

and a pure qubit state can be written in this basis as

|ψ〉 = α |0〉+ β |1〉 , α, β ∈ C, |α|2 + |β|2 = 1 (1.2)

1.1.2 Quantum evolutions

The evolution of a closed quantum system in the absence of measurements is

described by the Schrödinger equation

i~
∂ρ(t)

∂t
= [H, ρ(t)] (1.3)

where H is the self-adjoint Hamiltonian operator, which represents the energy

of the system and [H, ρ(t)] = Hρ(t) − ρ(t)H. For pure states, this can be

written as

−i~
∂ |ψ(t)〉

∂t
= H |ψ(t)〉 (1.4)

The resulting evolution is given by ρ(t) = U(t)ρ(0)U(t)†, where U(t) is the

unitary time evolution operator U(t) = e−
iH
~ t. For pure states this can al-

ternatively be written as |ψ(t)〉 = U(t) |ψ(0)〉3. By suitably engineering the

Hamiltonian of the system, any unitary operator may be realized as the time

evolution operator. Controlling the evolution of a quantum system in this

way is experimentally challenging, but this thesis is mainly concerned with the

general limits to information processing imposed by the laws of quantum me-

chanics rather than the problems associated with generating particular physical

evolutions. Thus, in this thesis it will usually be assumed that any unitary

operator can be generated by engineering Hamiltonians in this way.

3In the rest of this thesis units are chosen such that ~ = 1 and U(t) = e−iHt.
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1.1. The Quantum Formalism

A convenient basis for operators on C2 is given by the identity matrix and

the 3 Pauli matrices.

σ0 = I2 =


 1 0

0 1


 , σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1




(1.5)

It is sometimes convenient to use a vector notation for the Pauli matrices

~σ = (σ1, σ2, σ3)
T .

1.1.3 Measurements

A measurement in quantum mechanics is described by a set of operators Mj

satisfying
∑

j

M †
j Mj = I (1.6)

where I is the identity operator on H. The labels on the operators represent

the different possible outcomes and when the measurement is performed on a

state ρ, the outcome j occurs with probability

pj = Tr
(
M †

j Mjρ
)

(1.7)

After the measurement, if the outcome was j then the state becomes

ρj =
MjρM †

j

Tr
(
M †

j Mjρ
) (1.8)

When the initial state of the system is pure, (1.7) may be replaced by

pj = 〈ψ|M †
j Mj |ψ〉 , (1.9)

and (1.8) may be replaced by

|ψj〉 =
Mj |ψ〉√

〈ψ|M †
j Mj |ψ〉

(1.10)

If the state after the measurement is not of interest, it is convenient to de-

scribe the measurement by the operators Ej = M †
j Mj, since the measurement

5



Chapter 1. Introduction

operators only appear in (1.7) and (1.9) in this combination. Generally, each

Ej is a positive operator and
∑

j Ej = I. The set of operators Ej is known as

a Positive Operator Valued Measure (POVM).

A particularly important class of measurements are the orthogonal pro-

jective measurements. For these measurements, each Mj = Πj is a projector

satisfying

ΠjΠk = δjkΠj (1.11)

Such measurements can alternatively be described by a self adjoint operator

A =
∑

j λjΠj called an observable. Here, the λj’s are the distinct real eigen-

values of A and λj is the value of the observable A when the outcome j is

observed. Using, (1.7) and (1.11), the mean value of A is given by

〈A〉 =
∑

j pjλj =
∑

j λjTr (Πjρ)

= Tr
(∑

j λjΠjρ
)

= Tr (Aρ)
(1.12)

which reduces to

〈A〉 = 〈ψ|A |ψ〉 (1.13)

for pure states.

When each projector is of rank 1, then they can be written in terms of

vectors as Πj = |φj〉 〈φj|. (1.11) and (1.6) imply that these vectors form a

complete orthonormal basis, so this type of measurement is often called a

measurement in the basis {|φj〉}.

1.2 Composite systems and entanglement

Entanglement occurs in systems of two or more parties, so it is necessary to

introduce the quantum formalism for composite systems. The focus is on the

bipartite case here, but the generalization to more than 2 parties proceeds in

the obvious manner.

Suppose there are two parties, Alice and Bob, who each have their own

Hilbert space, HA and HB respectively. According to quantum mechanics the

6



1.2. Composite systems and entanglement

state space of their combined system is given by HA⊗HB, the tensor product

of the two subsystems. HA ⊗HB is spanned by the vectors |i〉A ⊗ |j〉B, where

{|i〉A}, {|j〉B} are basis vectors for HA,HB respectively. For example, if Alice

and Bob both have a qubit then the state space is C2 ⊗ C2, which is spanned

by the vectors |0〉A ⊗ |0〉B , |0〉A ⊗ |1〉B , |1〉A ⊗ |0〉B , |1〉A ⊗ |1〉B. The tensor

product symbol is often omitted from these vectors, so the vector |0〉A ⊗ |0〉B
might be written as |0〉A |0〉B or simply |00〉AB for example.

The description of the state space of a composite system as a tensor product

is quite general, but when discussing entanglement it is useful to imagine

that Alice and Bob are separated by a large distance and that their quantum

systems are well localized in the spatial part of the wave-function. This allows

their systems to be treated as distinguishable particles. The labels A and B

then refer implicitly to these distinct, localized spatial wave-functions.

The overall quantum state of a bipartite system is a density operator ρAB ∈
B (HA ⊗HB). Alice’s reduced density operator, ρA = TrB(ρAB), is defined by

tracing over any orthonormal basis for Bob’s system. For example, if Bob’s

system is a qubit then ρA = 〈0|B ρAB |0〉B + 〈1|B ρAB |1〉B. Bob’s reduced

density operator is defined in a similar way: ρB = TrA(ρAB).

If the overall state is pure then it can alternatively be defined as a vector

|ψ〉AB ∈ HA ⊗ HB. This state is separable if it can be written as |ψ〉AB =

|φ〉A ⊗ |η〉B, for some |φ〉A ∈ HA and |η〉B ∈ HB. If the state is separable

then both Alice and Bob’s reduced states will be pure states. Non-separable

states are called entangled states and in this case the reduced states will both

be mixed.

For density matrices a separable state is defined as one that can be writ-

ten ρAB =
∑

j pj

(|ψj〉A ⊗ |φj〉B
) (〈ψj|A ⊗ 〈φj|B

)
, for some vectors |ψj〉A ∈

HA, |φj〉B ∈ HB and some probabilities pj > 0,
∑

j pj = 1. Separable states

are an important class of states because they can be prepared without the

need for any entangling interaction or prior entanglement between Alice and

Bob’s subsystems. For example, one way of generating an ensemble of states

7



Chapter 1. Introduction

described by ρAB, is for Alice to generate a random variable with outcomes j

distributed according to the probabilities pj. Then, if outcome j is obtained,

she prepares the state |ψj〉A. Finally, she lets Bob know which state she pre-

pared via a classical channel and Bob prepares the corresponding |φj〉B.

An example of an entangled pure state on C2 ⊗ C2 is

∣∣φ+
〉

AB
=

1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) (1.14)

In fact, an orthonormal basis of entangled states is given by (1.14) and the

three additional states

|φ−〉AB = 1√
2
(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B)

|ψ+〉AB = 1√
2
(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B)

|ψ−〉AB = 1√
2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B)

(1.15)

These states are called Bell states and they play a central role in many pro-

tocols in quantum information theory. The unit of entanglement, the ebit, is

defined to be the amount of entanglement contained in a Bell state. The role

of ebits will become clear in §1.2.1, where the use of Bell states in two impor-

tant protocols: teleportation [9] and superdense coding [14], is reviewed and

in §1.3, which reviews the quantification of entanglement in quantum states.

1.2.1 Using Bell States as a Communication Resource

The two communication protocols reviewed here provide an operational inter-

pretation of the ebit and are of importance for discussing the quantification

of entanglement. They will also be used in §1.5 and in chapter 3 to provide

bounds on the entanglement and classical communication capabilities of quan-

tum gates.

Teleportation

Suppose Alice has a single qubit in an unknown state |ψ〉 that she would

like to transmit to Bob, but there is no quantum channel available between

8



1.2. Composite systems and entanglement

Alice Bob

|φ+〉
source

Bell
Measurement

Unitary
operation
(σ0, σ1, σ2

or σ3)

Qubit in
unknown
state |ψ〉

Bell state
|φ+〉 , |φ−〉 ,
|ψ+〉 or |ψ−〉.

2 cbits

|ψ〉

Figure 1.1: Schematic diagram of the teleportation protocol.

them. However, they do share a Bell state |φ+〉 and they have the ability to

communicate classical information. They can achieve the task by using the

entangled state and transmitting two cbits from Alice to Bob, by a protocol

known as teleportation. It is illustrated schematically in fig. 1.1. To see how

teleportation works, denote the space of Alice’s half of the entangled state by

A, the space of Bob’s half by B and the space of the unknown state by A′. A

general unknown pure state can be written as |ψ〉A′ = α |0〉A′ + β |1〉A′ , where

α, β ∈ C and |α|2 + |β|2 = 1. The total initial state of Alice’s and Bob’s

9
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systems can be written as

|ψ〉A′ ⊗ |φ+〉AB = (α |0〉+ β |1〉)A′ ⊗ 1√
2
(|00〉+ |11〉)AB

= 1
2

[
1√
2
(|00〉+ |11〉)A′A ⊗ (α |0〉+ β |1〉)B

+ 1√
2
(|00〉 − |11〉)A′A ⊗ (α |0〉 − β |1〉)B

+ 1√
2
(|01〉+ |10〉)A′A ⊗ (α |1〉+ β |0〉)B

+ 1√
2
(|01〉 − |10〉)A′A ⊗ (α |1〉 − β |0〉)B

]

= 1
2
[|φ+〉A′A ⊗ |ψ〉B + |φ−〉A′A ⊗ σ3 |ψ〉B

+ |ψ+〉A′A ⊗ σ1 |ψ〉B + |ψ−〉A′A ⊗ iσ2 |ψ〉B]

(1.16)

From the last line of this equation, one can see that if Alice performs a mea-

surement in the Bell basis on her two qubits A and A′ described by the four

projectors |φ±〉A′A 〈φ±|AA′ , |ψ±〉A′A 〈ψ±|AA′ , then each measurement outcome

will occur with probability 1
4
. The system will be left in one of the four states

|φ+〉A′A ⊗ |ψ〉B , |φ−〉A′A ⊗ σ3 |ψ〉B , |ψ+〉A′A ⊗ σ1 |ψ〉B , |ψ−〉A′A ⊗ iσ2 |ψ〉B. The

resulting state of Bob’s system will be Alice’s original unknown state multi-

plied by one of the four unitary operators σ0, σ3, σ1, iσ2 depending on which

outcome was obtained by Alice. If Alice tells Bob which outcome she obtained,

then Bob can undo the unitary operator by applying the inverse and recover

Alice’s original unknown state. Since there are four outcomes, this can be done

by sending 2 cbits from Alice to Bob.

The resources used in this teleportation protocol can be conveniently sum-

marized by the relation

1 ebit +2 cbitsA→B => 1 qubitA→B (1.17)

which should be read as 1 Bell state and the transmission of 2 cbits via a

classical channel from Alice to Bob can be used to simulate the transmission

of 1 qubit via a quantum channel from Alice to Bob.

Teleportation is an important primitive in quantum information theory,

and it gives meaning to the concept of an ebit, which can be regarded as the

amount of entanglement required to achieve a perfect teleportation.

10
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Alice Bob

|φ+〉
source

Unitary
operation
(σ0, σ1, σ2

or σ3)

Bell
Measurement

Classical
message
2 cbits

1 qubit

Classical
message

Bell
State

Figure 1.2: Schematic diagram of the superdense coding protocol.

Superdense Coding

In addition to transmitting quantum states, a quantum channel can be used to

transmit a cbits from Alice to Bob. One simple way of doing this is for Alice

to send the state |0〉 to Bob if the cbit to be sent is 0 and |1〉 if the message

is 1. Bob can then perform a measurement in the basis {|0〉 , |1〉} to recover

the initial message. However, a qubit is specified by continuous parameters,

so one might suppose that this can be exploited to transmit more than one

cbit from Alice to Bob for each qubit that is transmitted. It has been shown

[72] that this is not possible if the transmitted qubit is not entangled to any

other qubits in Bob’s possession. On the other hand, if Alice and Bob share a

Bell state to begin with, then Alice can transmit two cbits to Bob by sending

a single qubit. The protocol for doing this is called superdense coding and it

is illustrated in fig. 1.2.

To achieve superdense coding, suppose Alice and Bob start with the Bell

11



Chapter 1. Introduction

state |φ+〉AB. Alice then applies one of the following unitary operators to her

half of the state, depending on which 2 cbit message is to be sent.

σ0 if the message is 00

σ1 if the message is 01

σ2 if the message is 10

σ3 if the message is 11

(1.18)

The resulting state will be one of the four Bell states, up to a global phase. If

Alice then transmits her half of the entangled state to Bob, he can recover the

original message by performing a measurement in the Bell basis.

The resources used in this protocol can be conveniently summarized by the

following relation.

1 ebit +1 qubitA→B => 2 cbitsA→B (1.19)

The superdense coding protocol gives another operational meaning to the no-

tion of an ebit. It is the amount of entanglement required to achieve the perfect

transmission of 2 cbits with only a single use of a qubit channel.

Note that both the teleportation and superdense coding protocols could

alternatively be achieved using any state of the form UA ⊗ UB |φ+〉AB, where

UA, UB ∈ U(2), instead of |φ+〉AB. For example, all of the Bell states (1.15)

are of this form. To do this, Alice and Bob would simply have to apply

the inverse operations U †
A, U †

B at the beginning of the protocol. Thus, all

these states contain an ebit of entanglement because they are equivalent with

respect to the communication tasks they can be used to achieve. This notion

of equivalence, called local or local unitary (LU) equivalence, can be extended

to all states and is of central importance in the classification and quantification

of entanglement.

12



1.3. Quantifying Entanglement as a Resource

1.3 Quantifying Entanglement as a Resource

The teleportation and superdense coding protocols demonstrate that Bell states

may be used as a communication resource. What about other entangled states?

As with all resources in information theory, their ability to perform commu-

nication tasks can be quantified by asking what other resources they can be

used to simulate. In particular, this can be done by asking how many of them

are needed to create a Bell state.

Before this can be done, the actions that the parties should be allowed

to perform in these protocols must be established. Clearly, any action which

can create Bell states starting from no initial entanglement, such as allowing

quantum interactions or quantum channels between the parties, must be ruled

out. In contrast, the teleportation and superdense coding protocols consume

entanglement and hence provide an insight into the type of action that should

be allowed. In both of these protocols, Alice and Bob’s actions always consist

of performing operations locally on their own subsystems and communicating

with one another via classical channels. Generally, this type of action is known

as Local Operations and Classical Communication (LOCC). LOCC is quite a

general class of actions to allow because it typically consumes entanglement

and never generates entanglement on average. Some results on the quantifica-

tion of entanglement under LOCC are reviewed in the following sections.

1.3.1 Bipartite pure state entanglement

Suppose Alice and Bob share a bipartite state |φ〉AB in a finite dimensional

Hilbert space HAB = CdA ⊗ CdB , where CdA is the Hilbert space of Alice’s

portion of the system and CdB is the Hilbert space of Bob’s portion of the

system. The entanglement properties of |φ〉AB will be unaffected if either

Alice or Bob perform a reversible operation, such as a unitary operation, on

their portion of the system. This leads to the notion of local equivalence of

13



Chapter 1. Introduction

states defined as follows.

|φ′〉AB ∼ |φ〉AB iff ∃UA ∈ U(dA), UB ∈ U(dB)

s.t. |φ′〉AB = UA ⊗ UB |φ〉AB

(1.20)

Since the entanglement properties of locally equivalent states are the same,

it is convenient to use a unique canonical representative of each equivalence

class under the relation (1.20). This is provided by the Schmidt form [82],

which is given by

|φ〉AB ∼
d∑

j=1

√
pj |j〉A ⊗ |j〉B (1.21)

where
∑

j pj = 1, p1 ≥ p2 ≥ . . . ≥ pd ≥ 0 and d = min(dA, dB). It follows

from this that all states with the same Schmidt form are locally equivalent.

The number of non-zero coefficients in this form is called the Schmidt number

of the state and is denoted NSch (|φ〉AB). The Schmidt decomposition is used

extensively in chapter 3.

The proof of (1.21) can be illustrated simply for the case where dA = dB =

d. In this case, a general pure state can be written as |φ〉AB =
∑d

j,k=1 αjk |j〉A⊗
|k〉B, where

∑
jk |α|2jk = 1. A local unitary operation then transforms this state

to

|φ′〉AB = UA ⊗ UB |φ〉AB

=
∑

jk αjkUA |j〉A ⊗ UB |k〉B
=

∑
jkmn αmn(UA)mj |j〉A ⊗ (UB)nk |k〉B

(1.22)

where (UA)jk = 〈j|A UA |k〉A are the components of the matrix representation

of UA in the computational basis and similarly (UB)jk = 〈j|B UB |k〉B. Thus,

regarding αjk as the components of a d×d matrix, the transformed coefficients

can be written as

α′ = UT
AαUB (1.23)

By the singular value decomposition [17], UA and UB can be chosen such

that α′ is diagonal with components given by the singular values of α, which

are the eigenvalues of
√

αα†. Furthermore, the normalization of α implies that

the squares of the singular values sum to one. Finally, the singular values may
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Figure 1.3: Schematic diagram of pure state entanglement distillation and
dilution.

be placed in any order along the diagonal of α′, since the permutation matrices

required to do this are unitary. Thus, choosing them to be in non-increasing

order makes the decomposition unique.

For the case where dA 6= dB the matrix α will not be square. This can be

dealt with by embedding the smaller subsystem in a larger Hilbert Space and

padding the matrix α with zeroes appropriately.

Note that the matrix αα† is simply Alice’s reduced density operator ex-

pressed as a matrix in the computational basis. Similarly, the matrix α†α is

Bob’s reduced density operator in this basis and it has the same eigenvalues.

Thus, the Schmidt coefficients are given by the square roots of the eigenvalues

of either of the reduced density operators and the Schmidt number is given by

their rank.

Entanglement distillation and dilution

Since an arbitrary state, |φ〉AB, is locally equivalent to its Schmidt form, ques-

tions about how many Bell states can be created from |φ〉AB via LOCC can

be addressed without loss of generality by restricting to states of this form.

The problem is also greatly simplified by allowing Alice and Bob to process

multiple copies of |φ〉AB collectively. The general framework is illustrated in
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fig. 1.3. Initially, Alice and Bob start with n copies of |φ〉AB and by perform-

ing collective LOCC on them they obtain m Bell states. Similarly, they could

start with Bell states and perform LOCC to obtain the state |φ〉AB. Protocols

for achieving these tasks are known as entanglement distillation and dilution

respectively.

The two most commonly used entanglement measures are the entanglement

of distillation ED and the entanglement cost EC , defined by

ED (|φ〉AB) = lim
n→∞

max
|φ〉⊗n

ABLOCC−−−−→|φ+〉⊗m
AB

(
m
n

)

EC (|φ〉AB) = lim
n→∞

min
|φ+〉⊗m

AB LOCC−−−−→|φ〉
⊗n
AB

(
m
n

) (1.24)

ED is the upper limit on the number of Bell states that can be “distilled” per

copy of the state |ψ〉AB and EC is the lower limit on the number of Bell states

it “costs” to form each copy of the state by dilution.

For bipartite pure states, the process of converting states to singlets via

LOCC is asymptotically reversible, i.e. ED and EC are the same. They are

given by the following formula [8].

ED (|φ〉AB) = EC (|φ〉AB) = −TrρA log2 ρA = −TrρB log2 ρB

= −∑
j pj log2 pj

(1.25)

The quantity E = −TrρA log2 ρA is also known as the entropy of entanglement.

To illustrate how this works, consider a protocol for distilling two-qubit

states that achieves this asymptotic limit. Without loss of generality, sup-

pose Alice and Bob start with n copies of the state |φ〉AB =
√

1− p |00〉AB +
√

p |11〉AB. The total state of their system will be

|ψ〉⊗n =
(√

1− p |00〉+
√

p |11〉
)⊗n

(1.26)

The next step is for Alice to perform a measurement on her subsystem de-

scribed by projectors onto subspaces spanned by computational basis states

with the same number of 1’s. For example the first two projectors would be
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Π0 = |0〉⊗n 〈0|⊗n, Π1 = |1000 . . . 0〉 〈1000 . . . 0|+ |0100 . . . 0〉 〈0100 . . . 0|+ . . . +

|0000 . . . 1〉 〈000 . . . 1|4.
Expanding (1.26) gives 2n terms, of which there are

(
n
k

)
terms where exactly

k of Alice’s qubits are in the state |1〉. Each of these terms has a coefficient
√

pk(1− p)n−k. Thus, the probability of outcome k is

P (k) =

(
n

k

)
pk(1− p)n−k (1.27)

i.e. a binomial distribution with parameter p. For large n this distribution

will be strongly peaked around the mean value k = np. If Alice obtains the

measurement outcome k then the state will be an equal superposition of
(

n
k

)

orthogonal terms, where each term is a product of a state with exactly k ones

on Alice’s side with the same state on Bob’s side. Such a state is entangled

and it remains to show how it can be transformed into Bell states.

In the large n limit5, the number of terms in the superposition will be

(
n

np

)
=

n!

(np)!(n− np)!
≈

(
n
e

)n

(
np
e

)np (
n−np

e

)n−np = 2nh(p) (1.28)

where h(p) = −p log2 p−(1−p) log2(1−p) is the Shannon entropy and Stirling’s

approximation in the form x! ≈ (x/e)x has been used.

If nh(p) happens to be an integer, then there is a local unitary transforma-

tion that takes the state to a product of nh(p) Bell states. This is because a

product of m Bell states has Schmidt number 2m and the Schmidt coefficients

are all equal. The existence of a local unitary transformation then follows be-

cause all states with the same Schmidt decomposition are locally equivalent.

Of course, nh(p) need not be an integer, but if Alice and Bob perform the

above protocol for l batches of n copies of the state then they will end up

with a state with N =
(

n
k1

)(
n
k2

)
. . .

(
n
kl

)
equally weighted terms in its Schmidt

decomposition, where each kj is close to np. For any ε > 0 this number will

4If the |0〉 and |1〉 states are the spin down and spin up states of a spin- 1
2 particle then

this is a measurement of the total spin of Alice’s system.
5For simplicity, the asymptotics are only sketched here. A more rigorous treatment can

be found in [8].
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eventually be close to a power of 2 for some l, i.e. ∀ε > 0, ∃rl ∈ Z+ such that

2rl ≤ N < 2rl(1 + ε) (1.29)

When this occurs, Alice can project the state into a subspace of dimension 2rl ,

succeeding with probability (1− ε), and then Alice and Bob can perform local

unitary operations to obtain rl Bell states. rl will typically be close to nlh(p),

so they have succeeded in distilling h(p) Bell states for each copy of the state

they started with.

