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Homework 5 due May 25.

 Final Exam to be issued later this week.



 dBB trajectories display several features that violate classical intuitions about 
particle trajectories.

 It is important to note that, if decoherence occurs in an environmental basis that 
is localized in position, dBB trajectories of the system will approximately follow 
classical trajectories.

 dBB doesn’t owe us anything more than that.  So long as:

 It reproduces the predictions of quantum theory in measurements.

 Macroscopic systems typically have approximately classical trajectories.

then the theory saves the phenomena.

 Since quantum and classical predictions are different, dBB trajectories must differ 
from classical ones in some situations.

 The question is only if they are weirder than absolutely necessary to reproduce 
quantum theory, and whether that is a bad thing.



 Consider a stationary state: 𝜓 𝒒, 𝑡 = 𝜓𝑛 𝒒 𝑒−𝑖𝐸𝑛𝑡/ℏ

 The current is: Ԧ𝐽𝑘(𝒒) =
ℏ

𝑚𝑘
Im(𝜓𝑛

∗𝛻𝑘𝜓𝑛)(𝒒), i.e. is independent of 𝑡.

 However, if 𝜓𝑛 𝒒 is also a real valued function then:

Ԧ𝐽𝑘 𝒒 =
ℏ

2𝑖𝑚𝑘
(𝜓𝑛

∗𝛻𝑘𝜓𝑛 − 𝜓𝑛𝛻𝑘𝜓𝑛
∗)(𝒒) = 0

 The particles are also stationary, e.g. particle in an infinite well, hydrogen atom 
eigenstates.



 In classical mechanics, phase space trajectories do not cross (except at 
singularities) because equations are 2nd order and so (𝒒, 𝒑) contains enough data 
to specify a unique trajectory.

 In dBB the guidance equations is 1st order and there is no back action on the 
quantum state from the configuration space point:

 [𝜓 𝒒, 𝑡0 , 𝑸 𝑡0 ] and [𝜓 𝒒, 𝑡0 , 𝑸′ 𝑡0 ] specify unique trajectories.

 Trajectories associated with the same wavefunction evolution cannot cross in 
configuration space.

 This is responsible for almost all the weird features of dBB trajectories.

 Note: with decoherence into localized environment states:
𝛼𝜓0 𝒒𝑆 Φ0(𝒒𝐸) + 𝛽𝜓1(𝒒𝑆)Φ1(𝒒𝐸)

trajectories can cross in the system configuration space because 𝑸𝐸 is necessarily   

different in the two branches.  This is needed to recover classical trajectories.









 KS Contextuality occurs in dBB because the outcome of an experiment depends 
on 𝑸𝑆, 𝜓 𝒒𝑆 , 𝑸𝐸 , Φ𝑅(𝒒𝐸), and the interaction Hamiltonian, and not on 𝑸𝑆, 𝜓 𝒒𝑆
alone.

 Example: Stern-Gerlach measurement of 𝜓 𝒒𝑆 ⊗ 𝛼 ↑ + 𝛽| ↓〉)

 No-crossing rule ⇒ some 𝒒𝑆 switch between giving spin up and spin down 
outcomes when we rotate the magnets by 180∘.

 This is more contextual than implied by KS, which can only be proved in 𝑑 ≥ 3.



 The only property of the guidance equation needed to reproduce the quantum 
predictions is equivariance: 𝜌 𝑸, 𝑡0 = 𝜓 𝑸, 𝑡0

2 → 𝜌 𝑸, 𝑡 = 𝜓 𝑸, 𝑡 2 for all other 
𝑡.

 Any other equivariant dynamics would do just as well, e.g. (E. Deotto, G. Ghiradri, Found.Phys. 

28:1-30 (1998))

𝑑𝑄𝑘

𝑑𝑡
=

ℏ

𝑚𝑘

Im 𝜓∗𝛻𝑘𝜓

𝜓∗𝜓
𝑸 +

Ԧ𝐽0(𝑄𝑘)

𝜓∗𝜓 𝑸
with    𝛻 ⋅ Ԧ𝐽0 = 0

 Further:

 We could add more primitive variables, e.g. spin with stochastic dynamics.

 We could use a different basis, e.g. momentum.

 We could even use a POVM, e.g. coherent states.



 The quantum state plays two roles in dBB:

 Dynamical: it appears in the guidance equation.

 Probabilistic: We set 𝜌 𝒒, 𝑡0 = 𝜓 𝒒, 𝑡0
2 as a postulate – quantum equilibrium 

hypothesis.

 These two roles are independent, we could set the probability density to anything 
else.

 There is evidence (analytic and numerical) that, under suitable coarse-graining, 
other densities relax to 𝜓 𝒒, 𝑡0

2 over time, akin equilibriation in statistical 
mechanics.

