
April 30, 2018

Dr. Matthew Leifer

leifer@chapman.edu

HSC112

mailto:leifer@chapman.edu


¼Assignments: Final Version due May 2.

¼Homework 4 due April 30.

¼Homework 5 due May 25.

¼Final Exam to be issued later this week.



¼ Suppose now that the Hamiltonian of our system is proportional to 
the momentum

Ὄ ὫǶὴ

¼ The propagator Ὗὸȟὸ Ὡ is a translation operator, so the 
wavefunction will move to the right at a rate Ὣ.
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¼ Now we want to show how a measurement of any Hermitian 
observable ὃcan be accomplished by coupling the system to the 
position of a pointer, and then measuring the position of the 
pointer.

¼ Suppose ὃhas eigenstates ὃ‰ ὥȿ‰ἃand suppose, for now, that 

the system is prepared in one of its eigenstates ‰ .

¼ We prepare our pointer in a narrow Gaussian wavepacket , 
centered at ὼ π, i.e. ɰὸ with
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¼ We now couple the system and pointer using the Hamiltonian

Ὄ ὃṧ Ƕὴ

¼ We run the dynamics for time ὸ ὸ ρ, which will generate the 
propagator
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¼ When this acts on the state of the system and pointer, we get
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¼ In other words, the wavefunction 
ɰὼ of the pointer will be 
translated to

ɰ ὼ ɰὼ ὥ

¼ If the width „of the initial Gaussian 
is sufficiently small, measuring the 
position of the pointer will yield the 
probability density

Ðὼ ɰ ὼ

which will be very close to ὥwith 
near certainty.
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¼ Now consider what happens if we start the system in an arbitrary state 
‪ , which can be written as a superposition of eigenstates of ὃ.

‪ ‌‰

¼ By the superposition principle, the evolution will be

Ὗ ‪ ṧ ɰ ‌‰ ṧὩ ɰ

‌‰ ṧ ɰ

where ὼɰ ɰ ὼ ɰὼ ὥ .



¼ If we look at the probability density for the pointer position, we will 
get
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‌ ɰ ὼ



ɰὼ

‌ ɰ ὼ

‌ ɰ ὼ

‌ ɰ ὼ

ὥ ὥ ὥ



Realist Copenhagenish

Ontological Model Exotic Ontology Objective Perspectival

ⱶ-epsitemic Ironic Many 

Worlds

Copenhagen QBism

Quantum 

Logical Realism

Healyõs 

Quantum 

Pragmatism

Rovelliõs

Relational 

Quantum 

Mechanics

Bubõs 

òInformationó 

Interpretation

ⱶ-ontic de Broglie -Bohm Everett/Many 

Worlds

Spontaneous 

Collapse

Modal Interpretations



¼ A brief history:

¼ The 1st order form of dBB theory was discovered and then 
abandoned by de Broglie in the 1920õs.

¼ dBB was rediscovered, in 2 nd order form, by Bohm in 1952.

¼ The forgotten 1 storder form was promoted by Bell in the 1970õs 
and 80õs.

¼Proponents still fight over which form is better.  I will follow Bellõs 
approach here.

¼ See T. Norsen, òFoundations of Quantum Mechanicsó 
(Springer,2017) for an overview of this theory.



¼The goal of any interpretation is to:
¼ Provide an ontology: a statement of what exists and how it 

behaves.

¼ Save the phenomena: Explain the quantum predictions and our 
everyday experience in terms of the ontology.

¼Bohmians typically divide the ontology into two pieces:
¼ Primitive ontology : The things that determine what we 

experience.  Usually assumed to be localized in spacetime ð
local beables .  In dBB this is particle trajectories.

¼ The rest: Needed to determine how the primitive ontology 
behaves.  In dBB this is the quantum state.



¼ For particles with no internal degrees of freedom (spin), we use the 
wavefunction

‪ὼȟὸ ἂὼȿ‪ὸἃ

¼ The quantum state obeys the Schrödinger equation: Ὥ
ȿỚ

Ὄȿ‪Ớ

¼ dBB also has an actual particle with position ὢȢ

¼ This obeys the guidance equation :
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¼ In 3-dimensions, we introduce the basis ᴆή ὼṧ ώṧȿᾀἃ

¼ For particles with no internal degrees of freedom (spin), we use the 
wavefunction

‪ᴆήȟὸ ᴆή‪ὸ ἂὼȿἂώȿἂᾀȿ‪ὸἃ

¼ The quantum state obeys the Schrödinger equation: Ὥ
ȿỚ

Ὄȿ‪Ớ

¼ dBB also has an actual particle with position vector ὗ

¼ This obeys the guidance equation :
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¼ To describe ὔparticles, we need to specify a position vector for each of them
▲ ᴆήȟᴆήȟỄȟᴆή

¼ Notation: ᴆήdenotes a vector in ᴙ .  ▲denotes a vector in ᴙ , called a configuration vector .  
¼ ᴙ is called configuration space .
¼ We can write a quantum state as a wavefunction on configuration space:

