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Annhouncements

@ Assignments: Final Version due May 2.
® Homework 4 due April 30.

® Homework 5§ due May 25.

® Final Exam to be issued later this week.




Translation Hamiltionian

® Suppose now that the Hamiltonian of our system is proportional 1o
the momentum

AN

H=gp

o The propagator U(t, t,) = e~9(E-t)? js o translation operator, so the
wavefunction will move to the right at a rate g.
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Von Neumann Measurement Model

® Now we want fo show how a measurement of any Hermifian
observable A can be accomplished by coupling the system to the

position of a pointer, and then measuring the position of the
pointer.

® Suppose A has eigenstates 4|¢;) = a;|¢;) and suppose, for now, that

the system is prepared in one of its eigenstates |qu)S.
® We prepare our pointer in a narrow Gaussian wavepacket,
centered at x =0, i.e. [¥(ty))y With

1 —x?
(x[W(to)) = W(x, to) = NZ (272)




Von Neumann Measurement Model

® We now couple the system and pointer using the Hamiltonian
H= AS X Dm

@ We run the dynamics for fime t — t, = 1, which will generate the
propagator

o (-0)"A2 ® P
n=0 n!
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Von Neumann Measurement Model

® When this acts on the state of the system and pointer, we get
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Von Neumann Measurement Model

® In other words, the wavefunction
Y (x) of the pointer will be
translated to

W, (x) = ¥Y(x — q))

@ If the width o of the initial Gaussian
is sufficiently small, measuring the
position of the pointer will yield the
probability density

2
p(x) = |¥q, ()|

which will be very close to a; with
near certainty.
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Von Neumann Measurement Model

® Now consider what happens if we start the system in an arbitrary state
|Y)s, which can be written as a superposition of eigenstates of A.

[Y)s = z aj|¢j)M

J
® By the superposition principle, the evolution will be

Usy|)s @ [Py = z aj|¢j>s ® e~ 4P |P),,

=), ol), @ ve,)
J

where <x \Paj> = LIlaj(x) =W¥(x — aj).



Von Neuman Measurement Model

@ If we look at the probability density for the pointer position, we will

get
v).)
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Von Neumann Measurement Model
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A Map Of The Madness
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10.if) de Broglie-Bohm Theory

® A brief history:

® The 1" order form of dBB theory was discovered and then
abandoned by de Broglie in the 1920's.

® dBB was rediscovered, in 2"9 order form, by Bohm in 1952.

® The forgotten 15t order form was promoted by Bell in the 1970’s
and 80's.

@ Proponents still fight over which form is better. | will follow Bell’'s
approach here.

@ See T. Norsen, “Foundations of Quantum Mechanics”
(Springer,2017) for an overview of this theory.



Ontology of dBB Theory

® The goal of any interpretation is to:

@ Provide an ontology: a statement of what exists and how it
behaves.

® Save the phenomena: Explain the quantum predictions and our
everyday experience in terms of the ontology.

® Bohmians typically divide the ontology into two pieces:

® Primitive ontology: The things that detfermine what we
experience. Usually assumed to be localized in spacetime —
local beables. In dBB this is parficle trajectories.

® The rest: Needed to determine how the primitive ontology
behaves. In dBB this is the quantum state.



Single Particle Theory in 1-Dimension

® For particles with no internal degrees of freedom (spin), we use the
wavefunction

P(x,t) = (x|p(D))
® The quantum state obeys the Schrodinger equation: i —— W) = H|Y)
@ dBB also has an actual particle with position X.