 Valentini posits that nonequilibrium states may have occurred in the early 
universe.

 This would resolve some of the underdetermination, but leads to the bold 
hypothesis that superluminal signaling occurs in our universe.



A. Valentini, H. Westman, Proc. Roy. Soc. Lond. A 

461:253-272 (2005)



 Generalizations of dBB to relativistic QFT have been developed.  There are various 
versions:

 Particle ontology vs. field ontology.

 An ontology with particle occupation numbers requires stochastic dynamics.

 A mixture of the two, e.g. particles for fermions and fields for bosons, only 
fermions and treat bosons like spin or vice versa.

 These theories cannot be fundamentally Lorentz invariant:

 Under the equilibrium hypothesis, the operational predictions are Lorentz 
invariant.

 But the theories violate parameter independence – there is superluminal 
signaling at the ontic level.

 These effects would become observable in nonequilibrium states.



 dBB provides a coherent ontology with straightforward equations of motion, and 
saves the phenomena.

 Trajectories do not obey common intuitions, but arguably this must be so if they 
are to reproduce quantum phenomena.

 dBB arguably more weird than an interpretation has to be, i.e.

 Contextual in ways that QM does not require.

 Nonlocal in experiments that have local explanations.

 𝜓-ontic even for experiments that have good 𝜓-epistemic explanations.

 Taking the equilibrium hypothesis as a postulate is a fine tuning and leads to 
underdetermination of the theory.

 Viewing it as emergent removes the underdetermination, but leads to the bold 
hypothesis that we should expect to see explicit Lorentz violation, i.e. signaling, 
somewhere in nature.

 dBB is a good counterexample to many exaggerated claims about QM.  



 In orthodox quantum theory, the system evolves according to the 
Schrödinger equation, except if there is a “measurement” when the 
state randomly collapses.

 The idea of spontaneous collapse theories is to modify the 
Schrödinger dynamics so that collapses are included as a natural 
dynamical process.

 Microscopic systems obey Schrödinger dynamics to a good approximation.

 Macroscopic systems quickly collapse to localized states with high probability.

 This means that the predictions of a collapse theory will differ from 
those of standard quantum theory.  They can in principle be 
empirically refuted.



 Consider a single particle in one dimension for simplicity.

 Most of the time, the system obeys Schrödinger dynamics

𝑖
𝜕|𝜓 𝑡 ⟩

𝜕𝑡
= ෡𝐻|𝜓 𝑡 ⟩

 There is a constant probability per unit time for a spontaneous 
localization to occur

d𝑃

d𝑡
= 𝜆

 This will give rise to a Poisson distributed sequence of times 𝑡1, 𝑡2, ⋯ at 
which localizations occur.  The average waiting time will be

𝜏 = 𝑡𝑛+1 − 𝑡𝑛 =
1

𝜆
 GRW recommend 𝜆 ≈ 10−16 s−1 or 𝜏 ≈ 1016 s = 3 × 108 years.  

Localizations occur extremely rarely.



 When a localization occurs, the wavefunction is updated to

𝜓 𝑥, 𝑡 → 𝜓′ 𝑥, 𝑡 =
1

𝑝(𝑋)
𝑔𝑋 𝑥 𝜓(𝑥, 𝑡)

where

𝑔𝑋 𝑥 =
1

2𝜋𝜎2
1
4

𝑒− 𝑥−𝑋 2/4𝜎2

 The value of 𝑋 at which the localization occurs is chosen with 
probability density

𝑝 𝑋 = න
−∞

+∞

𝑔𝑋 𝑥 𝜓 𝑥, 𝑡 2 d𝑥

 This introduces a new parameter 𝜎.  GRW recommend 𝜎 ≈ 10−7 m.



𝜓 𝑥, 𝑡 =
3

2
𝜙1 𝑥 +

1

2
𝜙2(𝑥) 𝑔𝑋 𝑥 =

1

2𝜋𝜎2
1
4

𝑒− 𝑥−𝑋 2/4𝜎2

𝑋

𝜓′ 𝑥, 𝑡 =
1

𝑝(𝑋)
𝑔𝑋 𝑥 𝜓(𝑥, 𝑡)



 We can rewrite the spontaneous collapse in terms of a (continuous) 
POVM

𝐸 𝑋 = 𝑀† 𝑋 𝑀 𝑋 , 𝑀 𝑋 = න
−∞

+∞

d𝑥 𝑔𝑋 𝑥 |𝑥⟩⟨𝑥| , න
−∞

+∞

d𝑋 𝐸 𝑋 = 𝐼

 Then

𝑝 𝑋 = 𝜓 𝑡 𝐸 𝑋 𝜓 𝑡 , 𝜓′ 𝑡 =
𝑀 𝑋 |𝜓 𝑡 ⟩

𝑝(𝑋)

