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Axioms of Quantum Theory:

Dynamical Axioms:

1. A physical system 𝐴 is described by a Hilbert Space 𝐴.

2. States are vectors in the Hilbert Space: 𝜓 𝐴 ∈ 𝐴.

3. States evolve unitarily according to the Schrödinger equation:

𝑖
𝑑 𝜓 𝐴

𝑑𝑡
= 𝐻 𝜓 𝐴 ⇒ 𝜓(𝑡) 𝐴 = 𝑈 𝑡0, 𝑡 𝜓 𝑡0 𝐴,     𝑈† 𝑈 = 𝐼𝐴

4. Composite systems are described by tensor products: 𝐴𝐵 = 𝐴 ⊗𝐵

Measurement Axioms

5. Observables are described by self-adjoint operators: 𝑀 s.t. 𝑀† = 𝑀

6. The Born probability rule for measurement outcomes: Prob 𝑃𝑗 = 𝜓 𝑃𝑗 𝜓 𝐴

7. The collapse of the wavefunction/projection postulate: 𝜓 𝐴 →
𝑃𝑗 𝜓 𝐴

𝜓 𝑃𝑗 𝜓 𝐴



 Everett first proposed his interpretation in 1957. H. Everett, Rev. Mod. Phys. 29:454–462.

 The approach described here is a mixture of:

 Oxford Everettianism: D. Wallace, The Emergent Multiverse (OUP, 2012)

 Zurek’s ideas on decoherence: W. Zurek, arXiv:quant-ph/0306072 (2003).  R. Blume-Kohout, W. 
Zurek Phys. Rev. A:062310 (2006)

 The basic idea is to view the dynamical axioms as unproblematic:

 The quantum state is an ontic physical state and it evolves unitarily in time.  
The entire universe obeys these rules.

 In orthodox interpretation this comes into conflict with the measurement axioms:

 so Everett proposed we simply discard the measurement axioms.

 They are to be derived as effective/emergent rules that an observer who is a 
quantum subsystem would use.



Dynamical Axioms:

1. A physical system 𝐴 is described by a Hilbert Space 𝐻𝐴.

2. States are vectors in the Hilbert Space: 𝜓 𝐴 ∈ 𝐻𝐴.

3. States evolve unitarily according to the Schrödinger equation:

𝑖ℏ
𝑑 𝜓 𝐴

𝑑𝑡
= 𝐻 𝜓 𝐴 ⇒ 𝜓(𝑡) 𝐴 = 𝑈 𝑡0, 𝑡 𝜓 𝑡0 𝐴,     𝑈† 𝑈 = 𝐼𝐴

4. Composite systems are described by tensor products: 𝐻𝐴𝐵 = 𝐻𝐴 ⊗𝐻𝐵
Measurement Axioms

5. Observables are described by self-adjoint operators: 𝑀 s.t. 𝑀† = 𝑀

6. The Born probability rule for measurement outcomes: Prob 𝑃𝑗 = 𝜓 𝑃𝑗 𝜓 𝐴

7. The collapse of the wavefunction/projection postulate: 𝜓 𝐴 →
𝑃𝑗 𝜓 𝐴

𝜓 𝑃𝑗 𝜓 𝐴



 The primitive ontology of Everett does not directly correspond to our everyday 
experience, so we must regard the latter as emergent.

 In a Schrödinger cat state like:
𝛼 ↑ ⊗ alive cat + 𝛽 ↓ ⊗ |dead cat⟩

we know that the world we experience corresponds to one of the two branches, 
not both.  The ontology is just the entire quantum state, so there is nothing in it that 
picks out one branch over the other.

 Our world of experience exists + ontology is just the quantum state ⇒ There are 
many worlds.

 Everett’s idea was to define relative states: 

 Relative to ↑ , the cat is alive.

 Relative to ↓ , the cat is dead.

 But both are equally real.



 If I model an observer (you) as a quantum system then how do we know that you 
see a definite outcome in a measurement?