In this description, only local operations by Alice and Bob have been men-

tioned so far. However, Alice would also have to communicate her measure-

ment results to Bob so that he knows the subspace in which the resulting state

lies in order to implement his local unitary transformation. Equivalently, he

could simply replicate the measurements performed by Alice on his side be-

cause the form of the state guarantees that he will obtain the same outcome

and not disturb the state further.

To complete the proof of (1.25), one needs to show that the state |φ〉 can be

diluted using h(p) Bell states for each copy of the state. This can be done using

quantum data compression, details of which can be found in [83]. Specifically,

Alice prepares multiple copies of the state |φ〉 locally, compresses one qubit

from each state and then uses Bell states to teleport the compressed states to

Bob who can then decompress them.

The reversibility of entanglement distillation and dilution for pure states is

used in chapter 3 in the discussion of collective processing of quantum opera-

tions. The entropy of entanglement is also used as an entanglement measure

in that chapter.

Single-copy entanglement manipulation

Whilst the entropy of entanglement is the unique measure of entanglement

for bipartite pure states in the sense discussed above [77, 96], there are still

other questions that could be asked to give a more detailed classification of
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entanglement. For example, given just a single copy of the state |φ〉AB, which

other states can be obtained with certainty by LOCC? The answer to this

question was provided in [73], where the following result was obtained. First

define the quantities

Mk (|φ〉AB) =
k∑

j=1

pj (1.30)

where pj are the Schmidt coefficients of |φ〉AB for j ≤ NSch (|φ〉AB) and pj = 0

otherwise. Then |φ′〉AB can be obtained with certainty from a single copy of

|φ〉AB by LOCC iff

Mk (|φ〉AB) ≤ Mk (|φ′AB〉) (1.31)

with equality for k ≥ max
(
NSch (|φ〉AB) , NSch (|φ′〉AB)

)
. (1.31) is an exam-

ple of a majorization relation and these are discussed in more detail in chapter

2, where they are compared to the rather similar classification of two-qubit

Hamiltonians that is derived there. The quantities Mk are known as entangle-

ment monotones and they can also be regarded as entanglement measures.

The majorization result shows that a Bell state cannot be distilled with

certainty from a single copy of any partially entangled two-qubit state. How-

ever, it can be done if a probability of failure is tolerated. To illustrate this,

suppose Alice and Bob share a state |φ〉AB =
√

p |00〉AB +
√

1− p |11〉AB,

where 1
2

< p < 1. Alice can perform a measurement described by the op-

erators M1 =
√

1−p
p
|0〉A 〈0|A + |1〉A 〈1|A ,M2 =

√
2p−1

p
|0〉A 〈0|A. Outcome 1

occurs with probability 2(1− p) and results in the production of the Bell state

|φ+〉AB. Outcome 2 represents a failure, since the resulting state is a product

|00〉AB.

In fact, this is the optimal procedure generating a Bell state from a single

copy and it is an example of a general result proved in [92], where the optimal

probability of generating a single copy of a state |φ′〉AB from a single copy of

the state |φ〉AB via LOCC is shown to be

P (|φ〉AB LOCC−−−−→|φ′〉AB) = min
k

Mk (|φ〉AB)

Mk (|φ′〉AB)
(1.32)
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However, the relations (1.31) and (1.32) do not represent the end of the

story as far a single copy pure state entanglement manipulation is concerned.

In particular, it is possible to convert between some pairs of states that do not

satisfy (1.31) via LOCC and boost the probability (1.32) if Alice and Bob have

access to another entangled state, even if this second state is left unchanged

by the protocol [56]. This effect is known as entanglement catalysis because

the second state plays a role analogous to a catalyst in a chemical reaction.

For example, suppose Alice and Bob want to convert the state

|φ〉AB =

√
2

5
|11〉AB +

√
2

5
|22〉AB +

√
1

10
|33〉AB +

√
1

10
|44〉AB (1.33)

into the state

|φ′〉AB =

√
1

2
|11〉AB +

√
1

4
|22〉AB +

√
1

4
|33〉AB (1.34)

via LOCC. These states do not satisfy (1.31) and (1.32) indicates that the

maximum probability of success is 4
5
. However, if they also share the state

|ψ〉A′B′ =
√

3
5
|11〉A′B′+

√
2
5
|22〉A′B′ then the states |φ〉AB⊗|ψ〉A′B′ and |φ′〉AB⊗

|ψ〉A′B′ do satisfy (1.31) and the conversion may be performed with certainty.

Axiomatic approaches to entanglement

So far, only measures of entanglement that have an operational interpretation

in terms of transformations between states that can be achieved via LOCC

have been considered. However, one can also take a more abstract approach

and construct systems of axioms that entanglement measures should obey

[88, 49, 96]. Then, one can construct general functions that satisfy the axioms

and use them as entanglement measures. Probably the most important of

these axioms is that entanglement measures must be monotonically decreasing

under LOCC.

Such an approach is most useful for quantifying mixed state entanglement,

for which there are fewer generally applicable results about the operational

measures of entanglement than for pure states. However, there are some ben-

efits to taking this approach in the pure state case as well. In particular, all
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entanglement measures on pure two-qubit states, satisfying monotonicity un-

der LOCC, must be monotonic functions of one another since, for this case,

(1.31) is a total order on the states. This is a useful property because some of

the more general entanglement measures are easier to work with analytically

and properties of the operational measures can then be derived using mono-

tonicity. This technique is used in chapter 3, making use of the following two

entanglement measures. The linearized entropy of entanglement, defined by

R (|φ〉AB) = 1− Tr
(
ρ2

A

)
= 1−

∑
j

p2
j (1.35)

and for two-qubit states the concurrence [101], defined by

C (|φ〉AB) =
∣∣∣〈φ|AB σ

(A)
2 ⊗ σ

(B)
2 |φ∗〉AB

∣∣∣ = 4p(1− p) (1.36)

where p1 = p and p2 = 1 − p. The concurrence is related to the entropy of

entanglement by

E (C) = h

(
1

2

(
1 +

√
1− C2

))
(1.37)

where h (x) = −x log2 x− (1− x) log2(1− x) is the Shannon entropy. This is

a convex function of C (i.e. upwardly curving).

1.3.2 Bipartite mixed state entanglement

For mixed states, one can define ED and EC in a similar way6. However, no

general formula has been found for them, so it is useful to consider alternative

entanglement measures.

Entanglement of formation

The entanglement of formation is defined to be

EF (ρ) = min
|ψj〉

∑
j

pjE (|ψj〉) = min
|ψj〉

〈E〉 (1.38)

6However, there are a few subtleties concerning protocols which do not distill pure Bell
states exactly, but only approach them in the asymptotic limit [11, 79].
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where the minimum is taken over all ensembles {pj, |ψj〉} such that ρ =
∑

j pj |ψj〉 〈ψj|. A decomposition of ρ that achieves this minimum is called

an optimal decomposition of ρ. An ensemble of states with density operator

ρ could be prepared with EF (ρ) singlets and LOCC by preparing the optimal

state |ψj〉 with probability pj and then discarding the information about which

state was prepared. It is not known if multiple copies of ρ could be prepared

with less than EF singlets by making use of entanglement between the copies,

i.e. it is not known if EF = EC
7. Nevertheless, EF is still a useful entangle-

ment measure and it is used in chapter 3. An important property of EF that

is used in that chapter is its convexity. That is, for any set of density matrices

ρj and probabilities pj, the following holds.

EF

(∑
j

pjρj

)
≤

∑
j

pjEF (ρj) (1.39)

This is a simple consequence of the minimization in the definition (1.38)

The general formula for EF is only known for the case of two-qubits [101]

and the procedure to calculate it in this case is as follows. Firstly, the con-

currence for a mixed state is defined in a similar way to the entanglement of

formation, i.e.

C(ρ) = min
|ψj〉

∑
j

pjC (|ψj〉) = min
|ψj〉

〈C〉 (1.40)

From the convexity of (1.37) it follows that for any particular decomposition

〈E〉 ≥ E(〈C〉). Thus, the lower bound EF (ρ) ≥ E(C(ρ)) is obtained. Note

that this bound would be an equality if there is a decomposition that minimizes

〈C〉 in which each state |ψj〉 has the same value of C (|ψj〉). The formula for

EF given in [101] is obtained by constructing such a decomposition.

The result can be conveniently summarized by defining the spin-flipped

density operator

ρ̃ = σ2 ⊗ σ2ρ
T σ2 ⊗ σ2 (1.41)

7However, EC can be defined as the regularized version of the entanglement of formation
EC(ρAB) = limn→∞

(
1
nEF

(
ρ⊗n

AB

))
.
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and denoting the eigenvalues of ρ̃ρ by λj, ordered such that λ1 ≥ λ2 ≥ λ3 ≥ λ4.

The concurrence for two-qubit mixed states is found to be

C(ρ) = max
{

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4

}
(1.42)

and the existence of a decomposition in which each state has this concurrence

implies that the entanglement of formation is given by

EF (ρ) = h

(
1

2

(
1 +

√
1− C2

))
(1.43)

Note that there are further interesting features of mixed state entangle-

ment, which have not been reviewed here, such as the existence of bound en-

tangled states, from which no Bell states can be distilled despite the fact that

they are entangled [48].

1.3.3 Multi-party entanglement

Currently, there is no unique way of quantifying entanglement for n > 2 par-

ties. Even for pure states of 3 qubits there is no single state, like |φ+〉AB for

pure bipartite states, into which all states can be converted reversibly in the

asymptotic limit. Indeed, for each n, there exists genuine n-party entangle-

ment which is not reversibly convertible into entangled states shared by < n

parties [69]. For 3-qubits, it is known that more than one type of genuine three

party entanglement exists [36, 2].

Despite these complications, some of the concepts from bipartite entan-

glement can be usefully generalized. Particularly important is the idea that

locally invariant quantities, like the Schmidt coefficients of bipartite states,

can be used to characterize entanglement. Invariants under Local Unitary

(LU) and more general transformations, such as Stochastic Local Operations

and Classical Communication (SLOCC), have been extensively studied in this

context [68, 23, 70, 86, 24, 44, 89, 90, 91, 54, 87, 53]. These will be described

in more detail in chapter 4, where some methods of measuring them are pre-

sented.
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Multi-party entanglement is of particular interest in quantum computing,

which involves entangled states of large numbers of qubits. It has been shown

[58], at least in pure state models, that multi-party entanglement is necessary

for quantum algorithms to exhibit exponential speedup over their classical

counterparts. In other words, an efficient simulation of a quantum algorithm

is possible on a classical computer if this entanglement is not present at some

point during the execution of the algorithm. However, the same paper also

shows that this is not a sufficient condition. This provides one motivation

for studying the entanglement properties of quantum dynamics, since the op-

erations involved in a quantum algorithm play a role that is perhaps more

fundamental than the states.

1.4 Dynamics as an Information Resource

The quantification of entanglement presented so far is appropriate when dis-

cussing quantum communication protocols, such as teleportation or cryptog-

raphy, where the local manipulation of quantum states is the primary focus

of interest. However, in quantum computing and quantum control theory, the

dynamics of a quantum system, as described by Hamiltonians, unitary opera-

tors and measurements, is the central focus of interest. There are essentially

three areas in which quantum dynamics can be considered as an information

resource.

• Computation - Quantum gates, such as the controlled-not (CNOT) gate

defined in the next section, can be used to perform the steps of a quantum

algorithm. The first question that arises in this area is to establish which

sets of gates are universal for quantum computation, i.e. which sets of

gates can be combined to generate an arbitrary unitary operation. One

example of such a universal set is the CNOT and all single qubit unitaries

[5]. Once a universal set is established, the difficulty of generating a

particular unitary operation may be quantified by asking how many gates
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1.4. Dynamics as an Information Resource

from the universal set are needed to generate it. To address issues of

computational complexity it is sufficient to establish whether a uniform

family of unitaries representing a quantum algorithm with input size n

can be generated with a number of gates that is polynomial in n or not.

However, for the practical purposes of building a quantum computer it

is also relevant to establish the exact number of universal gates required

to generate a particular gate to within a given tolerance of error.

• Communication - Quantum dynamics can also be used to perform com-

munication tasks. For example, if Alice and Bob have the ability to

generate a particular interaction Hamiltonian or to perform a quantum

gate or measurement on their joint system, then this might be used to

generate entanglement. This in turn might be used for teleportation or

superdense coding. Dynamical resources can also be used to transmit

classical communication directly or to simulate the action of some other

quantum dynamics via LOCC. Also, generating a particular quantum

evolution can itself be regarded as a communication task that can be

achieved using other types of resource. For example, it is possible to

generate a quantum gate acting on an unknown state of two separated

parties using only entanglement and LOCC. Some examples of all these

types of protocol are given in §1.5.

• Statistics - The final way in which quantum dynamics can be regarded

as a resource is in statistics, particularly via the role of measurements in

estimation theory. For example, suppose there is a source which produces

quantum states ρ which depend on an unknown parameter θ. The first

question that arises is to establish which measurements are sufficient to

infer the value of θ. When the unknown parameters are all the coefficients

of the state, this is known as quantum state tomography [85, 64, 32, 42],

which is a well established field of research. One might then try to

establish the minimum number of measurements and copies of the state
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required to determine θ to a given accuracy. This is known as quantum

parameter estimation [6]. A relatively new area of this research is to

look at these questions when θ is a parameter related to the entanglement

properties of ρ. In particular, chapter 4 is concerned with these questions

for the local invariants of multi-party quantum states.

These three areas are all closely linked to one another. In particular, some

communication problems can be used to establish lower bounds on computa-

tional problems. For example, the minimum number of CNOTs required to

generate a unitary by LOCC places a lower bound on the number of CNOTs

needed to generate the gate using the universal set of the CNOT and all sin-

gle qubit unitaries. This is because the single qubit gates are a subset of

the operations allowed in LOCC. Also, in parameter estimation, restricting

the communication resources available will generally affect the quality of es-

timates that can be achieved. For example, the measurements used might be

restricted to those that can be implemented by LOCC between the multiple

copies of the state. Clearly then, any theory that attempts to classify and

quantify dynamics as a physical resource must encompass all three of these

areas.

1.5 Examples of using Quantum Dynamics as

a Communication Resource

Of the three areas discussed in the previous section, the use of dynamics as

a communication resource is the most recent development. To illustrate this,

some examples of the use of quantum gates as a communication resource are

given and the analogous ideas for quantum measurements are briefly discussed.

The gate examples were first given in [29, 40].
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1.5.1 Unitary Operators

Example: The CNOT gate

Consider the CNOT gate, which acts as follows on the computational basis.

|00〉AB → |00〉AB

|01〉AB → |01〉AB

|10〉AB → |11〉AB

|11〉AB → |10〉AB

(1.44)

This gate performs a bit-flip on Bob’s qubit if the state of Alice’s qubit is |1〉A
and does nothing to Bob’s qubit if Alice’s qubit is in the state |0〉A. Alice’s

qubit is called the control and Bob’s is the target and this will sometimes be

shown by denoting the gate as CNOTA→B when the distinction between the

control and target qubits is important. It is possible to generate 1 ebit of

entanglement with a CNOT by acting on the product state 1√
2
(|0〉+ |1〉)A ⊗

|0〉B to obtain 1√
2
(|00〉+ |11〉)AB = |φ+〉AB.

It is also possible to use a CNOT to send 1 cbit from Alice to Bob and 1

cbit from Bob to Alice simultaneously. To do this, Alice and Bob start with

the Bell state |φ+〉AB. If Alice wishes to encode a 0 then she does nothing

and if she wishes to encode a 1 then she applies σ1 to her qubit. Similarly,

if Bob wishes to encode a 0 he does nothing and if he wishes to encode a 1

he applies σ3 to his qubit. They then apply the CNOT operation. The states

corresponding to each message before and after applying the CNOT are shown

in table 1.1. In each case, the final state is a product. Alice’s state depends

only on Bob’s message and her state when Bob’s message is 0 is orthogonal

to her state when Bob’s message is 1. Bob’s state depends on Alice’s message

in a similar way. Therefore, they can both determine each other’s messages

with certainty via a projective measurement. Specifically, Alice measures the

observable σ1 on her qubit and Bob measures the observable σ3 on his.

Conversely, one may ask how much entanglement and classical communi-

cation is required to implement a CNOT. This can be done by using 1 ebit
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Messages State prepared State after CNOT
Alice Bob

0 0 |φ+〉AB
1√
2
(|0〉+ |1〉)A ⊗ |0〉B

0 1 |φ−〉AB
1√
2
(|0〉 − |1〉)A ⊗ |0〉B

1 0 |ψ+〉AB
1√
2
(|0〉+ |1〉)A ⊗ |1〉B

1 1 |ψ−〉AB
1√
2
(|0〉 − |1〉)A ⊗ |1〉B

Table 1.1: States involved in the protocol for using a CNOT to communicate
1 cbit in each direction.

and 1 cbit of classical communication in each direction. To see this, note

that implementing a CNOT requires the transformation of an arbitrary un-

known two-qubit state, |ψ〉AB = (α |00〉+ β |01〉+ γ |10〉+ δ |11〉)AB to the

state CNOTA→B |ψ〉AB = (α |00〉+ β |01〉+ γ |11〉+ δ |10〉)AB. Suppose Alice

and Bob also share the Bell state |φ+〉A′B′ . The first step is for Alice to per-

form a parity measurement on her qubits A and A′, defined by the projectors

Π+ = |00〉AA′ 〈00|AA′ + |11〉AA′ 〈11|AA′ , Π− = |01〉AA′ 〈01|AA′ + |10〉AA′ 〈10|AA′ .

If she obtains the + outcome the resulting state will be

(α |0000〉+ β |0010〉+ γ |1101〉+ δ |1111〉)AA′BB′ (1.45)

and if she obtains the − outcome the state will be

(α |0101〉+ β |0111〉+ γ |1000〉+ δ |1010〉)AA′BB′ (1.46)

In either case, Alice can disentangle the qubit A′ from the rest of the system by

performing a local CNOTA→A′ operation and then this qubit can be discarded.

After discarding A′, the states (1.46) and (1.45) differ only by a bit-flip of qubit

B′. Therefore, Bob can correct the state obtained from the − outcome to that

of the + outcome by performing a σ1 operation on this qubit. In order for Bob

to know whether he needs to do this, Alice needs to communicate 1 cbit to

him to inform him of her measurement outcome. After this, the state of the

remaining three qubits will be

(α |000〉+ β |010〉+ γ |101〉+ δ |111〉)ABB′ (1.47)
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1.5. Examples of using Quantum Dynamics as a Communication Resource

The next step is for Bob to perform a local CNOTB′→B operation, which gives

(α |000〉+ β |010〉+ γ |111〉+ δ |101〉)ABB′ (1.48)

Bob then performs a measurement on his qubit B′ in the basis

{ 1√
2
(|0〉+ |1〉)B′ ,

1√
2
(|0〉 − |1〉)B′}. This results in one of the following two

states

(α |00〉+ β |01〉+ γ |11〉+ δ |10〉)AB ⊗
1√
2

(|0〉+ |1〉)B′ (1.49)

(α |00〉+ β |01〉 − γ |11〉 − δ |10〉)AB ⊗
1√
2

(|0〉 − |1〉)B′ (1.50)

In both cases, the qubit B′ is disentangled from the rest of the system and

may be discarded. In the first case, the CNOT has been performed as desired,

but in the second case Alice needs to apply σ3 to her qubit A. In order for her

to know whether to do this or not, Bob has to transmit 1 cbit to Alice.

Taken together, these three protocols show that a CNOT can be generated

with the same resources as it can be used to generate, namely 1 ebit and

1 cbit in each direction. This implies that a CNOT cannot generate more

entanglement and classical communication resources than these and that it

cannot be generated with less.

To see this, suppose that a CNOT could generate more than 1 ebit. Then,

it would be possible to use an ebit to generate a CNOT via LOCC and use

the resulting CNOT to generate more than 1 ebit of entanglement. However,

entanglement cannot increase under LOCC, so this is not possible.

Similarly, a CNOT operation cannot be used to transmit more than 1 cbit

in each direction because this would allow faster than light communication,

violating causality. To see this, suppose the CNOT could be used to transmit

more than 1 cbit in each direction. Alice and Bob can implement a proto-

col to generate a CNOT, but instead of transmitting the required classical

information they simply guess each other’s message. Since they both have to

guess a cbit, this will succeed with probability one quarter. They can then use

the imperfect, but instantaneous CNOT to communicate more than 1 cbit in
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each direction. More than 2 cbits communicated correctly with probability one

quarter represents a non-zero amount of information. Thus Alice and Bob have

managed to communicate some information to one another instantaneously.

This sort of reversibility argument can be applied to any quantum operation

when it has been shown that it can generate the same amount of entanglement

and classical communication resources as it takes to generate the operation.

For the remaining examples, the optimality of the protocols discussed will be

implied by demonstrating this reversibility.

The interaction of the CNOT with the other communication resources in

the above protocols can be conveniently summarized by the following relations.

1 CNOT => 1 ebit

1 CNOT +1 ebit => 1 cbitA→B +1 cbitB→A

1 ebit +1 cbitA→B +1 cbitB→A => 1 CNOT

(1.51)

Note that although a CNOT can be used to generate either an ebit or 1 cbit

in each direction, it does not appear to be possible to generate both simulta-

neously. Also, the second line shows that an ebit is consumed in the classical

communication protocol. Thus, although the protocols are reversible if the

entanglement or classical communication resources are counted on their own,

they are not reversible with respect to the total amount of resources generated

and consumed.

Example: The SWAP gate

As a second example, consider the SWAP gate, which acts on product states

as follows.

SWAPAB |ψ〉A ⊗ |φ〉B = |φ〉A ⊗ |ψ〉B (1.52)

The SWAP gate can be used to generate 2 ebits of entanglement if Alice and

Bob are allowed to hold ancillary qubits in addition to the qubits that the

SWAP acts on. Let the ancillary qubits be labelled A′ and B′ respectively.

Suppose Alice and Bob prepare the state |φ+〉AA′ ⊗ |φ+〉BB′ , or equivalently
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any product of locally maximally entangled states. This state contains no

entanglement between Alice and Bob. After the application of the SWAP to

qubits A and B the state becomes |φ+〉AB′ ⊗ |φ+〉BA′ , which contains 2 ebits.

The SWAP gate can also be used to send 2 cbits in each direction simul-

taneously. Alice and Bob start with the state |φ+〉AB′ ⊗ |φ+〉BA′ . Alice then

encodes her message in qubit A and Bob encodes his in qubit B using the same

encoding as in the superdense coding protocol. Applying a SWAP operation

then acts like a bi-directional quantum channel, sending the qubit A to Bob

and the qubit B to Alice. They can then discover each other’s message using

the decoding part of the superdense coding protocol.

Conversely, the SWAP, or indeed any two-qubit operation, can be imple-

mented with 2 ebits and 2 cbits in each direction. To do this, Alice teleports

her qubit A to Bob, Bob implements the operation locally and then teleports

the qubit back to Alice. This also implies that no two-qubit operation can

generate more than 2 ebits or transmit more than 2 cbits in each direction,

and hence the SWAP operation is optimal in this sense.