 Or, in terms of density operators

𝑝 𝑋 = Tr 𝐸 𝑋 𝜌(𝑡) , 𝜌(𝑡) → 𝜌′(𝑡) =
𝑀 𝑋 𝜌 𝑡 𝑀†(𝑋)

𝑝(𝑋)



 𝑋 is unknown to the experimenter, so they will observe the average 
state update

𝜌(𝑡) → න
−∞

+∞

d𝑋 𝑀 𝑋 𝜌 𝑡 𝑀†(𝑋′)

 Recall that a CPT map has the form

 𝜌 =෍

𝑗

𝑀(𝑗)𝜌𝑀(𝑗)†

 The GRW map is a continuous analogue of this.  The spontaneous 
collapse process will look like an approximate position 
decoherence to an experimenter.

 The same dynamics could be achieved by unitary interaction with 
the environment.  Cannot tell GRW from decoherence via 
experiments.



 Each particle experiences localizations at a rate 𝜆.

 The total rate of localizations for 𝑁 particles will be 𝑁𝜆.

 Average time between localizations is 𝜏/𝑁.

 For a macroscopic system, 𝑁 ≈ 1023, this gives

𝑁𝜆 ≈ 107 s−1,
𝜏

𝑁
≈ 10−7 s

 Collapses occur very frequently.  For noninteracting unentangled 
particles

𝜓 𝑥1, 𝑥2, ⋯ , 𝑥𝑁, 𝑡 = 𝜓1 𝑥1, 𝑡 𝜓2 𝑥2, 𝑡 ⋯𝜓𝑁(𝑥𝑁, 𝑡)

this won’t make a difference.  Each particle collapses extremely 
rarely.



 For entangled particles, it makes a big difference.

 On average, every 𝜏/𝑁, one particle is selected at random 
(suppose it is particle 1).  The whole wavefunction gets updated to

𝜓′ 𝑥1, 𝑥2, ⋯ , 𝑥𝑁𝑡 =
1

𝑝 𝑋
𝑔𝑋 𝑥1 𝜓(𝑥1, 𝑥2, ⋯ , 𝑥𝑁 , 𝑡)

𝑝 𝑋 = න
−∞

+∞

𝑔𝑋 𝑥1 𝜓 𝑥1, 𝑥2, ⋯ , 𝑥𝑁 , 𝑡
2 d𝑥1d𝑥2⋯d𝑥𝑁



 Suppose 
𝜓 𝑥1, 𝑥2, ⋯ , 𝑥𝑁, 𝑡 = 𝛼𝜙𝑎 𝑥1 𝜙𝑎 𝑥2 ⋯𝜙𝑎 𝑥𝑁 + 𝛽𝜙𝑏 𝑥1 𝜙𝑏 𝑥2 ⋯𝜙𝑏 𝑥𝑁

where 𝜙𝑎(𝑥) and 𝜙𝑏 𝑥 are localized around 𝑥 = 𝑎 and 𝑥 = 𝑏 with small 
width compared to 𝜎 and 𝑎 − 𝑏 ≫ 𝜎.

 Then 𝑃 𝑋 ≈ 𝑎 ≈ 𝛼 2, 𝑃 𝑋 ≈ 𝑏 ≈ 𝛽 2.  For 𝑋 ≈ 𝑎, the state will collapse to

𝜓′ 𝑥1,𝑥2,⋯,𝑥𝑁,𝑡 ≈ 𝜙𝑎 𝑥1 𝜙𝑎 𝑥2 ⋯𝜙𝑎 𝑥𝑁
and similarly for 𝑋 ≈ 𝑏.

 The spontaneous collapse of a single particle localizes the entire 
wavefunction.



𝜓 𝑥1, 𝑥2, 𝑡 = 𝛼𝜙𝑎 𝑥1 𝜒𝑎 𝑥2 + 𝛽𝜙𝑏 𝑥1 𝜙𝑏(𝑥2)

𝜓′ 𝑥1, 𝑥2, 𝑡 ≈ 𝜙𝑎 𝑥1 𝜒𝑎(𝑥2)

𝑔𝑋(𝑥1)



 The pointer of a measuring device is made of a macroscopic 
number 𝑁 ≈ 1023 of particles.

 In a measurement interaction
[𝛼𝜓0 𝒒𝑆 + 𝛽𝜓1(𝒒𝑆)]Φ𝑅(𝒒𝐸) → 𝛼𝜓0 𝒒𝑆 Φ0(𝒒𝐸) + 𝛽𝜓1(𝒒𝑆)Φ1(𝒒𝐸)

but
Φ𝑗 𝒒𝐸 = 𝜙𝑗 Ԧ𝑞1 𝜙𝑗 Ԧ𝑞2 ⋯𝜙𝑗 Ԧ𝑞𝑁

so the pointer and system will collapse extremely rapidly to either

𝜓0 𝒒𝑆 Φ0 𝒒𝐸 or        𝜓1(𝒒𝑆)Φ1(𝒒𝐸)



 GRW gives us wavefunctions that are approximately localized in 
configuration space.  But they are still functions on a 3𝑁 dimensional 
space.  How is this related to what we see in 3D space?