𝛼 ↑ ⊗ you saw ↑ + 𝛽 ↓ ⊗ |you saw ↓⟩

 Deutsch’s answer: I should just ask you.

 I’ll pass you a blank piece of paper on which you write “yes” if you saw a 
definite outcome and “no” otherwise.

 This should be described as a unitary interaction.

 If you are honest then we should have:
↑ ⊗ you saw ↑ ⊗ blank → ↑ ⊗ you saw ↑ ⊗ yes
↓ ⊗ you saw ↓ ⊗ blank → ↓ ⊗ you saw ↓ ⊗ yes

 Then, by linearity:
(𝛼 ↑ ⊗ you saw ↑ + 𝛽 ↓ ⊗ |you saw ↓⟩) ⊗ |blank⟩
→ (𝛼 ↑ ⊗ you saw ↑ + 𝛽 ↓ ⊗ |you saw ↓⟩) ⊗ |yes⟩

 So you will always report a definite outcome, even in superposition.



 There are two big problems for Everett/many-worlds:

 The Basis Problem: How do we identify emergent worlds?

 The Probability problem: Why should we assign Born rule probabilities to the 
worlds?

 Basis problem: I can write any quantum state in any orthonormal basis.
𝛼 ↑ ⊗ you saw ↑ + 𝛽 ↓ ⊗ |you saw ↓⟩

= 1
2 ↑ + ↓ ⊗ 𝛼 you saw ↑ + 𝛽|you saw ↓⟩

+ 1
2

↑ − ↓ ⊗ 𝛼 you saw ↑ − 𝛽|you saw ↓⟩

 Why shouldn’t I interpret the second decomposition as representing two worlds in 
which you are in a horribly nonclassical state?

 Answer: We also have the dynamics.  Identify worlds as structures in the quantum 
state that persist in time ⇒ decoherence theory.



 It is important to realize that, at this stage, we cannot rely on any structures in 
quantum theory that derive their meaning from the quantum probability rule.

 This includes reduced density operators.

 In Zurek’s approach to decoherence, we assume a preferred decomposition of 
the Hilbert space of the universe into subsystems.  

 This is an additional structure.

 Oxford Everettians prefer to use the decoherent histories formalism, which does 
not need this additional structure.

 In my opinion, the decoherent histories formalism presupposes the probability 
rule, so I prefer Zurek’s approach.

 See M. Schlosshauer, Rev. Mod. Phys. 76:1267-1305 (2004) for a review of 
decoherence and its role in interpretations.



 The environment generally interacts with an apparatus, so let’s lump the 
apparatus and environment together into a Hilbert space 𝐻𝐸.

 We’ll have a total Hilbert space 𝐻𝑆 ⊗𝐻𝐸.  The Hamiltonian of everything will be:

𝐻 = 𝐻𝑆 + 𝐻𝐸 + 𝐻𝑆𝐸

 We define a pointer state Φ𝑃(𝑡) 𝐸 for the environment as a state such that

𝐻𝑆𝐸 , ΦP(𝑡) Φ𝑃 𝑡 |𝐸 ⊗ 𝐼𝑆 ≤ 𝜖,

for some small 𝜖, where Φ𝑃(𝑡) 𝐸 evolves under 𝐻𝐸.  

 We cannot generally choose 𝜖 = 0.

 A decomposition into pointer states will tend to approximately persist in time.



 We will define our “worlds” as a pointer state decomposition:



𝑗

𝛼𝑗 𝜓𝑗(𝑡) 𝑆
⊗ Φ𝑃

𝑗
𝑡

𝐸

 From studying lots of models, the following general rules seem to apply:

 Pointer states need not always exist, but they do for typical 𝐻𝑆𝐸 and large enough 
environments.

 If 𝐻𝑆 is strong compared to 𝐻𝑆𝐸, the system states in the decomposition will 
approximately be 𝐻𝑆 eigenstates – explains why we typically find atoms in definite 
energy states.