The SWAP example also shows that ancillary qubits may be required for

optimal entanglement generation and classical communication. Indeed, when

there are no ancillas the entanglement in a state is always invariant under the

SWAP operation. In chapter 3, it will be shown that the presence of ancillas

typically increases the amount of entanglement that can be generated from an

arbitrary two-qubit gate.

The results for the SWAP operation can be summarized by the relations

1 SWAP => 2 ebits

1 SWAP +2 ebits => 2 cbitsA→B +2 cbitsB→A

2 ebits +2 cbitsA→B +2 cbitsB→A => 1 SWAP

(1.53)

Comparing the results for the CNOT and SWAP gates shows that 2 CNOTs

are equivalent to a SWAP under LOCC, since both can be reversibly converted

into 2 ebits of entanglement.
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1.5.2 Measurements

As well as unitary gates, one can also perform communication protocols us-

ing quantum measurements as a resource. Some authors have looked at the

amount of entanglement required to implement measurements in different sce-

narios [34, 57, 81]. The entanglement and classical communication properties

of measurements are slightly more subtle than those of unitary gates, since

they typically depend not only on the POVM {Ej} to be implemented, but

also on the measurement operators Mj (where Ej = M †
j Mj) used to realize

it. They also depend on how the classical information obtained about the

measurement outcomes is distributed amongst the parties. For example, all

two-qubit measurements can be implemented with 2 ebits and 2 cbits in each

direction by Alice teleporting her half of the state to be measured to Bob, who

performs the measurement locally and then teleports Alice’s state back to her.

However, in this scheme, only Bob learns the outcome of the measurement

and further classical communication would be required if Alice is to know the

outcome as well.

Nevertheless, examples of converting measurements to entanglement and

classical communication and back again can be developed along similar lines

to the unitary gate examples discussed above. In currently ongoing work, I

have found that a measurement in the Bell basis has very similar properties

to the SWAP gate and a measurement of parity has similar properties to the

CNOT gate in this regard. This work is currently unpublished, but I believe

that similar results can be derived for a large class of other measurements as

well.

1.6 Overview

The remainder of this thesis is structured as follows.

In chapter 2, I discuss the problem of Hamiltonian simulation. Given an

interaction Hamiltonian H, which other Hamiltonians may be simulated effi-
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ciently by interspersing evolutions under H by local operations? The results

for two-qubit Hamiltonians are conveniently summarized by a simple partial

order relation on the space of Hamiltonians, similar to the majorization rela-

tion (1.31) for states. This work has been published in [10].

Chapter 3, is devoted to the entanglement generating capabilities of quan-

tum operations. It generalizes some of the notions in §1.5.1 to arbitrary two-

qubit operations. I define the entangling capacity of a quantum operation as

the maximum amount of entanglement per operation that can be generated by

repeated application of the operation on an arbitrary input state and LOCC.

Analytical results are presented for the case of a single application of a two-

qubit unitary with the additional restriction that no ancillas are allowed in

the input state. Numerical results are presented for the case where ancillas are

allowed. Finally, I show that collective processing of many copies of a quantum

operation is not necessary to achieve the entangling capacity. The results of

this chapter have been published in [62].

The focus of chapter 4 is to find ways of determining the entanglement prop-

erties of quantum states directly by measuring multiple copies of an unknown

quantum state. In particular, I consider the multi-party case and determine

networks for measuring the invariants of quantum states under LU and SLOCC

transformations. I also analyze the statistical efficiency of these networks when

only a finite number of copies of the unknown state are available. The results

of this chapter have been presented in [63].

Finally, chapter 5 concludes with some open questions and a general dis-

cussion of the possible applications of the results presented in this thesis.
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Chapter 2

Hamiltonian Simulation

2.1 Introduction

One of the central problems in quantifying the entanglement properties of a

quantum interaction is to determine which other interactions it can be used to

simulate under LOCC. In many physical implementations of quantum comput-

ing, interactions between qubits proceed by some Hamiltonian, which is always

present in the system. In addition, it is usually possible to perform local op-

erations on the individual qubits and thus simulate the effect of a different

interaction Hamiltonian. This chapter describes the most efficient protocols

for doing this with 2-qubit interactions [10].

Suppose Alice and Bob each have a qubit, and the qubits interact with

each other via a non-local Hamiltonian H, which is continually acting on the

joint system according to the Schrödinger equation. Additionally, they are

each allowed to perform local operations on their own qubit. To simplify the

problem, it is assumed that the local operations can be done arbitrarily fast

compared to the interaction. This assumption is justified by the fact that the

coupling coefficients in the interaction terms of typical Hamiltonians used in

experiments aimed at demonstrating the principles of quantum computing are

small compared to the coefficients of the single-particle Hamiltonians that can

be generated. If Alice and Bob were to do nothing, the evolution of the qubits
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Bob

Alice
c̃

d̃

ã1

b̃1

ã2

b̃2

ãN−1

b̃N−1

ãN

b̃N

e−iHt1 e−iHt2 e−iHtN

Figure 2.1: Network diagram for the two-qubit Hamiltonian simulation proto-
col

for time t will be given by the operator U = e−iHt. However, they could instead

allow the Hamiltonian to act for a series of shorter times t1, t2, . . . , tN such

that
∑N

j=1 tj = t interspersed with fast local unitary operations. This leads

to an evolution that would have occurred if there were a different interaction

Hamiltonian H ′ present acting for a time t′. We say that the protocol simulates

the action of H ′ running for t′ with efficiency t′/t.

If the protocol is required to work with the same efficiency for all possible

values of t, then not only must it result in e−iH′t′ , but it must simulate the

entire dynamics that would have occurred if H ′ had been present, since it

must work for arbitrarily small t. This is called dynamics or time independent

simulation and this is the case dealt with here. Note that this is different to

gate or finite time simulation, where H is used to generate e−iH′t′ just for a

particular value of t′. Since this work has been published, optimal protocols

for two qubit gate simulation have also been found [59, 95].

2.2 The 2-qubit simulation protocol

For now, the analysis is restricted to the case where Alice and Bob are only

allowed to evolve their joint system according to H, interspersed with single-

qubit unitaries on their systems. In appendix 2.B it is shown that this is the

most general type of protocol needed to achieve the optimal efficiency if the if

the object is to simulate H ′ with certainty. The evolution will be given by the
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unitary operator

e−iH′t′ =

(
N∏

j=1

ãj ⊗ b̃je
−iHtj

)
c̃⊗ d̃ (2.1)

where ãj, b̃j, c̃, d̃ ∈ U(2) (see fig. 2.1 for a network diagram). It is convenient

to rewrite this in terms of a conjugation action as follows:

e−iH′t′ =

(
N∏

j=1

aj ⊗ bje
−iHtja†j ⊗ b†j

)
c⊗d =

(
N∏

j=1

e−i[aj⊗bjHa†j⊗b†j ]tj

)
c⊗d (2.2)

where aj, bj, c, d ∈ U(2) are suitably defined in terms of ãj, b̃j, c̃ and d̃. Specif-

ically, aj can be defined recursively by a1 = ã1, aj+1 = aj c̃j ãj+1 and then

c = aN c̃N . Similarly for bj and d.

The most general 2-qubit Hamiltonian is given by

H = γI2 ⊗ I2 + ~α · ~σ ⊗ I2 + I2 ⊗ ~β · ~σ +
3∑

j,k=1

Rjkσj ⊗ σk (2.3)

where γ, Rjk are real numbers and ~α, ~β are real 3-dimensional vectors. In

dynamics simulation, the protocol must work for arbitrarily small t. Therefore,

let δt be a short evolution time. Then, the Baker-Campbell-Hausdorff formula

gives

e−i(Hδt+O(δt2)) = e−iγδt
(
e−i~α·~σδt ⊗ e−i~β·~σδt

)
e−i

P3
j,k=1 Rjkσj⊗σkδt (2.4)

To first order in δt, the ~α and ~β terms generate a purely local evolution. The γ

term generates an global phase, which is physically irrelevant. Thus, any inter-

action is due to the Rjk term only. Therefore, by continuously interspersing the

evolution due to H with local unitary transformations, the ~α, ~β and γ terms

may be removed. Note that any local unitary evolution may be simulated by

choosing c ⊗ d appropriately. Thus, the local terms and the c ⊗ d operation

may be neglected, and only Hamiltonians of the form
∑

j,k Rjkσj ⊗ σk need to

be considered. Expanding eq. (2.2) to first order in t yields

sH ′ =
N∑

j=1

pjaj ⊗ bjHa†j ⊗ b†j (2.5)

where s = t′/t is the efficiency and pj = tj/t, which implies that
∑

j pj = 1.
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Definition 2.1. H ′ can be efficiently simulated by H (H ′ ≺S H) if there

exists a simulation protocol with s = 1. If H ′ ≺S H and H ≺S H ′ then they

are equivalent (H ′ ≈S H).

Note that it is always possible to simulate the zero Hamiltonian by choosing

p1,2,3,4 = 1
4
, aj = σj for j = 1, 2, 3, a4 = I2 and bj = I2 for j = 1, 2, 3, 4. This

can be generalized to bipartite Hamiltonians on arbitrary dimensional Hilbert

spaces [10]. Thus, if there is a protocol with s > 1, then there is also a protocol

with s = 1, since the zero Hamiltonian may be simulated for the remaining

time.

Also, it is possible to simulate an arbitrary 2-qubit Hamiltonian with some

simulation factor s, providing at least one of the coefficients Rjk is non-zero.

To see this, note that for any σi, σj there exist unitary operations Uij± such

that

Uij±σiU
†
ij± = ±σj (2.6)

These operations form the single-qubit Clifford Group [43], which is generated

by the following two matrices

1√
2


 1 1

1 −1


 ,


 1 0

0 i


 (2.7)

It can be assumed without loss of generality that R33 > 0, since otherwise

a conjugation with U33− ⊗ I2 may be applied. Then by choosing p1,2,3,4 =

1
4
, a1,2 = I2, a3,4 = σ3, b1,3 = I2, b2,4 = σ3, the Hamiltonian σ3 ⊗ σ3 may be

simulated with some simulation factor, although this is not necessarily the

most efficient simulation. σ3⊗σ3 can be used to simulate an arbitrary product

Hamiltonian of the form σj⊗σk by conjugating with Clifford Group operations.

An arbitrary 2-qubit Hamiltonian may then be simulated by short evolutions

under each σj ⊗ σk with time ratios according to R′
jk. The Clifford Group

construction, and hence this result generalizes to higher dimensional Hilbert

spaces as well.
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The problem we are concerned with can now be expressed in two equivalent

ways.

Let H be arbitrary. The optimal simulation problem, given H ′, is to find a

solution, {pj, aj, bj} such that s is maximal. The efficient simulation problem

is to find all H ′, such that H ′ ≺S H

Definition 2.2. The optimal simulation factor sH|H′ is the maximal s such

that sH ′ ≺S H.

The two problems are equivalent because it is always possible to simulate

an arbitrary H ′ using any H with some efficiency. The efficient simulation

problem can be solved by finding the optimal solution for all H ′. Then all H ′

with sH|H′ ≤ 1 can be efficiently simulated. The optimal simulation problem

can be solved by finding the efficiently simulated sH ′ with maximal value of

s. Thus, throughout the rest of this chapter, the solutions to both problems

are discussed interchangeably.

In the following sections, necessary and sufficient conditions for H ′ ≺S H

are derived for arbitrary H,H ′, the optimal simulation factor sH|H′ is found

and the optimal simulation strategy in terms of {pj, aj, bj} is given. These

results endow the set of two qubit Hamiltonians with a partial order, ≺S,

which for each H induces a convex set {H ′ : H ′ ≺S H}. The convexity arises

because if H ′ ≺S H and H ′′ ≺S H then λH ′ + (1 − λ)H ′′ can be simulated

with unit efficiency by time sharing the evolution according to H between the

protocols for simulating H ′ and H ′′ in the ratio λ : (1 − λ). This set has a

simple geometric interpretation and allows the relation ≺S to be succinctly

characterized by a majorization-like relation. The geometric and majorization

interpretations offer two different methods to calculate the optimal protocol

and simulation factor.
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2.3 Normal form for two qubit Hamiltonians

Following the discussion in the previous section, a general 2-qubit interaction

Hamiltonian is taken to be of the form K =
∑

jk Rjkσj ⊗ σk.

Definition 2.3. The normal form of a two qubit Hamiltonian is H =
∑

j hjσj⊗
σj, where h1 ≥ h2 ≥ |h3| are the singular values of the matrix R with elements

Rjk and h3 = sgn(det(R))|h3|

Theorem 2.1. Let H be the normal form of K. Then H ≈S K. Furthermore,

it only takes a one stage protocol to simulate one of them with the other, so

the resulting evolutions are equivalent under local unitary transformations, i.e.

∃a, b ∈ U(2) s.t. e−iH = a⊗ be−iKa† ⊗ b† (2.8)

Proof. Conjugating the evolution resulting from K acting for a time t by a

local unitary a⊗ b gives

e−iK′t = a⊗ be−iKta† ⊗ b† = e−i(a⊗b)K(a†⊗b†)t (2.9)

where

K ′ = (a⊗ b)K(a† ⊗ b†)

=
∑

jk Rjk(aσja
†)⊗ (bσkb

†)

=
∑

jk Rjk (
∑

l Pjlσl)⊗ (
∑

m Qkmσm)

=
∑

lm(P T RQ)lmσl ⊗ σm ≡ ∑
lm R′

lmσl ⊗ σm

and P, Q ∈ SO(3), since conjugating ~r · ~σ by an SU(2) matrix is equivalent to

rotating the vector ~r by a matrix in SO(3). Thus it remains to show that it is

always possible to choose P and Q, such that K ′ = H.

Let R = O1DO2 be a singular value decomposition of R, where O1, O2 ∈
O(3), and D = diag(h1, h2, |h3|) is the diagonal matrix whose entries are the
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2.4. Simulation of normal form two-qubit Hamiltonians

singular values of R. Then

R = O1




1 0 0

0 1 0

0 0 det(O1)


×D




1 0 0

0 1 0

0 0 det(O1) det(O2)




×




1 0 0

0 1 0

0 0 det(O2)


 O2

= Õ1 ×




h1 0 0

0 h2 0

0 0 |h3|sgn(det(R))


× Õ2

Note that Õ1, Õ2 ∈ SO(3) for all O1, O2 ∈ O(3). Thus, choosing P = ÕT
1 , Q =

Õ2 gives the required decomposition.

Now, some notations suggested by the above argument can be introduced.

Definition 2.4. The Pauli representation of K is the 3×3 real matrix R. DK

denotes the Pauli representation of the normal form of K.

2.4 Simulation of normal form two-qubit Hamil-

tonians

Due to theorem 2.1, only simulations that take the normal form of H to the

normal form of H ′ need to be considered. Thus, eq. (2.5) can be re-expressed

as

sDH′ =
∑

j

pjPjDHQj (2.10)

where Pj, Qj ∈ SO(3). Since H and H ′ are in their normal form, h1 ≥ h2 ≥ |h3|
and h′1 ≥ h′2 ≥ |h′3|. Without loss of generality, two further assumptions can

be made. Firstly, assume h3 ≥ 0, since if h3 < 0 then eq. (2.10) can be right

multiplied by S = diag(1, 1,−1)

s(D′
HS) =

∑
j

pjPj(DHS)(SQjS) (2.11)
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where SQjS ∈ SO(3) and DHS = diag(h1, h2, |h3|) is of the desired form.

Secondly, note that sH|H′ = 1
a
sH′|aH = asaH′|H . The protocol is unchanged if

eq. (2.10) is divided by Tr(DH). Thus, the normalization Tr(DH) = 1 can be

assumed.

The DH′ that can be efficiently simulated are precisely the diagonal subset

of the convex hull of the set {PDHQ : P,Q ∈ SO(3)}. This convex diagonal

subset will be denoted CH . DH′ = 0 ∈ CH because it was noted earlier that

the zero Hamiltonian can always be simulated. Indeed, DH′ = 0 is an interior

point of CH because it was noted in §2.2 that it is always possible to simulate

any non-zero H ′ with some efficiency s. It follows that the optimal solution

∀DH′ 6= 0 is a boundary point of CH . Thus, the problem of optimal or efficient

simulation can be rephrased as follows:

Given H, H ′ can be efficiently simulated iff DH′ ∈ CH . The optimal simu-

lation sH|H′DH′ is the unique intersection of the half-line λDH′ , (λ ≥ 0) with

the boundary of CH . An optimal protocol is then obtained by decomposing

sH|H′DH′ in terms of the extreme points of CH .

In fact, it suffices to consider the convex hull PH of a subset P24 ∈ CH . The

24 elements of P24 are obtained from DH by permuting the diagonal elements

and putting an even number of - signs. The proof that CH = PH is given in

appendix 2.A, since it depends of the characterization of PH given in the next
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2.4. Simulation of normal form two-qubit Hamiltonians

section. The elements of P24 are explicitly given by πjDHπjsk, where

π0 = I3, π1 =




−1 0 0

0 0 1

0 1 0


 , π2 =




0 0 1

0 −1 0

1 0 0


 , π3 =




0 1 0

1 0 1

0 0 −1


 ,

π4 =




0 1 0

0 0 1

1 0 0


 , π5 =




0 0 1

1 0 0

0 1 0


 ,

s0 = I3, s1 =




1 0 0

0 −1 0

0 0 −1


 , s2 =




−1 0 0

0 1 0

0 0 −1


 , s3 =




−1 0 0

0 −1 0

0 0 1


 .

(2.12)

In the next section, the geometry of PH is investigated and optimal proto-

cols for simulating any H ′ are found. Then, in §2.5, the solution is restated in

terms of a majorization-like relation.

2.4.1 Optimization over PH

Since all the matrices in P24 and PH are diagonal, their elements can be rep-

resented by real 3-dimensional vectors. PH is a polytope with 24 (not neces-

sarily distinct) vertices that are elements of P24. By plotting the vertices in

P24, the equations of the boundary faces can be determined, and these give a

useful characterization of PH in terms of a set of inequalities. First consider

the simple case (h1, h2, h3) = (1, 0, 0), for which there are 6 distinct vertices:

(±1, 0, 0), (0,±1, 0), (0, 0,±1) and PH is an octahedron, as shown in fig. (2.2)1.

There are a few other simple cases, such as h3 = 0 and h1 = h2, for which the

polytope can be constructed in the same way, but the most complicated case

is the generic case, h1 > h2 > h3 > 0, as shown in fig. (2.3).

As in fig. (2.2), fig. (2.3) is viewed from the direction (1, 1, 1). Three faces

are removed to show the structure in the back. There are 3 types of faces.

There are 6 identical rectangular purple faces on the planes x = ±h1, y =

1Diagrams in this section are due to D. Leung.
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Figure 2.2: PH for the case (h1, h2, h3) = (1, 0, 0) viewed from the direction
(1, 1, 1).
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Figure 2.3: PH for the generic case h1 > h2 > h3 > 0 viewed from the direction
(1, 1, 1).
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±h1, z = ±h1. There are two groups of 4 identical hexagonal faces. The first

group of 4 consists of the 3 light blue faces in the back, and the light blue face

in the front. These are the truncated faces of the original octahedron, lying

on the planes x + y + z = 1,−x + y − z = 1,−x − y + z = 1, x − y − z = 1.

The second group consists of the 3 empty faces in the front, and the white

face in the back. They are inside the original octahedron and are parallel to

the original faces. They lie on the planes −x− y − z = 1− 2h3,−x + y + z =

1−2h3, x−y+z = 1−2h3, x+y−z = 1−2h3. Note that each hexagon in one

group has a parallel counterpart in the other group. All together, there are 7

pairs of parallel faces, so PH may be characterized by the following inequalities.

(x, y, z) ∈ PH iff





|x| ≤ h1 , |y| ≤ h1 , |z| ≤ h1

−(1− 2h3) ≤ +x + y + z ≤ 1

−(1− 2h3) ≤ −x− y + z ≤ 1

−(1− 2h3) ≤ +x− y − z ≤ 1

−(1− 2h3) ≤ −x + y − z ≤ 1

(2.13)

Recall from §2.4 that the optimal simulation problem can be restated as,

given DH and DH′ , find the unique intersection of the half-line λDH′ , (λ > 0)

with the boundary of PH . This fact can be used to explicitly work out sH|H′ ,

i.e. the value of λ in the intersection, as a function of DH′ .

The intersection is given by a vector ~v = sH′|H(h′1, h
′
2, h

′
3), so that

sH′|H =
||~v||1

||(h′1, h′2, h′3)||1
=

||~v||1
||H ′||1 , (2.14)

where ||~v||1 for a vector ~v is the sum of the absolute values of the entries,

and ||H ′||1 ≡ ||(h′1, h′2, h′3)||1. The set PH has only 3 types of boundary faces.

Therefore, there are only 3 possibilities where the intersection can occur:

1. On the group of faces given by x+y+z = 1,−x+y−z = 1,−x−y+z =

1, x− y − z = 1. In this case, ||~v||1 = 1, and sH′|H = 1
||H′||1 .

2. On the group of faces x+y−z = 1−2h3, x−y+z = 1−2h3,−x+y+z =
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Chapter 2. Hamiltonian Simulation

1 − 2h3,−x − y − z = 1 − 2h3. In this case, ||~v||1 = 1 − 2h3, and

sH′|H = 1−2h3

||H′||1 .

3. On the group of faces x = ±h1, y = ±h1, z = ±h1. In this case, ~v =

h1

h′1
(h′1, h

′
2, h

′
3), and ||~v||1 = h1

h′1
||H ′||1 is not constant on the face, and

sH′|H = h1

h′1
.

Note that when H ′ is in a normal form, ~v can only fall on one face in each case.

These faces are respectively x + y + z = 1, x + y − z = 1 − 2h3, and x = h1.

The (h′1, h
′
2, h

′
3) belonging to each case can be characterized as follows.

• Case 1. Note that the face of PH on x + y + z = 1 is the convex hull

of (h1, h2, h3) and all permutations of the entries. The hexagon contains

exactly all vectors ~v majorized by (h1, h2, h3), ~v ≺ (h1, h2, h3) (see §2.5

for definition of majorization). Hence, (h′1, h
′
2, h

′
3) is in case 1 if and only

if it is proportional to some ~v ≺ (h1, h2, h3).

• Case 3. In this case, ~v = (h1,
h1h′2
h′1

,
h1h′3
h′1

) (note h′1/h1 ≥ 0). Thus

(h′1, h
′
2, h

′
3) is in case 3 iff (

h1h′2
h′1

,
h1h′3
h′1

) is within the rectangle with ver-

tices (h2, h3), (h3, h2), (−h2,−h3), (−h3,−h2).
�
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Hence, (h′1, h
′
2, h

′
3) is of case 3 iff

∣∣∣∣
h1h

′
2

h′1
+

h1h
′
3

h′1

∣∣∣∣ ≤ h2 + h3 and

∣∣∣∣
h1h

′
2

h′1
− h1h

′
3

h′1

∣∣∣∣ ≤ h2 − h3 (2.16)

iff
h1

h2 + h3

≤ h′1
h′2 + h′3

and
h1

h2 − h3

≤ h′1
h′2 − h′3

(2.17)

• Case 2. This contains all (h′1, h
′
2, h

′
3) not in case 1 or 3.