@ This obeys the guidance equation:

ax 1 m (v o0 D)
dt m Pi(x, t)¢<x, )




Single Particle Theory in 3-Dimensions

® In 3-dimensions, we infroduce the basis [g) = |x) @ |y) & |z)

® For particles with no internal degrees of freedom (spin), we use the
wavefunction

Y(q,t) = (Gl () = (x{y[{z]p (D))
@ The quantum state obeys the Schrodinger equation: i —— W) = H|y)

® dBB also has an actual particle with position vector Q
@ This obeys the guidance equation:

d§ 1m(¥'@G07yE.0)
dt  m Y (q,09(q, 1)

Q|
1
Ql



General Case

® To describe N particles, we need to specify a position vector for each of them
q-= (Ql; q2,"", q3)

Notation: ¢ denotes a vectorin R3. q denotes a vectorin R3¥, called a configuration vector.
R3V is called configuration space.
@ We can write a quantum state as a wavefunction on configuration space:

© ©

lp(ql t) = ll}(q)li C_I)Zi b C_I)N! t) = ((Ill/)(t)) = (Eili C_I)Z' e ﬁNllp(t)>

@ The wavefunction obeys the Schrodinger equation: i% = H|yY)
@ dBB also has an actual point in configuration space:

Q= (61» 62; ---;6N)

@ This obeys the guidance equation:

G, m(¥ (@ 0Tap(g 1)

dt B my 1/J*(CI, t)l/)(q, t)




Equilibrivm Hypothesis and Equivariance

@ One more postulate is required to obtain the same predictions as standard
quantum theory - Quantum Equilibrium Hypothesis:

@ Attime t =t,, the probability density of the system occupying configuration

point Q is:
p(Q) = [Y(@I?

@ Under the dBB evolution we will show that if this holds at t = t, then it holds at all
times. This is known as equivariance.

@ There is controversy about what p(Q) means as dBB is applied to the entire
universe, which only has a single configuration space point.

® Roughly speaking, if we prepare many systems in the state |Y) @ [¢Y) & -+ Q |y), the probability
density of configurations is p(Q).

@ Note that the quantum state is playing two independent roles:
@ It governs dynamics via the guidance equation.
® Itis used to set the probability density.



Continvity Equations

@ Consider a volume of space in which there is @
total mass m(t).

o Let J(#t) be the mass current, i.e.

Net amount off mass flowing through a unit cross-
sectional area per unit fime.

® We use surface area vectors d4 pointing out of
the volume.

® Then

dm+j4(* t)-dAd =0
dt I, B

© We can write m(t) = [ p(# t)dV, where p(#,t) is
the mass density.



Continvity Equations

@ Using the divergence theorem, we can also write

Jf(?,t)-dﬁz j V- J(@#t)dv

j[dp( +V-J(#0)

® Since this has to hold for any volume, we have

SO we have
dV =0

dp (7, t)
dt
® This is called the continuity equation.

+V7-J#) =0




Hamiltonian For a Nonrelativistic Particle

o The Hamiltonian operator H represents the energy of a particle.

® For a nonrelativistic particle in 1D we have
A2

where V(x) is the potential energy of the partficle.
® Last lecture we saw that, in the position representation

. .0
P = lax
Ay 02
SO P ——ﬁond ,
. 0
H=— + V(x)



Hamiltonian for Nonrelativistic Parficles

® In 3-dimensions, this generalizes to

H= - Ve + V(g
=~ (q)

and if we have N particles, this generalizes 1o

—~ N 1
=Y v

where q = (41,92, ", qn). Gx = (X, Vi, Zx). ANd

> 0%  09*

Vi =
T ax2  ay? 022




Continvity Equation for Probabillity

® We can derive a continuity for the probability density p(q) = |Y(q)]? in
guantum theory.