 In other words, does GRW have a primitive ontology of local beables like de 
Broglie-Bohm theory?

 The localizations are only approximate.  𝑔𝑋(𝑥) is a Gaussian function 
with exponentially small tails that stretch to infinity.  So there are still 
tiny components of the wavefunction that remain in superposition.  
Why don’t we see these?

 Note: We have to use a smooth 𝑔𝑋(𝑥) to avoid dynamics that causes the 
wavefunction to spread extremely rapidly.



 Three primitive ontologies have been proposed for GRW

1. GRWw (wavefunction ontology).  The wavefunction itself is the 
only ontology.

 We have to use ideas similar to Everett/many-worlds to understand what a 
wavefunction means for everyday experience.

 The tails problem is serious here because we have no reason to believe that 
components of the wavefunction with small amplitude are less important.

2. GRWm (mass density ontology)

3. GRWf (flash ontology)



 We can define a mass density for particle 𝑗 as

𝜌𝑗 𝑥 = 𝑚𝑗න
−∞

+∞

𝜓 𝑥1, 𝑥2, ⋯ , 𝑥𝑁
2 d𝑥1d𝑥2⋯d𝑥𝑗−1d𝑥𝑗+1⋯d𝑥𝑁

 The total mass density is then

𝜌 𝑥 =෍
𝑗=1

𝑁

𝜌𝑗(𝑥)

 Without spontaneous collapses, this would tend to spread out and 
cover all space – does not capture everyday experience.

 With GRW collapses, the mass density tends to get localized in blobs 
that look like classical reality.

 There are still blobs with very small mass spread out everywhere (tails 
problem).  Need to argue that you cannot experience or perceive things with 
small mass.



 The localization events themselves happen at specific points 𝑋, 𝑡 in 
spacetime.

 For macroscopic systems they happen extremely frequently.

 The flash ontology proposes that the world is made of small “matter 
events” in spacetime, where a piece of matter appears that is 
localized at (𝑋, 𝑡) for each spontaneous collapse.

 What we see are these flashes.  Because they happen rapidly, it 
looks like continuous motion of particles.

 Flashes happen with very small probability where the wavefunction 
has small amplitude.  Because you need several flashes in a row to 
perceive something, this arguably solves the tails problem.



 In GRW, the localizations happen at discrete times, via a dynamics 
that is not unified with the Schrödinger equation.

 It is possible to have a continuous time stochastic process causing 
the collapses, which can be unified with Schrödinger dynamics as a 
stochastic differential equation.  This is called Continuous 
Spontaneous Localization (CSL).

 Just as GRW is indistinguishable from decoherence, CSL is 
indistinguishable from the theory of quantum continuous 
measurements (talk to Prof. Dressel for details).

 Some people have proposed explicit mechanisms where classical 
fluctuating fields cause the collapse.

 Gravity (Penrose)

 Integrated Information (McQueen, Chalmers)



 Because GRW implies that there is necessarily decoherence when 
the system consists of enough particles, various parameter ranges 
for 𝜆 and 𝜎 can be ruled out empirically if we see coherence in 
large systems.  It can be distinguished from standard quantum 
theory.

 We can also rule out some parameter ranges as Perceptually 
Unsatisfactory, e.g. if it implies that a dust particle can be in a 
superposition of two observably distinct positions for more than a 
few microseconds then we would not have a solution to the 
measurement problem.



GRW CSL

From W. Feldman, R. Tumulka, 

Parameter diagrams of the GRW 

and CSL theories of wavefunction 

collapse, J. Phys. A, 45:065304 

(2012)  

As reproduced in T. Norsen , 

Foundations of Quantum 

Mechanics, (Springer, 2017)



GRW CSL

From W. Feldman, R. Tumulka, 

Parameter diagrams of the GRW 

and CSL theories of wavefunction 

collapse, J. Phys. A, 45:065304 

(2012)  

As reproduced in T. Norsen , 

Foundations of Quantum 

Mechanics, (Springer, 2017)



 Spontaneous collapse theories supplement Schrödinger dynamics 
with a physical collapse mechanism that localizes the state.

 These theories can be ruled out empirically by generating 
superpositions involving large numbers of particles in different 
locations.

 The ontology of these theories is less clear than de Broglie-Bohm.  
Three ontologies have been proposed, but it is not clear if they all 
solve the tails problem.

 It is not obvious how to generalize these theories to quantum field 
theory.  Can it be done in a Lorentz invariant way?