The fact that the intersection is on one of the boundary faces means that

it can be easily decomposed as a convex combination of at most 3 vertices in
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P24
2. The decomposition directly translates to an optimal protocol with at

most 3 types of conjugation.

2.5 s-majorization

The problem of Hamiltonian simulation can also be analyzed from the per-

spective of a majorization-like relation, which provides a natural and compact

language to present the results of the previous section.

Recall the standard notions of majorization and submajorization as defined

in the space of n-dimensional real vectors. Let u denote an n-dimensional real

vector and ui, i = 1, · · · , n, its n components. Define u↓ to be a vector

with components u↓1 ≥ u↓2 ≥ · · · ≥ u↓n, corresponding to the components ui

decreasingly ordered. Let v be another n-dimensional vector and v↓ its ordered

version. Then u is submajorized or weakly majorized by v, written u ≺w v, if

u↓1 ≤ v↓1 , (2.18)

u↓1 + u↓2 ≤ v↓1 + v↓2 , (2.19)

... (2.20)

u↓1 + u↓2 + · · · u↓n ≤ v↓1 + v↓2 + · · · v↓n . (2.21)

In case of equality in the last equation, u is majorized by v, which is written

as u ≺ v.

These notions can be extended to real matrices by comparing the corre-

sponding vectors of singular values. Suppose M and N are two n × n real

matrices. Then, M is majorized by N , M ≺ N , when sing(M) ≺ sing(N),

where sing(M) denotes the vector of singular values of the matrix M . Thus,

majorization endows the set of real matrices with a partial order, and a notion

of equivalence,

M ∼ PMQ ∀P, Q ∈ O(n) (2.22)

2This is a consequence of Carathéodory’s theorem which states that an interior point of
a convex n-dimensional polytope can always be written as a convex combination of ≤ n + 1
boundary points [104].
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because the transformation M → PMQ preserves the singular values. A

“convex sum” characterization of weak majorization

M ≺w N ⇔ M =
∑

i

piPiNQi (2.23)

also holds [17], with the meaning that N always weakly majorizes an (left and

right) orthogonal mixing of itself.

Likewise, the notion of special majorization, s-majorization for short, can

be introduced. In close analogy with majorization, consider again the n × n

real matrices M , but this time transform them by acting on the right and

on left with special orthogonal matrices P, Q ∈ SO(n) with determinant +1.

Proceeding back to front, introduce the equivalence relation

M ∼s PMQ , (2.24)

where P, Q ∈ SO(n). Following the singular value decomposition of M , M ∼s

diag(d1, d2, · · · , dn−1, sg(det M) dn) where d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 are the

singular values of M . This suggests the following rearrangement of a real

vector u with components ui. Let |u| be the real vector with components |ui|.
Then, the s-ordered vector u↓s is constructed as follows:

(|u|↓1, |u|↓2, · · · , |u|↓n−1, sg(Πiui)|u|↓n) . (2.25)

In other words, the absolute values of ui are arranged in decreasing order, the

sign of the last element is chosen to be the product of all the original signs.

Then define the s-majorization relation, which will be denoted by the symbol

≺s, directly on real matrices by means of the “convex sum” characterization,

M ≺s N ⇔ M =
∑

i

piPiNQi . (2.26)

That is, M is s-majorized by N when M is a (left and right) special orthogonal

mixing of N . This definition applies for real vectors (when M and N are

diagonal matrices). The remainder of this section is restricted to the n = 3

case, which is relevant for the two-qubit Hamiltonian simulation problem. The
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results in §2.4.1 imply the following alternative definition of s-majorization

which is equivalent to eq. (2.13).

Definition 2.5. Let (u1, u2, u3) and (v1, v2, v3) be s-ordered. Then (u1, u2, u3)

is s-majorized by (v1, v2, v3), denoted u ≺s v, if and only if

u1 ≤ v1 ,

u1 + u2 − u3 ≤ v1 + v2 − v3 ,

u1 + u2 + u3 ≤ v1 + v2 + v3 . (2.27)

If the real vectors u and v are not s-ordered, then u ≺s v when u↓s ≺s v↓s.

Note that when applied to s-ordered vectors u and v, the s-majorization

relation implies the weak majorization relation, that is u ≺s v ⇒ u ≺w v. This

can be seen by summing the second and third inequalities in (2.27). Moreover,

when sg(Πiui) = sg(Πivi) and
∑

i ui =
∑

i vi, then ≺w, ≺s, and ≺ are all

equivalent.

Now s-majorization can be related to Hamiltonian simulation. Consider

the polytope PH with the set of vertices P24 associated to h = (h1, h2, h3),

which describes the normal form of the Hamiltonian H. The Hamiltonians H ′,

characterized by vectors h′, that can be efficiently simulated with H, H ′ ≺S H,

are given by just comparing h and h′ according to the s-majorization relation.

Theorem 2.2. Let h and h′ be real, s-ordered 3-dimensional vectors. Then

h′ ∈ PH iff h′ ≺s h.

Proof. When h = (h1, h2, h3) is s-ordered, but not necessarily satisfying ||h||1 =

1 and h3 ≥ 0, the polytope PH associated can still be characterized by a simple

modification of eq. (2.13):

DH′ ∈ PH ⇔





∀i |h′i| ≤ h1

−(h1 + h2 − h3) ≤ h′1 + h′2 + h′3 ≤ h1 + h2 + h3

−(h1 + h2 − h3) ≤ −h′1 − h′2 + h′3 ≤ h1 + h2 + h3

−(h1 + h2 − h3) ≤ h′1 − h′2 − h′3 ≤ h1 + h2 + h3

−(h1 + h2 − h3) ≤ −h′1 + h′2 − h′3 ≤ h1 + h2 + h3

(2.28)
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Furthermore, when h′ is also s-ordered, the above reduces to

h′1 ≤ h1 ,

h′1 + h′2 − h′3 ≤ h1 + h2 − h3 ,

h′1 + h′2 + h′3 ≤ h1 + h2 + h3 . (2.29)

which is exactly the condition for h′ ≺s h. ¤

Theorem 2.3. Let H =
∑

i hiσi ⊗ σi and H ′ =
∑

i h
′
iσi ⊗ σi be two-qubit

Hamiltonians in their normal forms. Then

H ′ ≺S H ⇔ h′ ≺s h. (2.30)

The optimal simulation factor is given by sH′|H = maxsh′≺sh s.

2.6 Conclusions

In this chapter the optimal dynamics simulation protocols for two-qubit Hamil-

tonians have been derived. The results give rise to the s-majorization relation,

which is a partial order on the 2-qubit Hamiltonians, similar to the partial

order on entangled states given by (1.31). Here, the majorization arises in

a different way, but it provides an intriguing glimpse of the possible connec-

tions between entanglement in quantum states and the non-local properties of

quantum operations.

In this chapter, only simulation protocols that operate on a single copy

of the system on which we are trying to perform the simulation have been

considered. More generally, protocols could act in a “blockwise” fashion, by

simulating
(
e−iH′t

)⊗n
using

(
e−iHt

)⊗m
, or the evolution according to H could

be time-shared amongst many copies of the system. By analogy with the ma-

nipulation of entanglement in states, it seems likely that these sort of protocols

could have greater efficiency and possibly also be reversible. Finally, only pro-

tocols that succeed in the simulation with certainty have been considered here,

but a simulation might also be stochastic and fail with some finite probability,
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in which case the expected cost of the simulation could be considered. These

more general protocols would be interesting topics for future research.

2.7 Related Work

Since the publication of these results, there has been much interest in the

Hamiltonian simulation problem.

Some of the results can be generalized by allowing additional resources. For

example, Vidal and Cirac [94] have shown that allowing classical communica-

tion between the parties in addition to local operations does not improve the

optimal simulation factor. In the same paper, they also showed that ancillas

are needed to achieve the optimal simulation when each party has a Hilbert

space of dimension > 2 in contrast to the result of appendix 2.B. Finally,

they showed that the s-majorization relation can be alternatively formulated

as an ordinary majorization relation on the eigenvalues of the Hamiltonians in

their normal form. In another paper [93] they demonstrated a catalysis effect,

whereby the presence of additional entanglement in the system allows certain

Hamiltonians to be efficiently simulated that could not be efficiently simulated

otherwise, despite the fact that the entanglement is not consumed by the pro-

tocol. This is similar to the catalysis effect in the conversion of quantum states

under LOCC discussed in §1.3.1.

There are a few direct generalizations of bipartite Hamiltonian simulation

to higher dimensional Hilbert spaces. Recently it has been shown by Childs et.

al. [26] that any product Hamiltonian, of the form HA⊗HB can simulate any

other Hamiltonian of this form reversibly. Necessary and sufficient conditions

for efficient simulation in arbitrary dimensions have not yet been found, but

Chen has found a necessary condition based on algebraic geometry [25].

Simulation has also been investigated in a number of quite different regimes.

The problem of gate simulation, as opposed to the dynamics simulation dis-

cussed here, was first investigated prior to the publication of the results in
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this chapter [59], but has since been solved for the two-qubit case [95] by

breaking the problem down into a minimization over a discrete set of dynam-

ics simulation problems, which can each be solved via the results presented

here. Hamiltonian simulation has also been considered for multi-party sys-

tems [98, 55, 100, 99, 65, 19, 33, 75] and efficient protocols have been found

for some particular instances. Simulation for systems described by continuous

variables has also recently been discussed [61].

Most of the Hamiltonian simulation protocols developed so far require con-

tinuous switching of the local unitary operations. Whilst these are appropriate

for finding the fundamental limitations on simulation imposed by quantum me-

chanics, they are far from being experimentally feasible. However, Haselgrove

et. al. [46] have recently shown for the two-qubit case that the cost in simu-

lation time of restricting the protocols to have a fixed number of steps is not

too great.

2.A Proof that CH = PH

Recall that CH is defined as the diagonal subset of the convex hull of {PDHQ :

P, Q ∈ SO(3)}, where DH is the Pauli representation of a two-qubit Hamilto-

nian in its normal form (i.e. DH = diag(h1, h2, h3)). PH is the convex hull of

P24 ⊂ CH obtained by permuting the diagonal elements of DH and putting an

even number of − signs on the diagonal.

By definition PH ⊆ CH , so the result can be proved by showing that CH ⊆
PH . CH consists of Hamiltonians that have Pauli representations that can

be expressed as DH′ =
∑

j pjPjDHQj, where Pj, Qj ∈ SO(3), pj > 0 and
∑

j pj = 1. Since DH′ is diagonal, only the diagonal elements of each PjDHQj

contribute to DH′ . Whilst it is possible for an individual PjDHQj term to have

off-diagonal elements, these elements have to cancel out in the sum. Thus,

to show that CH ⊆ PH , it suffices to show that the diagonal part of each

PjDHQj ∈ PH because any DH′ ∈ CH will then be in PH by convexity.
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In what follows, PjDHQj will be denoted as PDHQ without the j subscripts

because only a single term is considered. The diagonal elements of PDHQ can

be represented as a three-dimensional vector (g1, g2, g3). The proof proceeds

by showing that the components of this vector satisfy the inequalities (2.13)

and thus the vector belongs to PH . Since DH = diag(h1, h2, h3),

gi = (PDHQ)ii =
∑

j

PijhjQji =
∑

j

PijQ
T
ijhj (2.31)

The vectors (h1, h2, h3) and (g1, g2, g3) are linearly related by



g1

g2

g3


 = P ∗QT




h1

h2

h3


 (2.32)

where ∗ denotes the entry-wise multiplication of two matrices, otherwise known

as the Hadamard or Schur product. Expanding (2.31) explicitly gives

gi = Pi1Q
T
i1h1 + Pi2Q

T
i2h2 + Pi3Q

T
i3
h3 (2.33)

Recall that in §2.4 it was assumed that all the hj’s are positive, so by the

triangle inequality

|gi| ≤ |Pi1Q
T
i1|h1 + |Pi2Q

T
i2|h2 + |Pi3Q

T
i3|h3 (2.34)

Now, since P, Q ∈ SO(3), their columns and rows are orthonormal vectors.

Hence (|Pi1|, |Pi2|, |Pi3|) and (|QT
i1|, |QT

i2|, |QT
i3|) are unit vectors and their inner

product |Pi1Q
T
i1| + |Pi2Q

T
i2| + |Pi3Q

T
i3| ≤ 1. This argument, which is used

frequently, will be referred to as the “inner product argument”. The first group

of inequalities (2.13) follows from (2.34) and the inner product argument, since

|gi| ≤ (|Pi1Q
T
i1|+ |Pi2Q

T
i2|+ |Pi3Q

T
i3|

)
maxihi

≤ maxihi = h1

(2.35)

The second group of inequalities can again be proved by the triangle inequality

followed by the inner product argument

∑
i |gi| =

∑
i

∣∣∣∑j PijQ
T
ijhj

∣∣∣
≤ ∑

j

(∑
i |Pij||QT

ij|
) |hj| ≤

∑
j hj = 1

(2.36)
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from which

g1 + g2 + g3 ≤ 1, g1 − g2 − g3 ≤ 1,

−g1 + g2 − g3 ≤ 1, −g1 − g2 + g3 ≤ 1.
(2.37)

can be obtained. The final set of inequalities can be proved by the following

method, which is illustrated for g1 + g2 + g3.

g1 + g2 + g3 =




P11Q
T
11

+P21Q
T
21

+P31Q
T
31


 h1 +




P12Q
T
12

+P22Q
T
22

+P32Q
T
32


 h2 +




P13Q
T
13

+P23Q
T
23

+P33Q
T
33


 h3

= λ1h1 + λ2h2 + λ3h3

(2.38)

where λi is the coefficient of hi in the parenthesis. By the inner product

argument |λi| ≤ 1 and it can also be shown that
∑

i λi ≥ −1. To see this, note

that

∑
i λi = P11Q

T
11 + P21Q

T
21 + P31Q

T
31 + P12Q

T
12 + P22Q

T
22 + P32Q

T
32

+P13Q
T
13 + P23Q

T
23 + P33Q

T
33

= tr (PQ)

(2.39)

Since P, Q ∈ SO(3), PQ ∈ SO(3). Every SO(3) matrix is a spatial rotation,

having an eigenvalue +1 that corresponds to an eigenvector in the direction

of the axis of rotation. Moreover, since the determinant of an SO(3) matrix

is 1, the other two eigenvalues are of the form e±iφ. Therefore, the trace is

1 + 2 cos φ ≥ −1. From this, the final inequality for g1 + g2 + g3 can be proved

as follows

g1 + g2 + g3 ≥ λ1h1 + λ2h2 + (−1− λ1 − λ2)h3

= λ1(h1 − h3) + λ2(h2 − h3)− h3 (2.40)

≥ −h1 − h2 + h3 (2.41)

= −(1− 2h3)

where (2.41) is the minimum of (2.40) attained at λ1 = λ2 = −1 and λ3 = 1.

This completes the proof of the inequalities for g1 + g2 + g3. The remaining
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three inequalities

+g1 − g2 − g3 ≥ −(1− 2h3)

−g1 + g2 − g3 ≥ −(1− 2h3)

−g1 − g2 + g3 ≥ −(1− 2h3)

(2.42)

can be proved similarly. For example, the previous argument can be applied

to the expression

g1−g2−g3 =




P11Q
T
11

−P21Q
T
21

−P31Q
T
31


 h1+




P12Q
T
12

−P22Q
T
22

−P32Q
T
32


 h2+




P13Q
T
13

−P23Q
T
23

−P33Q
T
33


 h3 (2.43)

by defining a new SO(3) matrix P̃ to be

P̃ =




1 0 0

0 −1 0

0 0 −1


 P (2.44)

Thus, (g1, g2, g3) satisfies (2.13), the defining inequalities of PH . The diagonal

part of any PDHQ is in PH and hence CH = PH .

2.B More general simulation protocols

This chapter has focussed on deterministic simulation protocols that involve no

ancillary systems and where Alice and Bob’s local actions are unitary. Denote

this class of operations by LU and the Hilbert space of Alice’s (Bob’s) qubit

in this type of protocol by HA (HB).

Some immediate generalizations would be to allow Alice and Bob to have

ancillary systems HA′ and HB′ of arbitrary dimension and allow Alice to per-

form local unitary operations on HA⊗HA′ and similarly for Bob on HB⊗HB′ .

The states of HA′ and HB′ are assumed to be initially uncorrelated. Denote

this type of protocol by LU + anc. Similarly, Alice and Bob might be allowed

to perform more general trace-preserving quantum operations, either only on

HA and HB (LO) or on a larger system including ancillas that are initially

uncorrelated (LO + anc).

55



Chapter 2. Hamiltonian Simulation

Clearly, LU ⊂ LU + anc ⊂ LO + anc and LU ⊂ LO ⊂ LO + anc. However,

LU + anc, LO and LO + anc are all equivalent in terms of the efficiency of

simulation they can be used to achieve. To see this, consider first LU + anc

and LO + anc. It is well known that any trace preserving operation can be

implemented by performing a unitary operation on a larger Hilbert space and

then discarding the extra degrees of freedom (see [74] for example). Thus, the

only differences between LU + anc and LO + anc is that measurements and

tracing out some of the ancillary degrees of freedom are allowed in the latter.

However, these are not necessary for the following two reasons.

Firstly, measurements can be delayed until the end of the protocol by re-

placing the measurements with controlled unitary operations that store the

measurement outcomes in an ancilla. Then, any operations that depend on

the measurement results can be replaced by unitary operations controlled on

the state of these ancillas. Secondly, any simulation protocol must end with

a state of the form e−iH′t′
AB |ψ〉AB ⊗ |φ〉A′B′ for any input state |ψ〉AB regardless

of any measurement outcomes because only deterministic protocols are being

considered here. Replacing measurements with controlled unitaries will still

lead to a final state of this form, so no actual measurements or discarding of

ancillas are needed.

This means that LO and LO + anc are no more powerful than LU + anc.

Conversely, due to the second reason given above, any LU + anc protocol can

be viewed as an LO protocol. Thus LO, LO + anc and LU + anc are all

equivalent.

It remains to determine whether LU + anc is more powerful than LU.

This has been shown to be true in general [94], but in fact they are equiva-

lent for two-qubit simulation protocols. To show this, the following lemma is

used, which is valid for bipartite dynamics simulation protocols in arbitrary

dimensions.
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Lemma 2.4. Any LU + anc simulation protocol can be described by

sH ′ =
∑

j

pjMj ⊗Nj (H ⊗ IA′B′) M †
j ⊗N †

j (2.45)

where s is the simulation factor, the pj’s form a probability distribution, each

Mj is a linear operator Mj : HAA′ → HA and each Nj is a linear operator

HBB′ → HB.

Proof. The most general LU + anc simulation protocol may be written as

e−iH′t′ |ψ〉AB ⊗ (VA′B′ |0〉A′ ⊗ |0〉B′)
= c⊗ d

∏N
j=1 aj ⊗ bje

−iHtja†j ⊗ b†j |ψ〉AB ⊗ |0〉A′ ⊗ |0〉B′
(2.46)

where equality holds for all |ψ〉AB ∈ HAB. Here, aj, c are unitary operators

acting on HAA′ , bj, d are unitary operators acting on HBB′ and |0〉A′ ⊗ |0〉B′ is

the initial state of the ancillas, which can be chosen to be an arbitrary product

state. The operator, VA′B′ is the residual unitary acting on HA′ ⊗HB′ and it

may generate entanglement between the two ancillary systems.

This must be valid for all t =
∑

j tj, t′ and in particular, when they are

both arbitrarily small. Thus, defining pj = tj/t and s = t′/t and expanding

(2.46) to first order in t and t′ gives

c⊗ d
(
IABA′B′ − it

∑
j pjaj ⊗ bjH ⊗ IA′B′a

†
j ⊗ b†j

)
|0〉A′ ⊗ |0〉B′

= (IAB − itsH ′)⊗ (
VA′B′ |0〉′A ⊗ |0〉B′

) (2.47)

where each term is an operator on HA ⊗HB. It follows that

c |0〉A′ ⊗ d |0〉B′ = IAB ⊗ (VA′B′ |0〉A′ ⊗ |0〉B′) + O(t) (2.48)

This implies that VA′B′ must be a product operator to zeroth order in t, i.e.

VA′B′ |0〉A′ ⊗ |0〉B′ = VA′ |0〉A′ ⊗ VB′ |0〉B′ + O(t) (2.49)

and

c |0〉A′ = IA ⊗ VA′ |0〉A′ + O(t)

d |0〉B′ = IB ⊗ VB′ |0〉B′ + O(t)
(2.50)
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Defining ĉ = IA ⊗ V †
A′c, d̂ = IB ⊗ V †

B′d and V̂A′B′ = V †
A′ ⊗ V †

B′VA′B′ and writing

the most general O(t) terms in (2.49) and (2.50) gives

ĉ |0〉A′ = (IAA′ − itKAA′) |0〉A′ + O(t2)

d̂ |0〉B′ = (IBB′ − itKBB′) |0〉B′ + O(t2)

V̂A′B′ |0〉A′ ⊗ |0〉B′ = (IA′ − itKA′) |0〉A′ ⊗ (IB′ − itKB′) |0〉B′
−itKA′B′ |0〉A′ ⊗ |0〉B′ + O(t2)

(2.51)

where all the K’s are arbitrary self-adjoint operators acting on the systems

indicated. Pre-multiplying (2.47) by V †
A′⊗V †

B′ and substituting (2.51) into the

resulting equation gives

sH ′ ⊗ IA′B′ |0〉A′ ⊗ |0〉B′ =
(∑

j pjaj ⊗ bj (H ⊗ IA′B′) a†j ⊗ b†j + KAA′

+KBB′ −KA′ −KB′ −KA′B′) |0〉A′ ⊗ |0〉′B
+O(t)

(2.52)

where the equal zeroth order terms have been subtracted from both sides and

the remaining terms have been divided by t.

Multiplying this equation on the left by 〈0|A′⊗〈0|B′ , all the K terms become

local. However, since H ′ has no local terms, their contributions must vanish

and this gives

sH ′ = 〈0|A′ ⊗ 〈0|′B
(∑

j

pjaj ⊗ bj (H ⊗ IA′B′) a†j ⊗ b†j

)
|0〉A′ ⊗ |0〉B′ (2.53)

Substituting Mj = 〈0|A′ aj and Nj = 〈0|B′ bj gives the desired result.

Note that, in the case where there are no ancillas and aj, bj act on HA, HB

only, (2.5) is recovered.

Theorem 2.5. LU and LU + anc are equivalent for two-qubit Hamiltonian

simulation.