 For typical 𝐻𝑆𝐸, if 𝐻𝑆𝐸 is strong compared to 𝐻𝑆 then the system states will typically 
be localized, e.g. coherent states, and follow approximately classical trajectories.

 Pointer state health warnings:

 The constant 𝜖 sets an arbitrary coarse-graining scale.  The number of worlds 
varies a bit with 𝜖.  Worlds are emergent, coarse grained, structures.  There is not a 
definite number of worlds.

 Pointer states can be overcomplete bases, so the decomposition is not unique, 
but they tend to get more orthogonal for larger environments.



 Now that we have defined worlds, we need to explain why, in a typical 
measurement interaction:

𝛼| ↑⟩ + 𝛽| ↓⟩ ⊗ you ⊗ 𝐸 → 𝛼 ↑ ⊗ you↑ ⊗ 𝐸↑ + 𝛽 ↓ ⊗ you↓ ⊗ 𝐸↓

you should, before the measurement, assign probabilities 𝛼 2 and 𝛽 2 to the two 
worlds that will be created.

 Even the meaning of the probabilities is nontrivial:

 It is not as if you will become either you↑ or you↓ and you don’t know which.  
Both have equal claim to be your successor.

 It is as if you are going to be cloned twice, the original you killed, and you 
have to assign probabilities to your two successors.



 An intuitively appealing rule is “world counting”:  If there are 𝑁 worlds after a 

branching event, then the probability of each world should be 
1

𝑁
.

 This is so intuitively appealing to some people that they take it to obviously rule 
out many-worlds.

 However, it is not at all obvious why you should do world counting when all worlds 
exist on an equal footing.

 The precise number of worlds is not even well-defined in general.



 There are broadly three ways of interpreting probabilities:

1. Frequentist: probability is the long run relative frequency of an outcome in 
multiple repetitions of an experiment.

2. Bayesian: Probabilities represent the degrees of belief of a rational agent –
they constrain rational decision making.

3. Objective chance: Probabilities represent objective facts about the way a 
single experiment is performed – perhaps a disposition to produce a certain 
outcome, or facts about what the relative frequency would be if repeated.

 All interpretations of probability are controversial.  When deriving probability in 
many worlds we should distinguish:

 Problems that are common to classical probability, which we can’t blame on 
Everett.

 Problems that are specific to the many-worlds interpretation.



 Everett attempted a frequentist derivation.  Later refinements by Graham, Hartle, 
and others.

 Imagine multiple systems prepared in the same quantum state 

𝜓 𝑆1 ⊗ 𝜓 𝑆2 ⊗⋯⊗ 𝜓 𝑆𝑁,      where 𝜓 𝑆𝑗 = 𝛼 ↑ 𝑆𝑗 + 𝛽 ↓ 𝑆𝑗.

 After measurement and branching we can write the state as 

Φ = Ψ 𝑆1𝐸1 ⊗ Ψ 𝑆2𝐸2 ⊗⋯⊗ Ψ 𝑆𝑁𝐸𝑁, where Ψ 𝑆𝑗 = 𝛼 ↑ 𝑆𝑗 ⊗ 𝐸↑ 𝐸𝑗 + 𝛽 ↓ 𝑆𝑗 ⊗ 𝐸↓ 𝐸𝑗.

 To simplify notation, let 

0 𝑆𝑗𝐸𝑗 = ↑ 𝑆𝑗 ⊗ 𝐸↑ 𝐸𝑗 and  1 𝑆𝑗𝐸𝑗 = ↓ 𝑆𝑗 ⊗ 𝐸↓ 𝐸𝑗

 We can now define relative frequency projectors, e.g. for 𝑁 = 3:

Π0 = |000⟩⟨000|, Π1/3 = |100⟩⟨100| + 010 010 + |001⟩⟨001|

Π2/3 = |110⟩⟨110| + 101 101 + |011⟩⟨011|, Π1 = |111⟩⟨111|



 In the limit 𝑁 → ∞ you can show: Π 𝛽 2 Φ = |Φ⟩.