‪▲ȟὸ ‪ᴆήȟᴆήȟȣȟᴆήȟὸ ▲‪ὸ ᴆήȟᴆήȟȣȟᴆή ‪ὸ

¼ The wavefunction obeys the Schrödinger equation: Ὥ
ȿỚ

Ὄȿ‪Ớ

¼ dBB also has an actual point in configuration space:

╠ ὗȟὗȟȣȟὗ

¼ This obeys the guidance equation :
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¼ One more postulate is required to obtain the same predictions as standard 
quantum theory - Quantum Equilibrium Hypothesis :

¼ At time ὸ ὸ, the probability density of the system occupying configuration 
point ╠is:

”╠ ‪╠

¼ Under the dBB evolution we will show that if this holds at ὸ ὸ then it holds at all 
times.  This is known as equivariance .

¼ There is controversy about what ”╠ means as dBB is applied to the entire
universe , which only has a single configuration space point.
¼ Roughly speaking, if we prepare many systems in the state ‪ ṧ ‪ ṧỄṧ ‪, the probability 

density of configurations is ”╠ .

¼ Note that the quantum state is playing two independent roles: 
¼ It governs dynamics via the guidance equation.

¼ It is used to set the probability density. 



¼ Consider a volume of space in which there is a 
total mass άὸ.

¼ Let ᴆὐᴆὶȟὸbe the mass current, i.e.

Net amount off mass flowing through a unit cross -
sectional area per unit time.

¼ We use surface area vectors Äᴆὃpointing out of 
the volume.

¼ Then
Äά

Äὸ
ᴆὐᴆὶȟὸẗÄᴆὃ π

¼ We can write άὸ ”᷿ᴆὶȟὸὨὠ, where ”ᴆὶȟὸ is 
the mass density.



¼ Using the divergence theorem, we can also write

ᴆὐᴆὶȟὸẗÄᴆὃ ​ẗᴆὐᴆὶȟὸÄὠ

so we have
Ä”ᴆὶȟὸ

Äὸ
​ẗᴆὐᴆὶȟὸ Ὠὠ π

¼ Since this has to hold for any volume, we have 

Ä”ᴆὶȟὸ

Äὸ
​ẗᴆὐᴆὶȟὸ π

¼ This is called the continuity equation .



¼ The Hamiltonian operator Ὄrepresents the energy of a particle.

¼ For a nonrelativistic particle in 1D we have

Ὄ
Ƕὴ

ςά
ὠὼ

where ὠὼ is the potential energy of the particle.

¼ Last lecture we saw that, in the position representation

Ƕὴ Ὥ
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¼ In 3-dimensions, this generalizes to

Ὄ
ρ

ςά
​ ὠᴆή

and if we have ὔparticles, this generalizes to

Ὄ
ρ

ςά
​ ὠ▲

where ▲ ᴆήȟᴆήȟỄȟᴆή , ᴆή ὼȟώȟᾀ , and
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¼ We can derive a continuity for the probability density ”▲ ‪▲ in 
quantum theory.

¼ Consider a single particle in 1D
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¼ From the Schrödinger equation Ὥ
ȿ ἃ

Ὄȿ‪ὸἃ, we have
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¼ Substituting these into
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¼ Therefore, if we define

ὐὼȟὸ
ρ

ά
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we get
‬”ὼȟὸ

‬ὸ
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‬ὼ
π

¼ This has the form of a continuity equation.

¼ὐὼȟὸ is the probability current, i.e. the rate of flow of probability out 
of point ὼ.



¼ For a single particle in 3D, this generalizes to

‬”ᴆήȟὸ

‬ὸ
​ẗᴆὐᴆήȟὸ π

with probability current

ᴆὐᴆήȟὸ
ρ

ά
)Í‪ᶻᴆήȟὸ​‪ᴆήȟὸ



¼ For multiple particles in 3D, this generalizes to

‬”▲ȟὸ

‬ὸ
ẗ╙▲ȟὸ π

with probability current ╙ ᴆὐȟᴆὐȟỄȟᴆὐ
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¼ Solutions of the Schrödinger equation satisfy the continuity equation:

‬‪▲ȟὸ

‬ὸ
ẗ╙▲ȟὸ π

where ╙▲ȟὸ is the probability current:

╙ ᴆὐȟᴆὐȟȣȟᴆὐ ᴆὐ▲
ᴐ
)Í‪ᶻ​‪ ▲

¼ If we consider a preparation of ‪ṧ ‪ṧỄwe want to consider ╙as a flow of 
particle density rather than probability.

¼ If we assume this is generated by a velocity field ○▲, e.g. as in hydrodynamics, 
then ╙ ”○, so the equation for the velocity field should be:

○▲
╙▲

▲
ᴆὺ ▲

ᴐ)Íᶻ

▲

which gives the dBB velocities if we set ”╠ ‪╠ .