Proof. The result can be proved by considering a single term in (2.45), M ⊗
N (HAB ⊗ IA′B′) M † ⊗ N †, where the subscripts j have been dropped. This

is done by showing that the contribution to H ′ given by this term can be
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obtained by a convex sum of conjugations by local unitaries acting on HA and

HB only, i.e. by an equally efficient LU protocol. First note this term can be

written as a composition of two linear maps that act on the spaces B (HA) and

B (HB) respectively. To do this, define the maps EA (TA) = M (TA ⊗ IA′) M †

and EB (TB) = N (H ⊗ IB′) N †, which gives

M ⊗N (HAB ⊗ IA′B′) M † ⊗N † = EA ◦ EB (H) (2.54)

EA and EB are unital, i.e. EA (I) = I and similarly for EB. This can be shown

for EA by

EA (IA) = M (IAA′) M †

= 〈0|A′ aAA′IAA′a
†
AA′ |0〉A′

= IA

(2.55)

and similarly for EB. Moreover, they are both completely positive, since they

can be given operator sum representations by expanding IA′ and IB′ in or-

thonormal bases. For example, EA can be written as

EA (T ) =
∑

j

FjTF †
j (2.56)

where Fj = M |j〉A′ and {|j〉A′} is an orthonormal basis for HA′ . Generally,

the maps are neither trace non-increasing or trace non-decreasing, but

Tr
(∑

j F †
j Fj

)
= Tr

(∑
j 〈j|A′ a†AA′ |0〉A′ 〈0|A′ aAA′ |j〉A′

)

= Tr
(
〈0|A′ a†AA′

∑
j (|j〉A′ 〈j|A′) aAA′ |0〉A′

)

= Tr
(
〈0|A′ a†AA′aAA′ |0〉A′

)

= Tr (〈0|A′ IAA′ |0〉A′)
= Tr (IA) = 2

(2.57)

The maps EA and EB can be replaced by a convex combination of conjugations

with local unitary operations and hence they can be simulated with unit effi-

ciency by an LU protocol. The proof of this is shown explicitly for EA, but the

construction for EB is the same.
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Firstly, each Fj can be written in its singular value decomposition Fj =

VjQjWj, where Vj and Wj are unitary and

Qj =


 qj1 0

0 qj2


 (2.58)

where qjk ≥ 0. Using this, EA can be written as

EA (T ) =
∑

j VjQjWjTW †
j QjV

†
j

=
∑

j
1
2

(
q2
j1 + q2

j2

)
VjQ̃jWjTW †

j Q̃jV
†
j

(2.59)

where

Q̃j =
√

2


 cos θj 0

0 sin θj


 and cos θj =

qj1√
q2
j1 + q2

j2

(2.60)

Without affecting the simulation, the map EA can be replaced by

ẼA (T ) =
∑

j

1

2

(
q2
j1 + q2

j2

)
VjFj

(
WjTW †

j

)
V †

j (2.61)

where Fj (T ) = (1 − cos θ sin θ)ITI + cos θ sin θσ3Tσ3. To see this, compare

the map Fj with conjugation by Q̃j.

Q̃jIQ̃j = I + cos(2θj)σ3 Q̃jσ1Q̃j = sin(2θj)σ1

Q̃jσ2Q̃j = sin(2θj)σ2 Q̃jσ3Q̃j = cos(2θj)I + σ3

(2.62)

Fj (I) = I Fj (σ1) = sin(2θj)σ1

Fj (σ2) = sin(2θj)σ2 Fj (σ3) = σ3

(2.63)

They differ only when the input has an I or σ3 component. This will not

affect the Hamiltonian simulation for two reasons. Firstly, the normal form

Hamiltonian has no I terms and none are generated by the conjugations with

aj ⊗ bj. Secondly, the action on σ3 only differs by the addition of an I term.

This will generate a purely local evolution and can be eliminated with another

local unitary operation. Finally, note that ẼA can be implemented by an LU

protocol and
∑

j
1
2

(
q2
j1 + q2

j2

)
= 1

2

∑
j Tr

(
F †

j Fj

)
= 1, so it is indeed a convex

combination of the individual terms and can thus be implemented with unit

efficiency.
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Chapter 3

The Entangling Capacity of

Quantum Gates

3.1 Introduction

The fundamental resource used in many quantum information protocols, such

as cryptography and teleportation, is the entanglement in a quantum state.

A major theme of investigation in quantum information theory is the analysis

and characterization of entanglement properties of quantum states under local

operations and classical communication (LOCC). One issue is how to extract

the entanglement in a quantum state. The simplest protocols involve taking a

single copy of the quantum state and using LOCC to extract the entanglement

[73]. An important realization is that, in general, collective processing (i.e.

processing more than one copy of the state at a time) is more efficient than

individual copy processing. Indeed, for mixed states [67], there are examples

where no entanglement can be extracted at all if one only has one copy, but

collective processing does allow extraction of entanglement. The fact that

asymptotic collective processing (i.e. processing of infinitely many copies) is

necessary for the reversible extraction of entanglement is a key building block

in the general theory of entanglement [8, 69].
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In contrast, the fundamental resource considered in this thesis is a non-

local quantum operation, such as an interaction Hamiltonian or a unitary gate.

These can be used, along with local actions, to perform the steps of quantum

algorithms and generate entangled states. Conversely, an entangled state and

LOCC can be used to apply a non-local operation to an arbitrary state, en-

abling distributed quantum processing. In analogy to the interconversion of

states, it is natural to ask whether non-local operations and entangled states

may be converted between reversibly and whether optimal conversion requires

collective processing.

This chapter focuses on the problem of generating entanglement from the

action of two-qubit unitary operations on pure states. Suppose that Alice and

Bob share a state |ψ〉 in their combined Hilbert space HA⊗HB and that they

are able to implement an operation UAB ∈ U(4) on any non-local two-qubit

subspace. They would like to maximize the amount of entanglement that they

generate per application of UAB. This maximum is the entangling capacity,

ECE, of UAB. For single applications of UAB, the entangling capacity is given

by

ECE (UAB) = max|ψ〉∈HA⊗HB
[E (UAB |ψ〉)− E (|ψ〉)] (3.1)

where E is an entanglement measure and UAB acts on one qubit in HA and

one in HB.

In §3.2, the useful decomposition of two-qubit unitaries that was introduced

in [60, 59] is reviewed. §3.3 concerns the single-copy entangling capacity. In

§3.3.1, an argument due to [66, 12] that shows that the single-copy entangling

capacity can be achieved when UAB is only allowed to act on pure states is

reviewed. This argument is then extended to show that pure states can still

be used if the entangling capacity is to be achieved using the minimal amount

of initial entanglement. In §3.3.2 and §3.3.3, the amount of entanglement that

can be generated by a single use of a quantum operation when Alice and Bob

share initial entanglement is found; this work extends [60] where the authors

considered entangling capacities of unitaries but did not allow initial entangle-
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ment; it also extends [38], which allowed initial entanglement but only unitary

transformations infinitesimally close to the identity (i.e. Hamiltonians). In

the case where ancillas are not allowed (§3.3.2), analytic results about the en-

tangling capacities of unitaries are derived. It generally helps to start with

an entangled state, although this is dependent on the entanglement measure

used in (3.1). §3.3.3 concerns the case where ancillas are allowed; mostly nu-

merical results are described here, however these numerical results allow us to

conclude, quite generally, that allowing initial entanglement can increase the

entangling capacity even when ancillas are available.

The final part of this chapter (§3.4) concerns collective processing of quan-

tum operations. As described above, collective processing is a key idea in

understanding entanglement properties of quantum states. The main result,

essentially that collective processing of quantum operations does not help in

generating quantum entanglement, is in stark contrast to the situation for

processing of quantum states. To conclude, the implications of these results

for the interconvertibility of quantum operations and the classification of their

entanglement properties are discussed.

3.2 Canonical form for two-qubit unitary op-

erators

The entanglement properties of a unitary operation, such as its ability to

simulate other operations and generate entanglement, are invariant under local

unitary operations applied before or after the operation. This gives a notion

of local equivalence of operations

UAB ∼ U ′
AB iff U ′

AB = V
(1)
A ⊗ V

(2)
B UABW

(1)
A ⊗W

(2)
B (3.2)

where V (1), V (2), W (1),W (2) are local unitaries acting on the systems indicated.

In order to simplify the calculations in this chapter, the following decom-

position of two-qubit unitary operators is used.
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Theorem 3.1. Any two-qubit unitary, UAB ∼ Ud, where

Ud = ei
P3

j=1 αjσA
j ⊗σB

j (3.3)

π
4
≥ α1 ≥ α2 ≥ |α3| ≥ 0 and σ1,2,3 are the Pauli matrices.

Since, Ud has the same entangling capacity as U , this form will always be

used in what follows1. Note that the eigenvalues of Ud are given by eiλj where

λ1 = − α1 + α2 + α3

λ2 = + α1 − α2 + α3

λ3 = + α1 + α2 − α3

λ4 = − α1 − α2 − α3

(3.4)

The corresponding eigen-basis is given by Ud |Φj〉 = eiλj |Φj〉 and is the Bell

basis. For later convenience, the following phase convention is chosen:

|Φ1〉 = −i√
2
(|00〉 − |11〉)

|Φ2〉 = 1√
2
(|00〉+ |11〉)

|Φ3〉 = −i√
2
(|01〉+ |10〉)

|Φ4〉 = 1√
2
(|01〉 − |10〉)

(3.5)

With this choice of phase convention, this basis is known as the “magic” basis

[47]. Using the magic basis often simplifies calculations related to the entan-

glement of two-qubit states and unitaries.

To prove, theorem 3.1 it must be shown that any UAB is locally equivalent

to an operator that is diagonal in the magic basis. This relies on the following

three lemmas.

Lemma 3.2. A local unitary operation W (1)⊗W (2) ∈ SU(2)×SU(2) acts on

the coefficients of states expressed in the magic basis as an SO(4,R) matrix.

That is

W
(1)
A ⊗W

(2)
B |Φj〉AB =

4∑

k=1

Ojk |Φk〉AB (3.6)

where Ojk are the components of an SO(4,R) matrix O.

1In fact, when considering the entangling capacity, the condition α3 ≥ 0 can be assumed.
This is because ei

P2
j=1 αjσA

j ⊗σB
j −α3σA

3 ⊗σB
3 ∼

(
ei
P3

j=1 αjσA
j ⊗σB

j

)∗
and ECE is invariant under

conjugation
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Proof. This can be shown by demonstrating that linear combinations of the

generators of SU(2)× SU(2) act like the generators of SO(4,R) on the magic

basis. SU(2)×SU(2) is generated by the six operators σj⊗I, I⊗σj, j = 1, 2, 3

and SO(4,R) rotations of vectors expressed in the magic basis are generated

by the six operators

Xjk |Φm〉 = iδmj |Φk〉 − iδmk |Φj〉 (3.7)

where 1 ≤ j < k ≤ 4.

To see how this construction works, take X12, the generator of rotations in

the |Φ1〉 , |Φ2〉 plane, as an example. The operators σ3 ⊗ I and I ⊗ σ3 act as

follows on the magic basis

σ3 ⊗ I |Φ1〉 = −i |Φ2〉 , I ⊗ σ3 |Φ1〉 = −i |Φ2〉
σ3 ⊗ I |Φ2〉 = i |Φ1〉 , I ⊗ σ3 |Φ2〉 = i |Φ1〉
σ3 ⊗ I |Φ3〉 = −i |Φ4〉 , I ⊗ σ3 |Φ3〉 = i |Φ4〉
σ3 ⊗ I |Φ4〉 = i |Φ3〉 , I ⊗ σ3 |Φ4〉 = −i |Φ3〉

(3.8)

and setting X12 = −1
2
(σ3 ⊗ I + I ⊗ σ3) gives the generator required by (3.7).

The remaining five generators are constructed in a similar way. They are all

linearly independent and span the Lie algebra of SU(2) × SU(2) and hence

SU(2)× SU(2) acts as SO(4,R) on the magic basis.

The next two lemmas are modified versions of the usual polar and singular

value decompositions for matrices.

Lemma 3.3. Any unitary matrix, U , may be written as U = OS, where

S =
√

UT U is a complex unitary symmetric matrix and O is a real orthogonal

matrix.

Proof. Firstly for two complex vectors ~v, ~w,let 〈~v| ~w〉 =
∑

j v∗j wj denote the

usual inner product and let ~vT ~w =
∑

j vjwj.

S =
√

UT U is a unitary matrix, so its spectral decomposition is of the form

S =
∑

j eiλj |~vj〉 〈~vj|, where ~vj are a complete set of orthonormal eigenvectors
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and λj ∈ R. Moreover, since S also is symmetric, the eigenvectors ~vj can be

chosen to have real components. To see this, note that

S∗S =
(
ST

)†
S = S†S = I (3.9)

Then, from the eigenvalue equation

S~vj = eiλj~vj

⇒ S∗S~vj = eiλjS∗~vj

⇒ S∗~vj = e−iλj~vj

(3.10)

Thus, the vectors ~vj will also be eigenvalues of the matrix S∗. This means

that they will be eigenvectors of the real symmetric matrix S + S∗ and the

eigenvectors of such a matrix can be chosen to have real components.

Next, define the vectors ~wj = e−iλjU~vj. These vectors also have real com-

ponents, which can be checked by comparing

〈~wj| ~wj〉 = 〈~vj|U †eiλje−iλjU |~vj〉
= 〈~vj|U †U |~vj〉
= 〈~vj| ~vj〉 = 1

(3.11)

with

~wT
j ~wj = e−2iλj~vT

j UT U~vj

= e−2iλj~vT
j S2~vj

= ~vT
j ~vj = 1

(3.12)

and noting that these two forms should only coincide if the vectors ~wj have

real components.

Finally, define a real, orthogonal matrix O =
∑

j ~wj~v
T
j . We have that

OS~vj = eiλj ~wj = U~vj. Since the action of OS and U coincide on a complete

orthonormal basis, U = OS.

Lemma 3.4. Any unitary operator, U , may be written as U = PDQ, where P

and Q are real orthogonal matrices and D is a diagonal matrix with diagonal

elements given by the eigenvalues of
√

UT U .
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Proof. From the previous lemma, U = OS, where O is a real orthogonal matrix

and S is a symmetric unitary matrix. It was also shown that the eigenvectors

of S can be chosen to have real components, so it follows that S = QT DQ for

some real orthogonal matrices R and Q. The proof is completed by setting

P = OQT .

Proof of theorem 3.1. To prove the decomposition, it must be shown that UAB

is locally equivalent to a unitary that is diagonal in the magic basis. This can

be done by making use of an isomorphism between operators acting on C2⊗C2

and states in C4⊗C4 [103]. Let MAB be such an operator and define the state

|ΨM〉AA′BB′ = MAB |Φ2〉AA′ ⊗ |Φ2〉BB′ (3.13)

This is an isomorphism, because it is possible to recover the operator MAB

from the state |ΨM〉AA′BB′ via

MAB |ψ〉AB = 4 〈Φ2|A′A′′ 〈Φ2|B′B′′ |ΨM〉AA′BB′ |ψ〉A′′B′′ (3.14)

where |ψ〉 is an arbitrary input state. This can be checked by expanding

the operator and the states in the computational basis. Local equivalence of

operators can now be reformulated in terms of states. This can be done by

making use of the fact that for any single qubit operator W the following holds

WA ⊗ IB |Φ2〉AB = IA ⊗W T
B |Φ2〉AB (3.15)

which can again be checked by expanding in the computational basis. This

shows that under a local transformation of an operator MAB →
V

(1)
A ⊗ V

(2)
B MABW

(1)
A ⊗W

(2)
B , the corresponding state |ΨM〉AA′BB′ transforms

as

|ΨM〉 → V
(1)
A ⊗ V

(2)
B MABW

(1)
A ⊗W

(2)
B |Φ2〉AA′ ⊗ |Φ2〉BB′

= V
(1)
A ⊗

(
W

(1)
A′

)T

⊗ V
(2)
B ⊗

(
W

(2)
B′

)T

MAB |Φ2〉AA′ ⊗ |Φ2〉BB′

= V
(1)
A ⊗

(
W

(1)
A′

)T

⊗ V
(2)
B ⊗

(
W

(2)
B′

)T

|ΨM〉AA′BB′

(3.16)
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Thus, local equivalence of operators MAB induces an equivalence under

U(2)4 for the states |ΨM〉AA′BB′ . Now, consider the case where MAB = UAB is

a unitary operator. Without loss of generality, assume that UAB ∈ SU(4) and

that the local unitaries are in SU(2) since global phases of the local unitaries

only affect the global phase of UAB, which may be absorbed by setting the

global phase of any of the local unitaries appropriately. The state |ΨU〉AA′BB′

can then be written as

|ΨU〉AA′BB′ =
4∑

j,k=1

Njk |Φj〉AA′ |Φj〉BB′ (3.17)

where Njk are the components of an SU(4) matrix. From (3.13) and (3.14) it

can be shown that Njk are the components of UAB when it is expressed in the

magic basis. By lemma 3.2, this matrix transforms under (3.16) as

N → PNQ (3.18)

where P, Q ∈ SO(4,R). Thus, according to lemma 3.4, N can be transformed

to a diagonal matrix with diagonal elements given by the eigenvalues of
√

NT N .

The fact that the eigenvalues of
√

NT N are local invariants of UAB was first

noted in [71] The method given above for finding these eigenvalues of requires

UAB to be expressed in the magic basis. However, there is an alternative that

works in the computational basis. Firstly, define the unitary operator analog

of the spin-flipped density operator which was defined in eq. (1.41).

Ũ = σ2 ⊗ σ2U
T σ2 ⊗ σ2 (3.19)

where T indicates the transpose in the computational basis. The eigenvalues

of ŨU are local invariants of U and, from, eq.(3.3) one can see that these

invariants are in fact squares of the eigenvalues of Ud, which are the same as

the eigenvalues of NT N .
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3.3. Single Copy Entangling Capacity

3.3 Single Copy Entangling Capacity

3.3.1 Purity of States in the Optimal Protocol

In this section we determine whether optimal protocols can be found for gener-

ating entanglement using one application of UAB that only involve pure states

at every stage. An argument of [12] can be used to establish that this is the

case. Further, this argument can be extended to show that optimal pure state

protocols can be found that start with the minimum possible amount of initial

entanglement. Thus, all the important details of the single-copy entangling

capacity of UAB can be established by considering pure states only.

Making a suitable definition of the entangling capacity over mixed states is

not quite as straightforward as the pure state case. In particular, the choice of

entanglement measure for the initial and final states may be different. For the

initial state, it seems natural to use a measure of the minimum average amount

of entanglement required to generate it (i.e. the entanglement of formation2).

However, for the final state it makes more sense to measure the maximum

amount of entanglement that can be extracted from it (i.e. the distillable

entanglement).

To make this more specific, consider an initial mixed state ρ0. Let ρ0 =
∑

j pj |ψj〉 〈ψj| be the decomposition of ρ0 with minimal ensemble average en-

tanglement. To generate an ensemble of n states described by ρ0, the state |ψj〉
may be prepared with probability pj and then the information about which

state was prepared may be discarded. As n →∞ , the amount of entanglement

per state used in this procedure will be EF (ρ0), where EF is the entanglement

of formation (1.38). The operation UAB can then be applied to each state

individually yielding n copies of the state ρ1 = UABρ0U
†
AB. These states can

then be distilled to singlets by LOCC and as n → ∞ the yield of singlets

per copy of ρ1 will be ED(ρ1), where ED is the distillable entanglement. Note

that, although this protocol involves collective processing of the states, the

2The entanglement cost is also considered in this context in [12]
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fact that UAB is applied to each copy of ρ0 individually means that it can still

be regarded as a single-copy protocol with respect to the unitary operator.

With this in mind, the mixed state single-copy entangling capacity, Cmixed
E ,

is defined as

Cmixed
E = maxρ0(ED(ρ1)− EF (ρ0)) (3.20)

Then

ED(ρ1)− EF (ρ0) ≤ EF (ρ1)− EF (ρ0)

= EF

(∑
j

pjUAB |ψj〉 〈ψj|U †
AB

)

−
∑

j

pjEF (|ψj〉 〈ψj|) (3.21)

≤
∑

j

pj

[
EF (UAB |ψj〉 〈ψj|U †

AB)

−EF (|ψj〉 〈ψj|)] (3.22)

≤ maxψj
(EF (UAB |ψj〉)− EF (|ψj〉)) (3.23)

Here, (3.21) follows because ρ0 =
∑

j pj |ψj〉 is an optimal decomposition of ρo,

(3.22) follows from the convexity of EF (1.39) and (3.23) follows because (3.22)

is a convex sum. This demonstrates that for every mixed state, there is a pure

state for which the action of UAB generates at least as much entanglement.

Next we show that for any mixed state that achieves the entangling capacity

there is a pure state that achieves the entangling capacity with entanglement

not greater than the entanglement of formation of the mixed state. Let |ψ〉 be

a pure state that achieves the entangling capacity with the minimal possible

initial entanglement. Let ρ be a mixed state that also achieves the entangling

capacity. From eqs.(3.22) and (3.23), by convexity, it is clear that the op-

timal decomposition of ρ must be a mixture of pure states that achieve the

entangling capacity. Since this is the optimal decomposition of ρ, EF (ρ) is

just the weighted average of the entanglements of these pure states. Thus,

EF (ρ) ≥ EF (|ψ〉) because |ψ〉 has the minimal entanglement of any possible

state in this ensemble.
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3.3.2 Single Application with no ancillas

In this section, the entangling capacity of two-qubit unitaries of the form of

eq.(3.3) when no ancillas are allowed is determined. This depends on the

entanglement measure that is chosen for the optimization. In §3.3.2 the square

of concurrence is used and then in §3.3.2 these results are extended to other

measures of entanglement.

Square of concurrence

One entanglement measure that is particularly convenient to optimize is the

square of the concurrence [101], C, defined by

C(|ψ〉) = |〈ψ|σ2 ⊗ σ2 |ψ∗〉| (3.24)

where |ψ∗〉 is the state vector obtained by taking the complex conjugates of

the components of |ψ〉 in the computational basis. An argument from [60] can

be adapted to perform the optimization here.

Writing |ψ〉 =
∑

j bj |Φj〉 gives

∆C2 = C2
f − C2

0 =

∣∣∣∣∣
∑

j

e2iλjb2
j

∣∣∣∣∣

2

−
∣∣∣∣∣
∑

j

b2
j

∣∣∣∣∣

2

=
∑

j,k

(
e2i(λj−λk) − 1

)
b2
jb
∗2
k (3.25)

where C0 is the initial concurrence and Cf is the final concurrence after ap-

plying UAB.