 The state is an eigenstate of the relative frequency 𝛽 2 projector with eigenvalue 
1.

 The idea is to interpret this as saying that the relative frequency of |1⟩’s is 𝛽 2 with 
certainty.

 Problems:

 This requires the eigenvalue-eigenstate link, but for infinite spaces probability 1
is not the same as certainty.

 For any finite 𝑁, you get ⟨Φ|Π 𝛽 2 Φ ≥ 1 − 𝜖, where 𝜖 decreases exponentially 

with 𝑁, but you can’t interpret this as “the relative frequency is likely to be 𝛽 2

without interpreting ⟨Φ|Π 𝛽 2 Φ as a probability, which is what we are trying to 

derive in the first place.

 Refinements define approximate relative frequency projectors.  They still have the 
same problems.



 Deutsch and Wallace have developed an approach based on subjective 
Bayesian probability and objective chance. – D. Deutsch, Proc. Roy. Soc. A 455:3129-3137 (1999). 
D. Wallace, The Emergent Multiverse (OUP, 2012).

 The full argument requires some sophisticated decision theory.  Will present a 
more heuristic version here.



 Suppose we are uncertain about which of a finite set 𝑋 of possibilities might 
occur, e.g. 𝑋 = {1,2,3,4,5,6} for the outcome of a dice roll.

 A subset of 𝑋 is called an event.  It represents a proposition we can state about 
the outcome, e.g. outcome is odd = {1,3,5}.

 The axioms of classical probability are:

 0 < 𝑃 𝐸 < 1

 𝑃 ∅ = 0, 𝑃 𝑋 = 1

 If 𝐸 and 𝐹 are disjoint then 𝑃 𝐸 ∪ 𝐹 = 𝑃 𝐸 + 𝑃 𝐹

 In subjective Bayesianism, probabilities represent the subjective degrees of belief 
of a decision making agent.  Why should they obey these axioms?



 We define a way of measuring degrees of belief:

 Your probability for 𝐸 is the price $𝑃 𝐸 at which you would be willing to buy or 
sell any number of the following lottery tickets

 Rationality criterion:  You should not enter into a system of bets that causes you to 
make a loss for every possible outcome.

 From this, we can derive the axioms of probability.



 Suppose you set 𝑃 𝐸 > 1.  

 Then you would be willing to buy a ticket that pays $1 if 𝐸 occurs and nothing 
otherwise for a price $𝑃(𝐸).

 If 𝐸 occurs then you have lost: $𝑃 𝐸 − $1 > $0.

 If 𝐸 does not occur then you have lost: $𝑃 𝐸 > 0.

 Sure loss in both cases, so rationality implies $𝑃 𝐸 ≤ 1.



 Suppose you set 𝑃 𝐸 + 𝑃 𝐹 > 𝑃(𝐸 ∪ 𝐹) for disjoint 𝐸 and 𝐹. 

 Then you’d be willing to buy these two tickets:

 And sell this one:



 Keep definition of probabilities in terms of willingness to make bets on 
measurement outcomes.

 Modified Rationality criterion:  You should not enter into a system of bets that 
causes all of your successors to make a loss.

 This gives a meaning to the probabilities of future worlds, and the Dutch Book 
implies you should assign probabilities 𝑃(𝑗) to the worlds that satisfy the usual 
axioms:

𝑃 𝑗 ≥ 0, σ𝑗 𝑃 𝑗 = 1.

 It still remains to argue that 𝑃 𝑗 = 𝛼𝑗
2



1. State supervenience: The probabilities you should assign depend only on the 
quantum state (here’s where objective chance comes in).

2. Microstate indifference: You only care about the $ you win on a branch.  The 
rest of it can be changed without affecting your betting preferences.

3. Branching indifference: You don’t care if worlds branch into even more worlds 
later on, provided you have the same $ on the new branches.

4. Continuity: Probabilities should be a continuous function of the quantum state. 



 You measure a system prepared in the state 1
2
( ↑ + | ↓⟩), get $𝑎 for ↑ and $𝑏 for ↓.