This can be optimized by imposing the normalization condition
∑

j |bj|2 =

1 with a Lagrange multiplier, 2µ, i.e. the expression to be maximized is

L =
∑

j,k

(
e2i(λj−λk) − 1

)
b2
jb
∗2
k − 2µ

(∑
j

bjb
∗
j − 1

)
(3.26)

Differentiating gives

∂L

∂bj

= 2bje
2iλj

∑

k

e−2iλkb∗2k − 2bj

∑

k

b∗2k − 2µb∗j = 0 (3.27)

multiplying by bj and summing over j gives

∑

j,k

(
e2i(λj−λk) − 1

)
b2
jb
∗2
k − µ

∑
j

|bj|2 = 0 (3.28)
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which yields

µ = C2
f − C2

0 (3.29)

Substituting eqs.(3.29) and (3.25) into eq.(3.27) gives

bje
2iλje2iηCf − bje

2iεC0 − C2
f b
∗
j + C2

0b
∗
j = 0 (3.30)

where ε, η are phases depending on all of the bj’s. One possible solution is

bj = 0. To find the other solutions, write bj = βje
iγj where βj, γj ∈ R. These

solutions must have βj 6= 0 and so eq.(3.30) reduces to

C2
f − e2i(λj+γj+η)Cf − C2

0 + e2i(γj+ε)C0 = 0 (3.31)

There are as many equations (3.31) as there are non-zero bj’s. For generic λj’s,

at most two of these equations can be satisfied simultaneously.

To see this, firstly consider the case when the optimal starting state has

C0 = 0. Then,

Cf

(
Cf − e2i(λj+γj+η)

)
= 0 (3.32)

Since Cf is real and the maximum is required, it must be the case that Cf = 1.

This shows that it is only best to start in a product state if UAB can generate

one e-bit of entanglement when no ancillas are present. The conditions for this

were found in [60] to be

α1 + α2 ≥ π

4
and α2 + α3 ≤ π

4
(3.33)

so the focus here will be on the cases where (3.33) is violated and the optimal

starting state must have non-zero C0.

Subtracting any two of eqs.(3.31) gives

sin (λj − λk + γj − γk) Cf = ei(2ε−2η−λj−λk) sin (γj − γk) C0 (3.34)

This gives consistency conditions for the simultaneous solution of any pair of

eqs.(3.31). In particular, since Cf and C0 are both real,

2 (ε− η)− λj − λk = nπ, n ∈ Z (3.35)
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For generic λj’s this condition cannot be satisfied for more than one pair of

equations in (3.31). Thus, at most two bj’s can be non-zero3. This means

that the optimal starting state will always be in a subspace spanned by two

of the eigenvectors of UAB. The maximum will be given by choosing the

two eigenvectors and the coefficients bj that maximize ∆C2. Re-expressing

eq.(3.25) in terms of βj, γj gives

∆C2 = 4
∑

j<k

β2
j β

2
k [sin (2 (γj − γk) + λj − λk) sin (λk − λj)] (3.36)

Only one term in this sum can be non-zero and for this term γj, γk may be

chosen so that ∆C2 = 4β2
j β

2
k |sin(λk − λj)|. This is maximized by βj = βk =

1√
2
. Thus, the entangling capacity is given by

ECC2 = maxj<k |sin(λk − λj)| (3.37)

Note that this is greater than the corresponding result of maxj<k |sin(λk − λj)|2

found in [60] when the starting state is restricted to be a product. This shows

that when (3.33) is violated, initial entanglement is always required to achieve

the optimal capacity when no ancillas are allowed. There are two parameter

regions where (3.33) does not hold.

1. α1+α2 < π
4
, α2+α3 < π

4
. In this region, the maximum is given by making

the j = 3, k = 4 term nonzero. ECC2 = sin(2(α1 + α2)) and the optimal

starting state is |ψ〉 =
(
sin(α1+α2

2
− π

8
) |01〉 − i cos(α1+α2

2
− π

8
) |10〉). This

gives an optimal initial entanglement of C2
0 = 1

2
(1− sin 2(α1 + α2))

2. α1 + α2 > π
4
, α2 + α3 > π

4
. In this region, the maximum is given by

making the j = 1, k = 4 term nonzero. ECC2 = sin(2(α2 + α3)) and the

optimal starting state is |ψ〉 = 1√
2

(|Φ1〉+ ei(π
4
+α2+α3) |Φ4〉

)
. This gives

an optimal initial entanglement of C2
0 = 1

2
(1− sin 2(α2 + α3)).

3This result can be extended to all possible λj ’s by noting that eq.(3.34) can only be
satisfied for more than one pair if some of the eigenvalues are degenerate. Further, it can
be shown that one can choose only one of the corresponding bj ’s to be non-zero.
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Note that the entangling capacity is always found to be a function of α1 + α2

or α2 + α3, i.e. a sum of only two of the parameters of the unitary. The value

of the third parameter does not affect the entangling capacity at all when no

ancillas are allowed.

Other entanglement measures

All two-qubit pure-state entanglement measures, E, are monotonic functions

of one another and in particular of the concurrence squared (i.e. E = E(C2)).

Generalizing the strategy of eqs. (3.25-3.34) to an arbitrary entanglement

measure, E, by making use of ∂E
∂bj

= ∂E
∂(C2)

∂(C2)
∂bj

gives

sin (λj − λk + γj − γk) Cf
dEf

d(C2
f )

= ei(2ε−2η−λj−λk) sin (γj − γk) C0
dE

d(C2
0)
(3.38)

This gives the same consistency conditions as eq.(3.35) so we still have that at

most two bj’s can be non-zero. The only exception is when dE
d(C2)

∝ 1
C
, which

occurs when the entanglement measure is the concurrence itself. In this case,

the analog of eq. (3.30) is

1

C0

(
b∗jC

2
0 + bje

2iεC0

)− 1

Cf

(
b∗jC

2
f + bje

2∗i(λj+η)Cf

)
= 0 (3.39)

This equation is only valid when C0, Cf 6= 0, which is expected because the

concurrence does not have a well defined derivative at 0. This leaves open the

possibility that C0 = 0 is the optimal initial concurrence and indeed this is the

only consistent solution.

To see this, first assume that C0, Cf 6= 0. Then eq. (3.39) again has bj = 0

as a possible solution. If bj 6= 0 then substituting bj = βje
iγj gives

Cf − C0 = e2iγj
(
e2i(λj+η) − e2iε

)
(3.40)

Since, Cf − C0 is real,

Cf − C0 =
∣∣e2i(λj+η) − e2iε

∣∣ (3.41)
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This implies that for each pair of non-zero bj, bk

λj = λk + nπ n ∈ Z (3.42)

For generic λj’s, this equation is not satisfied by any pair λj, λk when j 6= k.

Thus, the only possibility is to have just a single non-zero bj. However, since

the basis |Φj〉 is an eigenbasis for UAB, this solution gives Cf − C0 = 0 and is

not a maximum. Therefore, choosing C0 = 0 is the only remaining possibility

to achieve a maximum4.

For all other entanglement measures we focus on the case where α1 + α2 <

π
4
, α2 + α3 < π

4
. If bj and bk are chosen to be non-zero for some choice of

j 6= k = 1, 2, 3, 4 then the resulting optimal ∆E is always a function of the

corresponding λj and λk only. In fact, it must be the same function of λj and

λk for all choices of j and k. For all the measures considered below the optimal

∆E is always a monotonically increasing function of |λj − λk| 5. As with the

square of concurrence, the j and k that give the largest value of |λj − λk| are

chosen, namely j = 3, k = 4. Thus, the optimal starting state can be written

in its Schmidt decomposition as

|ψ〉 = cos(θ) |01〉+ eiφ sin(θ) |10〉 (3.43)

and ∆E simply has to be optimized over the Schmidt parameter θ and relative

phase φ. This gives the following results.

1. Concurrence: C = | 〈ψ|σ2 ⊗ σ2 |ψ∗〉 |. As discussed above, this measure

is unusual in that the optimal state is always a product state. Thus,

ECC = sin(2(α1 + α2)), which coincides with the result of [60].

2. Entropy of entanglement: E = −Tr(ρA log2 ρA), where ρA is Alice’s re-

duced density matrix. This gives a transcendental equation in θ, which

can be optimized numerically for each α1 + α2. For results see Fig. 3.1.

4In the non-generic case, where eq. (3.42) is satisfied for some pairs j 6= k it is possible
to have more than one non-zero coefficient, but it is simple to show that Cf − C0 is still
zero.

5Similarly, when α1 + α2 > π
4 , α2 + α3 > π

4 , for any choice of j and k, the optimal ∆E
is always a monotonically decreasing function of |λj − λk|.

75



Chapter 3. The Entangling Capacity of Quantum Gates

3. Linearized entropy: R = 1− Tr (ρ2
A). This gives ECR = sin(2(α1 + α2)).

3.3.3 Ancillas

Next we consider whether adding ancillas can increase the entangling capac-

ity. This problem has not been solved analytically yet, but some numerical

optimizations are presented here, using entropy of entanglement as the mea-

sure. Specifically, the following definition of entangling capacity is used when

ancillas are present.

ECE = max
|ψ〉∈HAA′BB′

[
S

(
TrBB′

(
UAB |ψ〉 〈ψ|U †

AB

))
− S (TrBB′ (|ψ〉 〈ψ|))

]

(3.44)

where S is the von Neumann entropy, HA (HB) is the Hilbert space of the

qubit that Alice (Bob) acts on with UAB and HA′ (HB′) is a finite dimensional

ancillary Hilbert space for Alice (Bob). Only pure states over the Hilbert space

HAA′BB′ = HA⊗HA′⊗HB⊗HB′ need to be considered because the argument

of §3.3.1 implies that they are optimal.

Note that, here we are only concerned with the extent to which interaction

between Alice and Bob, represented by UAB, can generate entanglement be-

tween Alice and Bob. Thus, only initial and final entanglement between Alice

and Bob are relevant and the entanglement of Alice or Bob with their local

ancillas is not counted as part of this entanglement.

The optimization was performed for three different families of operations:

• The CNOT family eiασA
1 ⊗σB

1 .

• The double CNOT (DCNOT) family eiα(σA
1 ⊗σB

1 +σA
2 ⊗σB

2 ).

• The SWAP family eiα(σA
1 ⊗σB

1 +σA
2 ⊗σB

2 +σA
3 ⊗σB

3 ).

The families are so named because setting α = π
4

gives operations that are

locally equivalent to the CNOT, DCNOT and SWAP operations6.

6The DCNOT is defined as CNOTB→ACNOTA→B . Similarly, SWAP can be defined as
CNOTA→BCNOTB→ACNOTA→B . These operations, together with the identity are the
extreme points of the parametrization (3.3).
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The simulations were run with both one and two ancillary qubits on each

side (i.e. with dimension 2 and 4 for HA′ and HB′). Adding 1 ancillary qubit

on each side increased the entangling capacity for the DCNOT and SWAP

families (see figs. 3.3 and 3.4), but there was no further increase on adding

more ancillary qubits. We conjecture that one ancillary qubit on each side is

the most general system required to optimize single-copy entangling capacity.

Note that, for every α, the SWAP family has a higher entangling capacity

than the DCNOT family. This shows that the entangling capacity is generally

a function of all three parameters (α1, α2, α3) of the unitary, in contrast to the

case considered above where no ancillas are allowed.

For the CNOT family, adding ancillas had no effect at all (see fig. 3.2).

In [60], the entangling capacity for the CNOT family starting from a prod-

uct state with ancillas was found to be H(cos2 α) = − cos2(α) log2[cos2(α)] −
sin2(α) log2[sin

2(α)]. No ancillas were required to achieve this capacity. The

numerical results with initial entanglement exceed this capacity, which demon-

strates that allowing initial entanglement can still increase the entangling ca-

pacity even if ancillas are present. In other words, it is not possible to achieve

the entangling capacity by trading some of the initial entanglement required

when no ancillas are present with entanglement between the system and an-

cillas.

3.4 Collective Processing

We now turn to the question of whether the entangling capacity is increased by

applying n copies of a unitary operation to pairs of qubits in the most general

initial state which may be entangled and may contain ancillas. The n-copy

entangling capacity is then defined to be the optimal increase in entanglement

over Alice and Bob’s entire Hilbert space per application of the unitary. In

this definition, Alice and Bob are again allowed to have arbitrarily large, but
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Figure 3.1: Single-copy entangling capacity and optimal initial entanglement
for a general two-qubit unitary of the form of eq.(3.3) when no ancillas are al-
lowed. Crosses show the entangling capacity and diamonds show the minimum
initial entanglement of a state that achieves the capacity.
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Figure 3.2: Single-copy entangling capacity for the CNOT family. Crosses are
for no ancillas, diamonds are for one ancilla on each side and the line shows
the equivalent result from [60] when the starting state is restricted to be a
product between Alice and Bob
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Figure 3.3: Single-copy entangling capacity for the DCNOT family. Crosses
are for no ancillas and diamonds are for one ancilla on each side.
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Figure 3.4: Single-copy entangling capacity for the SWAP family. Crosses are
for no ancillas and diamonds are for one ancilla on each side.
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Figure 3.5: A general entanglement generation protocol when two applications
of the unitary UAB are available.

finite dimensional ancillary Hilbert spaces. We restrict our attention to the

case where the state in the entire Hilbert space is pure at every stage of the

protocol, but note that the results also hold for the case where mixed states

are allowed [12]. In this setting, the unitaries may be applied simultaneously

or one after another. Collective LOCC may be performed on all the qubits

between applications and each unitary may be applied to an arbitrarily chosen

pairs of qubits. However, all protocols of this form can be reduced to simpler

protocols, which yield the same amount of entanglement.

First, observe that the effect of applying unitaries simultaneously can be

achieved by applying them one after the other and doing nothing in between.

Second, because local unitary operations (e.g. local SWAP operations) can be

applied as part of the LOCC, all the unitaries can be applied to the same pair

of qubits. Thus the problem reduces to a sequence of single-copy problems,

where all the qubits that UAB does not act on can be regarded as ancillas.

This is illustrated for the two-copy case in fig. (3.5). We start with a state

|ψ〉0 containing entanglement E0 according to an entanglement measure E and

apply UAB to the chosen pair of qubits. This results in a state |ψ〉(f)
1 , with

entanglement E
(f)
1 according to the same entanglement measure. This state

can then be manipulated by LOCC to obtain a state |ψ〉(i)1 with entanglement
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3.4. Collective Processing

E
(i)
1 and then UAB is applied to the chosen pair of qubits a second time yielding

the state |ψ〉2 with entanglement E2. The 2-copy entangling capacity will be

defined as

EC(2)
E (UAB) =

1

2
max (E2 − E0) (3.45)

where the maximum is taken over all possible starting states |ψ〉0 and all

possible LOCC operations that convert |ψ〉(f)
1 to |ψ〉(i)1 with certainty. This

definition generalizes to the n-copy entangling capacity EC(n)
E in the obvious

manner.

An upper bound for the entanglement generated by any 2-copy protocol

can be found as follows

∆E = E2 − E0

=
(
E2 − E

(i)
1

)
+

(
E

(i)
1 − E

(f)
1

)
+

(
Ef

1 − E0

)

≤ 2ECE (UAB)

(3.46)

The second line follows by adding and subtracting terms E
(f)
1 and E

(i)
1 . The

third line follows by noting that the terms E2−E
(i)
1 and E

(f)
1 −E0 are bounded

from above by the single copy entangling capacity ECE and that E
(i)
1 −E

(f)
1 can

only be zero or negative due to the fact that entanglement cannot be increased

by LOCC. This argument can easily be extended to non-deterministic protocols

by considering the average entanglement generated by the protocol.

In this argument it was assumed that the 2-copy entangling capacity was

defined in terms of the difference between the values of the same entangle-

ment measure of the state at the output and input of the protocol. This is

appropriate for the pure-state case as discussed here, but different entangle-

ment measures may be appropriate if mixed states are allowed, as in §3.3.1.

This issue is addressed in a generalization of this argument given in [12], which

shows that the maximum of 2EC(1)
E still holds for the mixed states as well.

It is straightforward to see that this maximum can be achieved by acting

with UAB on 2 completely separate copies of the optimal single-copy input

state, where each separate state contains the necessary number of ancillas.
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The generalization to n > 2 copies of UAB is also straightforward. Thus,

EC(n)
E (UAB) = EC(1)

E (UAB) for all entanglement measures E and all bipartite

unitary operators UAB. This holds in the case where the most general initial

resources are available, i.e. entanglement and ancillas.

If initial entanglement is not available then collective processing can do

better per use of the unitary, since the first few copies of the unitary can be

used to generate entanglement, which can then be used to make a state with

optimal initial entanglement. This can then be used as the starting state for

the subsequent copies, which can then be used to generate more entanglement

than they could if the collective processing were not available.

Protocols that start with initial entanglement can outperform protocols

that start with product states for all finite n. However, the asymptotic case,

where n →∞, is more subtle. In the case where the starting state is a product,

some of the first few operations can be used to generate the entanglement

required for the optimal initial state. Then the entanglement of the states at

each stage can be diluted so that the unitary always acts on the best initial

state7. The number of operations required for the first stage of this protocol is

fixed and finite, so as n →∞ the same entangling capacity will be achieved as if

initial entanglement had been present. This means that asymptotic entangling

capacity of a unitary starting with a product state is the same as the capacity

that would be obtained starting with initial entanglement.

3.5 Conclusions

The results of this chapter show that, for all finite numbers of copies of UAB,

initial entanglement is required to achieve the optimal entangling capacity. If

this initial entanglement and ancillas are available, then collective processing

does not help to achieve this maximum.

7To achieve this it is actually necessary to take two limits. The number of product states
needed at the beginning of the protocol must be large enough so that the dilution is efficient.
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These results have implications for the asymptotic interconvertibility of

bipartite unitary operations. For example, it is known that one can reversibly

convert between a CNOT and a singlet state via LOCC [29, 40]. Thus, one

can asymptotically simulate the action of nECE(UAB) CNOTs using n copies

of UAB and LOCC by generating entanglement and then distilling or diluting

it to singlets. Further, it is impossible to generate more CNOTs than this,

since otherwise one could generate more than ECE(UAB) e-bits per application

of UAB by first converting to CNOTs and then using them to generate singlet

states. More generally, it is not known whether converting between any unitary

operation and entanglement via LOCC is reversible (i.e. whether one can

asymptotically generate n copies of UAB acting on an arbitrary input state

given nECE(UAB) e-bits). However, nECE(UAB) is a lower bound on how

much entanglement is needed to generate n copies of UAB. Also, ECE(U1)
ECE(U2)

is an

upper bound on how many copies of a bipartite unitary U2 can be generated

asymptotically per application of another bipartite unitary U1. Whether these

bounds can be achieved remains an open question.

3.6 Related Work

Entanglement generation was first discussed in the context of the optimal rate

of entanglement generated by an two-qubit interaction Hamiltonian [38]. It

has also been discussed for two-qubit unitaries in the single copy case where

no initial entanglement is allowed [60]. The work in this chapter can be viewed

as a generalization of both these approaches. Since the publication of these

results, a formula for the entanglement capacities of self-inverse [97] and prod-

uct Hamiltonians in arbitrary dimensions [26] have been found in terms of the

entangling capacity of σ1 ⊗ σ1.

As indicated in the conclusion, entanglement generation from quantum op-

erations is closely connected to other problems to do with non-local operations.

One of the most interesting of these is the connection between the ability of
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operations to generate entanglement and their ability to facilitate classical

communication between the parties. There is a strong relationship between

the general problem of entanglement generation with some initial entanglement

and free classical communication and the problem of classical communication

with some initial classical communication and free entanglement. This was

first discussed in [12] and then in [16, 15].

Conditions under which a single-copy of a unitary operation may be used

to simulate another with non-zero probability of success have been found [37,

35, 45]. Also, the inverse of entanglement generation, i.e. generating non-local

unitaries from entanglement and LOCC has been investigated. This was first

discussed in [29, 40]. The most general known protocol is given in [27]. It is

a single-copy protocol, but it is not known whether it is optimal or whether it

can be improved upon by collective processing.
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Chapter 4

Measuring Polynomial

Invariants of Multi-Party

Quantum States

4.1 Introduction

The previous two chapters have focussed on the entanglement properties of

Hamiltonians and unitary operators where both the operators and states in-

volved are fully known to all the participants. In this chapter, a different

connection between the entanglement of quantum states and quantum opera-

tions, specifically measurements, is investigated. The question of how, given

several copies of an unknown but identically prepared quantum state, the en-

tanglement properties of the state can be efficiently inferred is addressed. The

focus here will be on multi-party (n > 2) states for which there is as yet no

general scheme for the classification and quantification of entanglement. Nev-

ertheless, as discussed in §1.3.3, progress can be made by considering invariants

under local transformations such as Local Unitary (LU) transformations and

Stochastic Local Operations and Classical Communication (SLOCC).

Invariants are rather abstract mathematical objects and it is natural to
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ask whether any physical meaning can be given to them. One way of doing

this is to investigate how these quantities might be measured. This could be

done by simply measuring the coefficients of the state and then calculating

the invariants. However, finding procedures to measure the invariants directly

may be more efficient and also lends the invariants a physical interpretation

as “collective observables” of the state.

For bipartite pure states, the Schmidt coefficients are a complete set of LU

invariants and optimal protocols for measuring them were given in [3]. Also,

in [51] a method was given for estimating the polynomial SLOCC invariants

of a general two-qubit state.

In this chapter, networks for estimating two classes of polynomial invariants

for multi-party states are presented: the LU invariants for multi-party states

with arbitrary local Hilbert space dimension and the SLOCC invariants for

multi-qubit states. In both cases, the protocol works for both pure and mixed

states. In particular, the structure of the networks reflects the structure of the

invariants in a very simple way.

In §4.2, the construction of local invariants under LU1 in [18, 80]. In §4.3,

the networks for measuring these invariants are presented. The next two sec-

tions address the same issues for invariants under SLOCC transformations,

reviewing their construction in §4.4 and presenting networks to measure them

in §4.5. In order to construct the networks for SLOCC invariants, the Struc-

tural Physical Approximation (SPA) to non-physical maps is used, which was

introduced in [50]. The relevant details of this are presented in §4.6. In §4.7,

estimation protocols based on the networks are evaluated by comparing them

to simple techniques based on estimating the state coefficients. Some of the

results from statistical inference used in §4.7 are reviewed in appendix §4.A

and the integrals that arise in the same section are computed in appendix §4.B.

1However, since this work first appeared it has been shown [21] that the SLOCC invariants
can be estimated without the need for introducing noise and circuits have been explicitly
constructed for the concurrence and 3-tangle. The statistical efficiency of these circuits has
not yet been analyzed.
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4.2. Polynomial Invariants under LU transformations

4.2 Polynomial Invariants under LU transfor-

mations

4.2.1 Pure states

Recall that two n-party pure states |ψ〉 , |ψ′〉 ∈ ⊗n
j=1Cdj are equivalent under

LU transformations if

|ψ′〉 = U1 ⊗ U2 ⊗ . . .⊗ Un |ψ〉 (4.1)

where Uj ∈ U(dj) is a unitary operation acting on the Hilbert space of the jth

party. States on the same orbit under this action have the same entanglement

properties. Given a particular state, we might be interested in determining

which orbit it belongs to. This can be done by establishing a canonical point

on each orbit, such as the Schmidt form for bipartite states. However, canonical

forms rapidly become more complicated as the number of parties is increased

[1, 22]. Alternatively, polynomial functions of the state coefficients that are

invariant on each orbit can be constructed. Theorems from invariant theory

guarantee that a finite set of such polynomials is enough to distinguish the

generic orbits under this action [76]. The construction of such a set is given in

the following sections.

One party

Consider the state |ψ〉 =
∑d

i=1 αi |i〉 in a single party Hilbert space Cd, where

{|i〉} is an orthonormal basis. The only independent invariant under unitary

transformations of this state is the norm 〈ψ| ψ〉. This may be written as

〈ψ| ψ〉 =
∑

i

αiα∗i =
∑
i,j

αiδj
i α

∗
j (4.2)

where δj
i is the Kronecker delta. δj

i is the U(d) invariant tensor and invariants

for larger numbers of parties are formed by similar contractions of the state

coefficients with their complex conjugates.
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4

α

Figure 4.1: Diagrammatic representation of the quartic two-qubit LU invariant
J(σ,τ), given in eq.(4.3). The first index of each term is represented by a circle
and the second by a square. A line joins indices that are contracted with a δ.

Two qubits

As an example, consider a two-qubit state |ψ〉 =
∑1

i,j=0 αij |ij〉. There is only

one independent quadratic invariant, which is simply the norm of the state.

However, at quartic order there is another invariant, which is functionally

independent of the norm given by

J =
∑

αi1j1αi2j2δi3
i1

δi4
i2

δj4
j1

δj3
j2

α∗i3j3
α∗i4j4

=
∑

αi1j1αi2j2α∗i1j2
α∗i2j1

For two qubits, this is the only other independent invariant because every state

has a canonical Schmidt form |ψ〉 =
√

p |00〉 +
√

1− p |11〉, with 1/2 ≤ p ≤ 1

and J = 2(p2 − p) + 1 determines p uniquely.

Another useful way of representing the invariant is to define two per-

mutations σ, τ on the set {1, 2} where σ is the identity permutation and

τ(1) = 2, τ(2) = 1. Then

J(σ,τ) =
∑

αi1j1αi2j2α∗iσ(1)jτ(1)
α∗iσ(2)jτ(2)

(4.3)

This also suggests a diagrammatic way of representing the invariant (see fig.

4.1).
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General case

A multipartite pure state can be written in terms of an orthonormal basis as

follows

|ψ〉 =
∑

i,j,k...

αijk... |ijk . . .〉 (4.4)

A general polynomial function of the state coefficients and their complex con-

jugates can be written as

∑
cirjrkr...
i1j1k1...i2j2k2...α

i1j1k1...αi2j2k2... . . . α∗irjrkr... . . . (4.5)

If the polynomial (4.5) has equal numbers of α’s and α∗’s and all the indices

of the α’s are contracted using the invariant tensor δ with those of the α∗’s,

each index being contracted with an index corresponding to the same party

then the polynomial is manifestly invariant under LU transformations.

Such polynomials can be written in terms of permutations on the indices.

Let r be the degree of the polynomial in α (and hence also the degree in

α∗). Let σ, τ, µ . . . be permutations acting on the set {1, 2, . . . , r} and let

~σ = (σ, τ, µ, . . .). Then the invariants can be written as:

J~σ =
∑ r∏

s=1

αisjsks...α∗iσ(s)jτ(s)kµ(s)...
(4.6)

In fact, σ can always be chosen to be the identity permutation by permuting

the α terms in this expression. Additionally, each J~σ can be associated with a

diagram constructed in the same way as fig.4.1.

The invariants J~σ are enough to completely distinguish the generic orbits

under LU transformations. In fact, invariant theory guarantees that only a

finite collection of them are needed to do this. However, except in a few

simple cases, it is unknown which J~σ invariants form minimal complete sets.

4.2.2 Mixed states

Two mixed states ρ, ρ′ are equivalent under LU transformations if

ρ′ = U1 ⊗ U2 ⊗ . . .⊗ UnρU †
1 ⊗ U †

2 ⊗ . . .⊗ U †
n (4.7)
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The LU invariants for mixed states can be derived by rewriting the pure state

invariants (4.6) in terms of the density matrix ρ = |ψ〉 〈ψ| and noting that the

resulting expressions are still invariant under LU transformations for general

density matrices. This can be done by noting that terms such as αi1j1...α∗i2j2...

are elements of the density matrix. A general density matrix may be written

in terms of an orthonormal basis as

ρ =
∑

ρijk...
xyz... |ijk . . .〉 〈xyz . . .| (4.8)

and the corresponding expression for an LU invariant is

J~σ =
∑ r∏

s=1

ρisjsks...
iσ(s)jτ(s)kµ(s)...

(4.9)

4.3 Measuring Invariants under LU transfor-

mations

4.3.1 Network construction

The general construction of the network used to measure the LU invariants is

shown in fig.4.2. It generalizes networks for estimating functionals of bipartite

states given in [52, 41, 51]. Measuring an LU invariant of degree r in α (and

also degree r in α∗) requires the collective processing of batches of r copies

of the unknown state ρ. In addition, a Hadamard rotation H is applied to a

single qubit in the state |0〉 to transform it to 1√
2
(|0〉+ |1〉). The next step

consists of applying a unitary operation U on the r copies of ρ controlled by the

Hadamard rotated qubit. Finally a measurement is performed on the single

qubit in the {|0〉 , |1〉} basis. The expectation value of this measurement will

be

〈Z〉 = Re
(
Tr

(
Uρ⊗r

))
(4.10)

When ρ = |ψ〉 〈ψ| is a pure state then this is equivalent to

〈Z〉 = Re 〈ψ|⊗r U |ψ〉⊗r (4.11)
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Figure 4.2: General construction of network to measure polynomial LU invari-
ants.

In order to determine networks for measuring the LU invariants, it only remains

to show that there is a U such that the invariants can be expressed in the form

(4.10).

To do this for pure states, polynomials of the form (4.6) must be ex-

pressed in the form of (4.11). Firstly, note that αijk... = 〈ijk . . .| ψ〉, α∗ijk... =

〈ψ| ijk . . .〉 and each permutation σ in (4.6) can be associated to a permutation

matrix

Pσ =
d∑

i1,i2,...,ir=1

∣∣iσ(1)iσ(2) . . . iσ(r)

〉 〈i1i2 . . . ir| (4.12)

where Pσ acts on the Hilbert space of the same party for each of the r copies

of the state |ψ〉. Then to each ~σ the permutation matrix

P~σ = Pσ ⊗ Pτ ⊗ Pµ ⊗ . . . (4.13)

is associated, where Pσ, Pτ , Pµ, . . . act on the Hilbert space of the same party

as σ, τ, µ, . . . in (4.6) on each of the r copies of the state. Then it will be shown

that (4.6) can be written as

J~σ = 〈ψ|⊗r P~σ |ψ〉⊗r (4.14)
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Figure 4.3: Network for measuring the 2-qubit quartic invariant.

Since P~σ is unitary these invariants can be estimated with the network in fig.4.2

by setting U = P~σ to obtain the real part and U = iP~σ to obtain the imaginary

part. For the specific example of the 2-qubit invariant (4.3) this construction

gives

J(σ,τ) = 〈ψ|A1B1
〈ψ|A2B2

IA1A2 ⊗ SWAPB1B2 |ψ〉A1B1
|ψ〉A2B2

(4.15)

Note also that the physical construction of P~σ is closely related to the diagram

associated with J~σ (compare figs. 4.1 and 4.3 for example).

If ρ is a mixed state then applying the same procedure without modification

will give the invariants of eq. (4.9). These results can be summarized by the

following theorem.

Theorem 4.1.

Tr
(
P~σρ

⊗r
)

= J~σ (4.16)

where P~σ is defined in (4.13) and J~σ is given by (4.9).

Proof. Firstly, consider the action of P~σ on the operator basis
⊗r

s=1 (|isjsks . . .〉 〈xsyszs . . .|).

P~σ (
⊗r

s=1 |isjsks . . .〉 〈xsyszs . . .|)
=

⊗r
s=1

(∣∣iσ(s)jτ(s)kµ(s) . . .
〉 〈xsyszs . . .|)

(4.17)
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then using the relation Tr (|ψ〉 〈φ|) = 〈φ| ψ〉 gives

Tr (P~σ (
⊗r

s=1 |isjsks . . .〉 〈xsyszs . . .|))
=

∏r
s=1

(
δxs
iσ(s)

δys

jτ(s)
δzs
kµ(s)

. . .
) (4.18)

ρ⊗r may be expanded in this operator basis as follows

ρ⊗r =
r⊗

s=1

∑

is,js,ks,...,xs,ys,zs,...

ρisjs...
xsyszs... |isjsks . . .〉 〈xsyszs . . .| (4.19)

In this expression, all the sums may be taken in front of the tensor product and

this results in a linear combination of the operator basis elements, with coeffi-

cients given by the corresponding density matrix elements. Then Tr (P~σρ
⊗r) is

found by multiplying (4.18) by the coefficients of this linear combination and

summing. Removing the contracted δ’s then gives (4.9).

It has previously been noted [44] that all homogeneous polynomial LU

invariants are determined by the expectation values of two observables on r

copies of a state. Here, an explicit network for measuring these observables

has been given. Also, similar constructions can be made to estimate other

polynomial functionals of quantum states [41] and these can be modified to

enable the estimation to proceed by LOCC [4], i.e. with no collective operations

over the n-parties. A similar modification would enable the LU invariants to

be estimated by LOCC. However, these modifications are not considered here

because they would affect the efficiency of the estimation to be discussed in

§4.7.

4.4 Polynomial invariants under SLOCC

When attempting to classify entanglement, it is often useful to consider in-

variants under local transformations that are more general than unitary trans-

formations. For this purpose, invariants under SLOCC have been introduced

[13]. In §4.5, a network to measure the modulus squared of these invariants is

constructed, for the case where each party has a single qubit (i.e. the Hilbert

space is (C2)⊗n).
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4.4.1 Pure states

Two n-party pure states |ψ〉 and |ψ′〉 are equivalent under SLOCC if it is possi-

ble to obtain |ψ′〉 with non-zero probability via a sequence of Local Operations

and Classical Communication (LOCC) starting from a single copy of |ψ〉 and

vice-versa. In [36], this criterion was shown to be equivalent to

|ψ′〉 = M1 ⊗M2 ⊗ . . .⊗Mn |ψ〉 (4.20)

where Mj ∈ GL(dj) is an invertible linear transformation acting on the dj-

dimensional Hilbert space of the jth party.

In what follows, polynomial invariants for the special case where Mj ∈
SL(2) are found, i.e. the transformation has unit determinant and each party

has a single qubit. Networks to determine the modulus squared of these invari-

ants will be given in §4.5. Note that it is not possible to measure SL(2)n in-

variants directly because they are not necessarily invariant under global phase

transformations |ψ〉 → eiθ |ψ〉, which have no physical significance. It is for

this reason that the modulus squared is measured, because this is invariant

under these phase transformations.

Under general GL(2)n transformations, the polynomial SL(2)n invariants

are still invariant up to a multiplicative factor, which is just some power of

the determinant of M1 ⊗M2 ⊗ . . . ⊗Mn. Thus, ratios of appropriate powers

of these polynomials will be invariants under GL(2)n.

Two qubits

In order to illustrate the polynomial invariants under SL(2)n, first consider the

case where n = 2. Two states |ψ〉 =
∑2

j,k=1 αjk |jk〉 and |ψ′〉 =
∑2

j,k=1 α′jk |jk〉
satisfy (4.20) if

α′ = M1αMT
2 (4.21)
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This means that det(α) = det(α′) is an SL(2)×SL(2) invariant, since det(M1) =

det(M2) = 1. This may be written as

det α =
∑

εi1i2εj1j2α
i1j1αi2j2 (4.22)

where the totally antisymmetric tensor εij is the SL(2) invariant tensor. For

two qubit pure states, this is the only independent SL(2)× SL(2) invariant.

General case

The SL(2)n invariants can be constructed in a similar way to the LU invariants

except the invariant tensor is now εij, and α’s are contracted with α’s instead

of α∗’s. Thus, polynomials of the form

K~σ =
∑2

1

∏r/2
s=1 εi2s−1i2sεj2s−11j2sεk2s−1k2s . . .

αiσ(2s−1)jτ(2s−1)kµ(2s−1)...αiσ(2s)jτ(2s)kµ(2s)...
(4.23)

are manifestly invariant. Note that it is straightforward to generalize this

construction to the case where each party has a d-dimensional Hilbert space by

contracting with the SL(d)n invariant tensor εi1i2...id instead of εij. However, it

is not yet clear how to measure these invariants because the effect of the higher

rank ε tensors cannot be physically implemented by linear transformations on

states.

4.4.2 Mixed states

In general, two mixed states ρ, ρ′ are equivalent under SLOCC if there exists

two completely positive maps E1, E2 which are implementable via LOCC with

non-zero probability of success such that ρ′ = E1(ρ) and ρ = E2(ρ
′). In order

to derive invariants using the expressions from the previous section, only the

case where ρ and ρ′ are related by

ρ′ = M1 ⊗M2 ⊗ . . .⊗MnρM †
1 ⊗M †

2 ⊗ . . .⊗M †
n (4.24)
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with Mj ∈ SL(2) is considered here. The resulting expressions may not be

invariant under more general SLOCC transformations, but are related to im-

portant quantities in entanglement theory as described in §4.4.3

Unlike the LU invariants, it is not clear that (4.23) can be written simply

in terms of the coefficients of the density matrix ρ = |ψ〉 〈ψ|. However, |K~σ|2

can be written as follows

|K~σ|2 =
∑2

1

∏r/2
s=1 εi2s−1i2sεj2s−1j2sεk2s−1k2s . . . εx2s−1x2sεy2s−1y2sεz2s−1z2s

ρ
iσ(2s−1)jτ(2s−1)kµ(2s−1)...
xσ(2s−1)yτ(2s−1)zµ(2s−1)...ρ

iσ(2s)jτ(2s)kµ(2s)...
xσ(2s)yτ(2s)zµ(2s)... . . .

(4.25)

and these will also be SL(2)n invariants for mixed states.

4.4.3 Examples of SL(2)n invariants

The K~σ invariants are especially interesting in entanglement theory because

many important entanglement measures can be easily calculated from them.

For example, in the case of two-qubits, the concurrence is a simple function of

the eigenvalues of ρρ̃, where

ρ̃ = σy ⊗ σyρ
T σy ⊗ σy (4.26)

and T stands for transpose in the computational basis. These eigenvalues can

be calculated from Tr((ρρ̃)m) for m = 1, 2, 3, 4, which are simply the mod-

uli squared of K~σ invariants. In [51], networks were constructed to estimate

these invariants for two qubits and this construction is generalized here to K~σ

invariants for larger numbers of parties.

Another interesting example is the 3-tangle [102, 28], which is defined for

pure states as the modulus of the following 3-qubit K~σ invariant.

τ3 =
∑2

1 αi1j1k1αi2j2k2εi1i3εj1j3εk1k4εi2i4εj2j4εk2k3α
i3j3k3αi4j4k4 (4.27)

The 3-tangle gives information about the genuine 3-party entanglement be-

tween the qubits.

Finally, note that the K~σ invariants can be given similar diagrammatic

representations to the J~σ invariants. This is illustrated for the 3-tangle in

fig.4.4.
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αα
1

2

3

4

Figure 4.4: Diagrammatic representation of the 3-tangle. The first index of
each term is represented by a circle, the second by a square and the third by
a triangle. A line joins indices that are contracted with an ε.

4.5 Measuring SLOCC invariants

The modulus squared of the SLOCC invariants can be measured using a net-

work similar to fig. 4.2 except that the unknown states ρ must be preprocessed

prior to the controlled-U operation. If K~σ is of degree r in α then batches of

r copies of ρ are collectively processed. The preprocessing stage will consist

of collective unitary operations and completely positive maps that act on the

entire Hilbert space of the r copies of ρ. The resulting state ρ′, will yield the

expectation value

〈Z〉 = Re (Tr (Uρ′)) (4.28)

for the measurement at the end of the network. In this section, the prepro-

cessing operations and unitary operations U that enable the modulus squared

of the SLOCC invariants to be written in this form are described.

First, the inverse of the permutation matrix associated with ~σ is applied

to the r copies of ρ to obtain P †
~σρ⊗rP~σ.

The second, and final, part of the preprocessing stage is to apply a com-

pletely positive map Λ̄ to the state. To describe Λ̄, first define the multi-party

analogue of eq. (4.26).

ρ̃ = σy ⊗ σy ⊗ . . .⊗ σyρ
T σy ⊗ σy ⊗ . . .⊗ σy (4.29)

Next, define a map Λ that acts on a product of r states by applying the tilde
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operation to the even numbered states as follows

Λ(ρ1 ⊗ ρ2 ⊗ . . .⊗ ρr) = ρ1 ⊗ ρ̃2 ⊗ ρ3 ⊗ . . .⊗ ρ̃r (4.30)

where each ρj is an n-party state.

Unfortunately, Λ cannot be physically implemented, since it is not a com-

pletely positive map. This can be dealt with by using the Structural Physical

Approximation (SPA) to Λ, denoted by Λ̄. Λ̄ is the “closest” physical map to

Λ. This is discussed in §4.6, but for now the network is constructed as if Λ

could be implemented perfectly.

The final pre-processed state ρ′ will be

ρ′ = Λ(P †
~σρ⊗rP~σ) (4.31)

Next, the controlled-U operation in the network must be chosen such that

〈Z〉 = |K~σ|2 when ρ′ is used as the input. The pairwise SWAP gate, defined

by

U |φ1〉 ⊗ |φ2〉 ⊗ . . .⊗ |φr−1〉 ⊗ |φr〉 =

|φ2〉 ⊗ |φ1〉 ⊗ . . .⊗ |φr〉 ⊗ |φr−1〉
(4.32)

where |φj〉 is an n-party state fulfils this condition. These results can be

summarized by the following theorem.

Theorem 4.2.

Tr
(
UΛ

(
P †

~σρ⊗rP~σ

))
= |K~σ|2 (4.33)

where U is the pairwise SWAP operation (4.32), Λ is given by (4.30) and |K~σ|2

is given by (4.25).

Proof. The proof proceeds in a similar fashion to the proof of theorem 4.1

by considering the action on
⊗r

s=1 |isjsks . . .〉 〈xsyszs| and then obtaining the

expression for a general density matrix using the expansion (4.19) and the

linearity of the operations in (4.33).

The action of the permutation operators is given by

P †
~σ (

⊗r
s=1 |isjsks . . .〉 〈xsyszs . . .|) P~σ

=
⊗r

s=1

∣∣iσ̄(s)jτ̄(s)kµ̄(s) . . .
〉 〈

xσ̄(s)yτ̄(s)zµ̄(s) . . .
∣∣ (4.34)
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where ¯ denotes the inverse of a permutation.

The map Λ consists of two parts. Firstly, every second n-party state is

transposed.

⊗r/2
s=1

(∣∣iσ̄(2s−1)jτ̄(2s−1)kµ̄(2s−1) . . .
〉 〈

xσ̄(2s−1)yτ̄(2s−1)zµ̄(2s−1) . . .
∣∣

⊗
∣∣xσ̄(s)yτ̄(s)zµ̄(s) . . .

〉 〈
iσ̄(s)jτ̄(s)kµ̄(s) . . .

∣∣) (4.35)

Next, every second n-party state is conjugated by σ2⊗σ2⊗ . . .⊗σ2. Note that

(σ2)ij = −iεij, which gives

(−1)nr/2 ∑
a,b,c,...,d,e,f,...

⊗r/2
s=1 εxσ̄(2s)asεyτ̄(2s)bsεzµ̄(2s)cs . . . εdsiσ̄(2s)

εesjτ̄(2s)
εfskµ̄(2s)

. . .

(∣∣iσ̄(2s−1)jτ̄(2s−1)kµ̄(2s−1) . . .
〉 〈

xσ̄(2s−1)yτ̄(2s−1)zµ̄(2s−1) . . .
∣∣

⊗ |asbscs . . .〉 〈dsesfs . . .|)
(4.36)

where the sum is taken over all subscripted indices labelled by a, b, c, . . . , d, e, f, . . ..

The action of the pairwise SWAP (4.32) transforms the bracketed term into

|asbscs . . .〉 〈xσ̄(2s−1)yτ̄(2s−1)zµ̄(2s−1) . . .
∣∣

⊗
∣∣iσ̄(2s−1)jτ̄(2s−1)kµ̄(2s−1) . . .

〉 〈dsesfs . . .|
(4.37)

Taking the trace then gives

(−1)nr/2 ∏r/2
s=1 εxσ̄(2s)xσ̄(2s−1)

εyτ̄(2s)yτ̄(2s−1)
εzµ̄(2s)zµ̄(2s−1)

. . .

εiσ̄(2s−1)iσ̄(2s)
εjτ̄(2s−1)jτ̄(2s)

εkµ̄(2s−1)kµ̄(2s)
. . .

(4.38)

Swapping the indices of the ε terms with x, y, z, . . . indices produces another

factor (−1)nr/2. Since r is even, this gives a factor of (−1)nr = +1 at the

front. Multiplying the resulting expression by the density matrix coefficients

and then summing gives eq.(4.25).

4.6 The Structural Physical Approximation

The Λ operation encountered in the previous section is an example of a positive,

but not completely positive map. These cannot be implemented exactly, but

instead an approximation can be applied. Suppose Θ : B(Cd) → B(Cd) is a
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trace-preserving, positive map. Instead of Θ, a map of the following form can

be applied.

Θ̄ (ρ) = p
I

d
+ (1− p)Θ(ρ) (4.39)

where I is the identity operator and p is a constant (0 ≤ p ≤ 1) chosen such

that Θ̄ is completely positive. The optimal map of this form (i.e. the map

with the smallest value of p) was found in [50] to be

Θ̄opt(ρ) =
λd2

λd2 + 1

I

d
+

1

λd2 + 1
Θ(ρ) (4.40)

where λ = max(0,−λ′) and λ′ is the smallest eigenvalue of the operator

I⊗Θ(Π+) ∈ B
(
Cd ⊗ Cd

)
(4.41)

Here, Π+ = |φ+〉 〈φ+| is the projector onto the maximally entangled state

|φ+〉 = 1√
d

∑d
j=1 |jj〉 and I acts as the identity on B(Cd).

In order to apply this result to the map Λ, it is useful to decompose it into

two parts Λ = Λ2 ◦Λ1. Λ1 acts as the transpose on every second n-party state

and the identity on the remainder. Λ2 is given by conjugating every second

n-party state with σ2⊗σ2⊗. . .⊗σ2. Since Λ2 is unitary, it is Λ1 that is relevant

for calculating the optimal p. The smallest eigenvalue of the operator (4.41)

when Θ = Λ1 is 2−nr/2. Applying the formalism, one finds that the optimal

approximation to Λ is given by

Λ̄ (ρ) =
2

3
2
nr

2
3
2
nr + 1

I

2nr
+

1

2
3
2
nr + 1

Λ (ρ) (4.42)

where n is the number of qubits in each copy of the state and r is the degree

of the K~σ for which the modulus squared is being estimated.