→ 1

2
( ↑ |$𝑎⟩ + | ↓⟩|$𝑏⟩)

 Suppose you did the same thing with opposite prizes $𝑎 for ↓ and $𝑏 for ↑.
→ 1

2
( ↓ |$𝑎⟩ + | ↑⟩|$𝑏⟩)

 By microstate indifference, you can flip the spin afterwards without changing 
your betting preferences.

→ 1

2
( ↑ |$𝑎⟩ + | ↓⟩|$𝑏⟩)

 But now both cases give the same physical state.  Since this applies for all 
possible choices of bets and prizes 𝑃 ↑ = 𝑃 ↓ = 1

2
.

 Clearly this generalizes to an equal superposition of 𝑁 branches, which would 
give 𝑃 𝑗 = 1

𝑁
.



 For rational amplitudes, we can use branching indifference to branch into an 
equal superposition, e.g.

2
3 𝜓1 $𝑎 + 1

3 𝜓2 $𝑏 → 1
3 𝜓1

1 $𝑎 + 𝜓1
2 $𝑎 + 𝜓2 $𝑏

 We know the probabilities are 1
3

in the equal superposition, so we’ll get:

𝑃 𝜓1 = 𝑃 𝜓1
1 + 𝑃 𝜓1

2 = 2
3

 From this, we’ll get 𝑃 𝑗 = 𝛼𝑗
2

for rational amplitudes.

 We then get the general case by continuity.



 Bayesian probability is supposed to be about reasoning in the face of 
uncertainty.  There is no uncertainty here – all successors exist.  You have skewed 
the meaning of decision theory:

 Reinterpret probability as degree with which you should care about 
uncertainty.

 Apply argument after you have become entangled with the measuring 
device, but before you are aware of the outcome – self-locating uncertainty 
about which branch you are on.

 I don’t believe in state supervenience.  Suppose I create two clones of you, put 
one in a room with 𝛼 painted on the wall and the other in a room with 𝛽 on the 
wall, and then kill the original.  Why should I assign probabilities 𝛼 2 and 𝛽 2 to 
the two clones?

 The quantum state is the only ontology available to determine objective 
chances.  If not that then what?

 See S. Saunders et. al. (eds.), Many Worlds?, (OUP, 2010) for many papers pro and contra.



 A 𝜓-epistemicist like myself does not like the starting premise of many-worlds, i.e. 
the quantum state is real.

 But we don’t actually need all of the quantum state to determine the pointer 
basis in decoherence – many different starting states will decohere into the same 
pointer states, e.g.

𝛼 ↑ + 𝛽 ↓ ) 𝐸 → 𝛼 ↑ 𝐸↑ + 𝛽 ↑ |𝐸↓⟩ ,

Decoheres the same way regardless of the values of 𝛼 and 𝛽.

 So we can believe that the structure that determines pointer states is real, but not 
the amplitudes in that decomposition.

 You can still derive that your probabilities are determined by a density operator, 
by using Deutsch-Wallace posultates to derive the assumptions of Gleason’s 
theorem.

 But the density operator is now arbitrary, not determined by the nonexistent 
amplitudes – pure subjective Bayesianism with no objective chances.



 Everett starts from the premise that a quantum state evolving unitarily is the entire 
ontology of quantum theory – Church of the Larger Hilbert Space writ large.

 From this we derive that there must be many-worlds.

 The basis problem is solved to most people’s satisfaction by decoherence.

 The probability problem is much more controversial:

 To the extent that probabilities make sense at all in many-worlds, I believe it is 
solved by the Deutsch-Wallace or related approaches.

 Even if everything works out, we can still deny the premise of the interpretation, 
which is heavily 𝜓-ontic.

 A 𝜓-epistemicist can fix this with the ironic version, but this is ironic because:

 The only real reason for believing in many worlds in the first place is if you 
believe the quantum state is real.

 𝜓-epistemicists should look elsewhere, but many worlds is a decent choice for a  
𝜓-ontologist.