On replacing Λ with Λ̄ in the network, the expectation value of the Z mea-

surement still allows the modulus squared of the K~σ invariant to be determined

via

|K~σ|2 =
(
2

3
2
nr + 1

)
〈Z〉 − 2nr (4.43)

However, the SPA does affect the accuracy to which the invariant is deter-

mined. This is discussed further in the next section. Additionally, in [4], it is
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shown that this sort of SPA can be replaced by one that can be implemented

via LOCC. Thus, the SLOCC invariants could be estimated by LOCC, but the

estimation efficiency discussed in §4.7 would be affected.

4.7 Evaluation

The main aim of the protocols presented in §4.3 and §4.5 is to provide a phys-

ical interpretation for the polynomial invariants. However, the question of

how efficient these measurement protocols are has not yet been addressed. In

this section, the efficiency of these protocols is compared to the efficiency of

protocols based on simply measuring the state coefficients and calculating the

invariants. Unbiased estimators based on counting [85, 64, 32] are used to es-

timate the invariants based on the data provided by a finite number of uses of

the networks. Also, the same type of estimators can be used to find the state

coefficients and then these estimates can be used to calculate the invariants.

The estimators for the invariants arising from this second procedure will gen-

erally be biased. However, the analysis is performed in the limit where a large

number of copies of the state have been measured, so that the bias is negligible

and the variances of the estimates are small and can be treated to first order in

all subsequent calculations. The techniques used are standard in experimental

error analysis and are reviewed in appendix 4.A. Note that more sophisticated

estimation procedures are also possible [42], but the purpose here is to compare

the networks to methods that are easily accessible experimentally.

Measuring the state coefficients would clearly be a more straightforward

procedure to perform experimentally than using the network. Although more

parameters have to be determined, this does not necessarily mean that it is

a less efficient method for estimating the invariants than using the networks.

There are several quite general reasons why this might be the case.

Firstly, suppose that we are interested in measuring a complete set of poly-

nomial LU invariants for some unknown state of n parties, where each party
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has a d-dimensional Hilbert space. In general, it is not known how many would

need to be measured, but parameter counting arguments [68, 23, 70] show that

the number of local degrees of freedom is linear in n whereas the total number

of degrees of freedom is exponential in n. Thus, for large n almost all the de-

grees of freedom are non-local. Even for moderately sized n, there are nearly

as many invariants as there are state coefficients. In addition, the invariants

are typically highly non-linear functions of the state coefficients. For these

reasons, we expect that measuring a complete set of invariants directly will

generally not be more efficient than measuring the state coefficients for large

n. Similar considerations also apply to the SLOCC invariants.

Despite these considerations, it may be the case that the networks are more

efficient if only a small incomplete subset of the invariants is measured. Also,

they may be more efficient for estimating complete sets when n is small. For

this reason, and for simplicity, the focus is on estimating two qubit invariants

in this section.

There are also other reasons why the networks may not be efficient. For

example, they only employ a two-outcome measurement for each r copies of

the state whereas estimating the state coefficients uses a two-outcome mea-

surement on each copy. Also, for the K~σ invariants, it is shown that using the

SPA introduces a lot of noise into the measurement. Nonetheless, there are

still some cases where using the networks is more efficient than estimating the

state coefficients.

4.7.1 Statistical analysis of the network

For a particular setup in the network, repeated measurements of an observable

Z, with expectation value F = Tr (Uρ′) are made. Z is a random variable2

2The statistical inference theory used in this section can be found in many statistics
textbooks, such as [31].
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with distribution

p(Z = +1) = 1
2
(1 + F )

p(Z = −1) = 1
2
(1− F )

(4.44)

If the event Z = +1 is defined as a success and if p = P (Z = +1) then

repeating the network N times is equivalent to performing N Bernoulli trials

with parameter p. The number of successes Ns is a random variable with a

binomial distribution and its expectation value is 〈Ns〉 = Np = N
2

(1 + F ).

In an actual experiment, the observed number of successes N̂s can be used to

compute an unbiased estimator for F , given by

F̂ = 2
N̂s

N
− 1 (4.45)

with variance

var
(
F̂

)
=

1

N

(
1− F 2

)
(4.46)

We are interested in determining how many trials are needed in order for the

estimate F̂ to be reasonably accurate. Specifically, we would like to quantify

how many trials are needed to make var(F̂ ) ≤ ε for some ε > 0. In an

experimental situation, var(F̂ ) could not be calculated from the data, so it

would have to be estimated using the sample variance, v̂ar(F̂ ). However, in

the limit N →∞ the fact that var(F̂ ) = O(N−1) and var(v̂ar(F̂ )) = O(N−4)

can be used, i.e. v̂ar(F̂ ) converges to the true variance much faster than F̂

converges to F so v̂ar(F̂ ) ≈ var(F̂ ). Thus, in this limit

N ' 1

ε
(1− F 2) (4.47)

Recall that for the LU invariants, the real and imaginary parts of the

invariant are estimated independently and that each use of the network requires

r copies of the state, where r is the degree of the invariant in α. If the same

number of samples are used for estimating both the real and imaginary parts

then the total number of copies required is

M ' r

ε

(
2− |J~σ|2

)
(4.48)
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In some cases, it is known a priori that the invariant is always real or always

imaginary. If this is the case, then the same accuracy can be achieved with

M ' r

ε

(
1− |J~σ|2

)
(4.49)

For the SLOCC invariants, each use of the network requires r copies of the

state, where r is the degree of the invariant in α. Also the estimate of the

invariant must take into account the use of the SPA via (4.43). In this case,

the total number of copies required is

M ' r

ε

[(
2

3
2
nr + 1

)2

− (|K~σ|2 + 2nr
)2

]
(4.50)

Notice that the 23nr term will dominate the term in the square bracket for

large n and r. This is due to the noise introduced into the measurement by

the SPA.

4.7.2 Comparison to methods based on state estimation

In order to evaluate estimation protocols based on the networks, they are

compared to methods based on estimating the density matrix of the state and

then calculating the invariants. This can be done by estimating each state

coefficient using observations on single copies of the state. This is known as

quantum state tomography (see [42] for an overview and also [85, 64, 32]).

This is not the optimal way of reconstructing the state in general [6], but it

will greatly simplify the analysis.

Example: Two-qubit LU invariants

A general two-qubit density matrix can be written as

ρ =
1

4

(
I2 ⊗ I2 +

∑
j

ajσj ⊗ I2 +
∑

j

bjI2 ⊗ σj +
∑

j,k

Rjkσj ⊗ σk

)
(4.51)

The two-qubit LU invariant (4.3) can be written in terms of these coefficients

as

J = Tr(ρ2
B) =

1

2

(
1 +

∑
j

b2
j

)
(4.52)
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Each bj can be determined by simply performing a σj measurement on Nj

copies of Bob’s half of the state. The probability distributions of the associated

random variables are given by

p(σj = +1) = 1
2
(1 + bj)

p(σj = −1) = 1
2
(1− bj)

(4.53)

Thus, each bj can be estimated in the same way as F in (4.45) and

var(b̂j) =
1− b2

j

Nj

(4.54)

Then, an estimator for J can be constructed, which is given by

Ĵ =
1

2

(
1 +

∑
j

b̂j

2

)
(4.55)

which will be biased, but in the large Nj limit

var(Ĵ) ≈
∑

j

b2
j

(
1− b2

j

Nj

)
(4.56)

to first order in var(bj).

If the additional restriction that each observable σj is sampled the same

number of times (i.e. Nj = N
3
) is made, then

N ' 3

ε

∑
j

b2
j

(
1− b2

j

)
(4.57)

for the estimate to have variance / ε.

One way to compare this to the result for the network is to take an average

over all pure states. If all pure states are equally likely then this amounts to in-

tegrating (4.7.2) and (4.49) using Haar measure (for details see appendix 4.B).

This shows that on average 3/2 times as many copies of the state are needed

if the coefficient estimation method is used. This is half of what one might

expect from parameter counting alone, since three times as many parameters

are estimated in the state coefficient method. The factor of two is explained

by the fact that each use of the network uses two copies of the state3.

3and by the fact that the terms 1− |J~σ|2 in (4.49) and
∑

j bj(1− b2
j ) in (4.57) happen to

have the same average when integrated over Haar measure. The result will not necessarily
be so simple for other invariants.
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Figure 4.5: No. copies required ×ε in the asymptotic limit for the case where
b1 = b2 = 0. The solid line is for the method based on estimating the state
coefficients and the dashed line if for the network.

However, it is possible to find parameter ranges in which the state coeffi-

cient method performs better than the networks. One such range is given by

setting b1 = b2 = 0 and then solving the RHS (4.49) > RHS (4.57), which

gives

2
(
1− (

1
2
(1 + b2

3)
)2

)
> 3b2

3 (1− b2
3)

⇒ 5b4
3 − 8b2

3 + 3 > 0
(4.58)

This is satisfied when either b2
3 > 1 or b2

3 < 3
5
. The first option violates the

normalization condition, so −
√

3
5

< b3 <
√

3
5

is the only possible solution (see

fig. 4.5). This illustrates the fact that parameter counting does not always re-

flect the statistical efficiency of a given protocol. Any partial information that

available about the type of states being measured might change the judgement

of which protocol is more efficient.
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Example: Two-qubit SLOCC invariants

For the two-qubit SLOCC invariants the quadratic invariant (4.22) can be

taken as an example. In terms of the decomposition (4.51) this can be written

as

|K|2 =
1

4

[
1−

∑
j

(
a2

j + b2
j

)
+

∑

jk

R2
jk

]
(4.59)

If this is estimated by measuring all 15 of the state coefficients an equal number

of times then, by a similar analysis to the LU case, at least

N ' 15

4ε

[∑
j

[
a2

j(1− a2
j) + bj(1− b2

j)
]
+

∑

jk

R2
jk(1−R2

jk)

]
(4.60)

copies of the state are needed to get a variance / ε.

Taking averages, one finds that fewer copies are needed in the state coeffi-

cient protocol by a factor ≈ 5×103 despite the fact that many more parameters

have to be estimated in this protocol than when using the network. This is

largely due to the factor 212 that appears in (4.50), which arises from the

noise introduced by the SPA. This suggests that other estimation and detec-

tion protocols based on the SPA [52, 51] may be less efficient than parameter

counting arguments would imply. In fact, there are no states for which the

network performs better than the coefficient estimation method. Even in the

best possible case for the network, the state coefficient method requires fewer

states by about 3 orders of magnitude.

4.8 Conclusions

In this chapter, networks for measuring the polynomial invariants of quan-

tum states under LU and SLOCC transformations have been presented. The

structure of these networks is closely related to the structure of the invariants

themselves and thus gives the invariants a physical interpretation. Compari-

son of these networks with methods based on estimating the state coefficients

indicate that the networks are of limited practical use for estimating complete

107



Chapter 4. Measuring Polynomial Invariants of Quantum States

sets of invariants, although the LU networks may be useful for estimating small

subsets of the invariants. Indeed, our results suggest that any estimation pro-

cedure that employs the SPA is statistically inefficient even when the number

of parties is small4.

No procedure for estimating a complete set of invariants directly can out-

perform protocols based on estimating the state coefficients as the number of

parties is increased. For small numbers of parties it seems that there can be

some increase in efficiency, but the optimal protocol is not known in general.

4.A Statistical Inference

In this section, some details of statistical parameter estimation that are used

in §4.7.1 are reviewed. Suppose an experiment is performed that has a set of

possible outcomes Ω and that the outcome obtained depends in some way on

an unknown parameter θ. By performing the experiment, some data X ∈ Ω is

collected that arises from a random process that depends on the parameter θ.

Assuming that the distribution p(X|θ) as a function of θ is known a-priori, an

estimator θ̂ (X) can be constructed for θ that represents a guess of the value of

θ given the data X. The estimator is called unbiased if 〈θ̂〉 =
∑
X∈Ω p(X|θ)θ̂ =

θ. Generally, the bias of an estimator is defined to be

B
(
θ̂
)

= 〈θ̂〉 − θ (4.61)

The central quantity of interest for deciding the quality of an estimator is

the mean square error (MSE), defined as

MSE
(
θ̂
)

= 〈
(
θ̂ − θ

)2

〉 (4.62)

For an unbiased estimator, MSE
(
θ̂
)

= var
(
θ̂
)
, so the mean square error and

4However, since this work first appeared it has been shown [21] that the SLOCC invariants
can be estimated without the need for introducing noise and circuits have been explicitly
constructed for the concurrence and 3-tangle. The statistical efficiency of these circuits has
not yet been analyzed.
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variance may be used interchangeably. In the general case,

MSE
(
θ̂
)

= 〈
(
θ̂ − θ

)2

〉
= 〈θ̂2〉 − 2θ〈θ〉+ θ2

= 〈θ̂2〉 − 〈θ̂〉2 + 〈θ̂〉2 − 2θ〈θ〉+ θ2

= var
(
θ̂
)

+
(
〈θ̂〉 − θ

)2

= var
(
θ̂
)

+ B2
(
θ̂
)

(4.63)

For the binomial distribution used in §4.7.1 p̂ = N̂s

N
is an unbiased estimator for

the probability of success p. The estimators used to infer the invariants from

the data produced by the networks are linear functions of an estimator of this

sort and therefore they are also unbiased. The same applies to the estimators

of the state coefficients. However, the estimators used to infer the invariants

in the state coefficient method are non-linear functions of these estimators and

will typically be biased.

Since asymptotic N → ∞ properties of estimators are the main focus

of interest, only terms to lowest order in N−1 will be retained. Suppose an

estimator θ̂ is constructed as a function of some unbiased estimators, denoted

by a vector b̂, i.e. θ̂ = g(b̂). If g can be Taylor expanded about the true value

b then

θ̂
(
b̂
)

= g (b) +
∑

j

∂g

∂bj

(
b̂j − bj

)
+

1

2

∑

jk

∂2g

∂bj∂bk

(
b̂j − bj

)(
b̂k − bk

)
+ . . .

(4.64)

For all the estimators used in §4.7.1, only terms up to quadratic order in this

expansion need to be retained because this is enough to determine the leading

terms of the mean squared errors, variances and biases. The Taylor expansion

of linear functions of binomial estimators will terminate after the linear term in

any case. For functions of the state coefficient estimators var
(
b̂j

)
= O(N−1).

Also, any correlation terms, such as 〈
(
b̂j − bj

)(
b̂k − bk

)
〉 are zero, since the

estimators of the state coefficients are unbiased and independent. Higher order

moments about the mean are all O(N−2) or smaller and so can be neglected.
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Using (4.64) the mean square error is given to leading order by

MSE
(
θ̂
)

=
∑

jk
∂g
∂bj

∂g
∂bk
〈
(
b̂j − bj

)(
b̂k − bk

)
〉+ O (N−2)

=
∑

j

(
∂g
∂bj

)2

var
(
b̂j

)
+ O (N−2)

(4.65)

However, in §4.7.1 variances of estimators are used rather than mean square

errors. This can be done because they are the same to leading order. To show

this, (4.64) can be used to calculate the bias as follows.

B
(
θ̂
)

= 〈θ̂ − θ〉
=

∑
j

∂g
∂bj
〈b̂j − bj〉+ 1

2

∑
jk

∂2g
∂bj∂bk

〈
(
b̂j − bj

)(
b̂k − bk

)
〉+ O (N−2)

= 1
2

∑
j

∂2g
∂b2j

var
(
b̂j

)
+ O (N−2)

(4.66)

Thus, the B2 term in (4.63) is O(N−2) whereas the mean square error is

O(N−1). Thus, the variance must also be O(N−1) and have the same leading

term as the mean square error. This fact, combined with the result (4.65) is

used to calculate all the asymptotic variances in §4.7.1.

4.B Integrals over Haar measure for two-qubits

To perform the integrals over Haar measure mentioned in §4.7.2 it is convenient

to use the following parametrization of pure two-qubit density matrices [20].

ρ = 1
4

(I ⊗ I + cos α [~r1 · ~σ ⊗ I + I ⊗ ~r2 · ~σ]

+ sin α cos ψ
[
~k1 · ~σ ⊗ ~k2 · ~σ −~l1 · ~σ ⊗~l2 ⊗ ~σ

]

− sin α sin ψ
[
~k1 · ~σ ⊗~l2 · ~σ −~l1 · ~σ ⊗ ~k2 ⊗ ~σ

]) (4.67)

where 0 ≤ ψ, φ1, φ2 < 2π, 0 ≤ α, θ1, θ2 ≤ π and

~kj = (sin φj,− cos φj, 0)

~lj = (cos θj cos φj, cos θj sin φj,− sin θj)

~rj = (sin θj cos φj, sin θj sin φj, cos θj)

(4.68)

In this parametrization, the unitarily invariant integration measure is given by

cos2 α sin α sin θ1 sin θ2dαdψdφ1dθ1dφ2dθ2 (4.69)
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Details of how to find this measure are given in [20].

The integrals from §4.7.2 can be computed quite easily using this parametriza-

tion. For example, the number of copies required by the network to measure

the two-qubit LU (4.49) becomes

M ' 1

2ε

(
3− 2 cos2 α− cos4 α

)
(4.70)

and the Haar integral of the right hand side is 24
35ε

.

The number of copies required by the state coefficient method (4.57) is

N ' 3

ε
cos2 α

(
1− cos2 α

(
sin4 θ2 cos4 φ2 + sin4 θ2 sin4 φ2 + cos4 θ2

))
(4.71)

and this integrates to 36
35ε

. The ratio N/M is 3/2, as stated in §4.7.2.

In the parametrization (4.67), the two qubit SLOCC invariant takes the

particularly simple form K = 1−cos2 α and thus the number of copies required

by the network (4.50) is

M ' 2

ε

(
16384− (

17− cos2 α
)2

)
(4.72)

and the right hand side integrates to 1128048
35ε

. Notice also that the minimum of

(4.72) is 32190/ε.

The expression for the number of copies required in the state coefficient

method (4.60) is rather complicated, but it integrates to 179
28ε

. Also, (4.60)

is upper bounded by 9/ε, which can be shown by imposing the condition

Tr (ρ2) ≤ 1 and optimizing. Thus, there are no states for which our network

requires less copies than the state coefficient method.
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Chapter 5

Conclusions

In this thesis, I have investigated the fundamental limits to the processing

of the entanglement properties of quantum operations and ways in which the

entanglement of quantum states can be inferred by measurements. These

fundamental limits are important because practical protocols for achieving

these tasks can be evaluated by comparison to them. This area of research

is still very much in its early stages of development and many open questions

remain. Three of the most important ones are:

• Which classes of quantum operations can be reversibly converted into

entangled states by LOCC? If all operations can be reversibly converted

into entangled states, then many questions about the limits to processing

entanglement in operations could be answered by the theory of entan-

glement in states. Conversely, any operations that cannot be reversibly

converted into entangled states would represent a fundamentally new

type of entanglement.

• Which protocols involving the manipulation of entanglement in states

and operations are improved by collective processing? Given that col-

lective processing is so important in the theory of entangled states, it

would be surprising if some protocols for manipulating entanglement in

operations could not be improved by using it.
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• What is the optimal way of inferring the entanglement properties of

unknown states and operations by measurements? In particular, detect-

ing and measuring multi-particle entanglement will become increasingly

important as experimentalists work towards large-scale quantum com-

puters.

Additionally, it would be interesting to generalize simulation protocols and

the conversion between operations and entanglement to more general oper-

ations, such as completely positive maps and POVMs. Some authors have

begun work in these directions [27, 34, 81, 57].

I conclude with a few remarks on the possible application of the theory of

entanglement in quantum operations.

The theory of quantifying entanglement in quantum states is ideally suited

to determining the fundamental limits on quantum communication tasks, such

as teleportation, superdense coding and cryptography. In these protocols, an

entangled state is often being used directly as a resource.

In contrast, the fundamental resource in quantum control theory and com-

puting is an operation, such as a Hamiltonian or a quantum gate. It is natural,

therefore, to speculate that the quantification of entanglement in operations

will have its most direct application in these areas. In particular, there are

still many unanswered questions about which features of quantum mechanics

are responsible for the power of quantum computing. Indeed, it can be argued

that providing an explanation of this power is the fundamental problem in

quantum computing theory, since it would lead to new insights into how to

design algorithms that cannot be simulated efficiently on classical computers.

It is often stated that multi-party entanglement is one of the main fea-

tures that is required in a quantum algorithm. However, at least in pure state

models, it is known that multi-party entanglement in quantum states is only a

necessary, but not sufficient requirement for algorithms to exhibit exponential

speedup over their classical counterparts [58]. Since quantum gates are the

fundamental resource used in quantum computing, it is possible that a neces-
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sary and sufficient condition for exponential speedup could be formulated in

terms of the entanglement properties of the gates involved in the algorithm

as well as the states. Consequently, I believe that it is well worth pursuing

further problems in this area.
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Appendix A

Notation and Conventions

A few of the notations used throughout the thesis are summarized here.

A.1 Hilbert Spaces

• H - A Hilbert space, usually of arbitrary dimension.

• Cd - A finite dimensional, complex Hilbert space of dimension d.

• B(H) - The space of linear operators on a Hilbert space H.

Vectors in a Hilbert space are indicated with the Dirac notation |·〉, their

duals with 〈·| and inner products by 〈·| ·〉. Subsystems are usually denoted on

Hilbert spaces, vectors and operators by subscripts A,B,C,.... The label is often

omitted if the subsystem referred to is clear from the context.

A.2 Bases

• Computational basis - The standard basis for Cd, with basis vectors

denoted by |j〉 for j ∈ Z, 1 ≤ j ≤ d. For C2, |0〉 , |1〉 is often used

instead.
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• Bell basis - A maximally entangled basis for C2 ⊗ C2 given by

|φ−〉 = 1√
2
(|00〉 − |11〉)

|φ+〉 = 1√
2
(|00〉+ |11〉)

|ψ+〉 = 1√
2
(|01〉+ |10〉)

|ψ−〉 = 1√
2
(|01〉 − |10〉)

(A.1)

|φ+〉 is also used to denote 1√
d

∑d
j=1 |jj〉 ∈ Cd ⊗ Cd.

• Magic basis - Another maximally entangled basis for C2⊗C2, often used

to simplify calculations. It is given by

|Φ1〉 = −i√
2
(|00〉 − |11〉)

|Φ2〉 = 1√
2
(|00〉+ |11〉)

|Φ3〉 = −i√
2
(|01〉+ |10〉)

|Φ4〉 = 1√
2
(|01〉 − |10〉)

(A.2)

A.3 Operators

• T - The transpose of an operator, usually taken in the computational

basis.

• ∗ - The complex conjugate of an operator, usually taken in the compu-

tational basis.

• † - The adjoint operator A† = (A∗)T .

• ρ - A positive, trace class operator on H with trace one. Usually referred

to as a density operator.

• I - The identity operator on a Hilbert space H, sometimes denoted IN

where N is the dimension of the space IN acts on.

• σ0 - An alternative notation for I2
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• σ1, σ2, σ3 - The Pauli matrices, given by

σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 (A.3)

• ~σ - A vector consisting of the three Pauli matrices σ = (σ1, σ2, σ3)
T .

• I - The identity operator on B(H).
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