® Consider a single particle in 1D

dp _ (Y (Y (x D) 5D

ot ot
® From the Schrédinger equation iaw;it))

P(x,t) 0P~ (x,t)
ot T ot Y(x, )

= H|y (1)), we have

op(x,t) i 0%y (x, t)
ot  2m 0%x

0P (x,t) —i %4P* (x, t)
ot - 2m 0%x

— iV ()P (x,t)

+ iV (x)yY*(x,t)



Continvity Equation For Probability

® Substituting these into

djp . 0P (x,t) a¢ (x,t)
E - l/) (x) t) at at l/)(x; t)
onves 0 ] 21/1( t) 9%y’ ( t)
P [ X, X,

—iV()Y* (x, )Y (x, t) —Ylx, )y *(x,t)] (this term cancels)



Continvity Equation For Probability

0*P(x,t)  9%Y*(x,t)

P (x,t) T2, 92y Y(x, t)
_ 21/)(x 0, W) MEE) P e 0% (D)
=¥y 0x ox  0Ox ox  0%x Yix0)
0., oGt oYt (x )
= a[lp (x,t) Tx A Y(x, t)]

_ 9. o 0Y(x,t)
_a[mlm(lp (x,t) I )]



Continvity Equation for Probabillity

® Therefore, if we define

J(x, t) ——Im(lll (x, 1)

0P (x, t))

we get
op(x,t) I t) _
dt ox

® This has the form of a confinuity equation.

@ J(x,t) Is the probability current, i.e. the rate of flow of probability out
of point x.



Continvity Equation in 3D

@ For a single particle in 3D, this generalizes to

a _>)t = Ty
4D 6 J@Go =0

with probability current

5 1 _
J@ 0 =—Im (¥ @O, 0)



Muliiple particles

® For multiple particles in 3D, this generalizes to

dp(q,t)
ot

+V-J(q,t) =0
with probability current J = (fl,fz, °°',fn)

5 1 _
Je(@,0) = —im (" (@07 (a.0)



Bell’s derivation of the guidance equation
and equivariance

@ Solutions of the Schrédinger equation saftisfy the continuity equation:

2
allp(;,; OF | v J@, ) =0
where J(q,t) is the probability current:
J = oo i) Je(@) = = Im(p* ) (@)

® If we consider a preparation of X --- we want to consider J as a flow of
particle density rg’rhre)r than proglé{D%ryl}.m d

@ If we assume this is generated b}/ a velocity field v(q), e.%. as in hydrodynamics,
then J = pv, so the equation for the velocity field should be:

_J@ S _ h
v(q) =75 vr(@) =~

Im(y*7yy)
(@)

which gives the dBB velocities if we set p(Q) = |y (Q)|?.



Trajectories for a 1D Gaussian
Wavepacket
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Double-Slit Trajectories
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Measurements in de Broglie-Bohm Theory

@ Dividing the universe intfo system § and environment E allows us to define a pure state
for the system called the conditional guantum state.

|1/JQE>S — E(QEW)SE
where Q is the actual configuration point of the environment.

@ Generally, these do not evolve according to the Schrédinger equation, but they do if
there is decoherence info localized environment states.

@ Forexample, if Q¢ is the pointer variable after a von Neumann measurement interaction.

® Model the measurement device as a large number of particles, with outcomes
represented by macroscopically distinct states with very small overlap:

e 1
[ ZPE
& Lo

® In da measurement interaction:

[ao(qs) + BY1(qs)]Pr(qE) — ao(qs)Po(qE) + BY1(qs)P1(qE)



Measurements in de Brogle-Bohm Theory

a)o(qs)Po(qE) + BY1(qs)P1(qE)
@ If the lack of position overlap between ®,(q) and ®,(qg) persists in time then:

@ The actual configuration of the environment Qg is either in the support of
d,(qg) or the support of d,(qg).

® By equivariance, it will be in the support of ®,(qg) with probability |a|? and in
the support of &, (qg) with probability |B]2.

@ The conditional state of the system will either be « y,(qs) or < Y,(qgs).
® Yo(gqs) and Y,(qs) each evolve according to the Schrodinger equation.

@ The current breaks into two terms J = J, + J1. with J, = 0 in the support of
®,(qg) and vice versq, i.e. no cross ferms in the guidance equation.

@ We get an effective collapse into either Y, (qs) Py (qg) or Y1(qs)P.(qr) and we
can use the corresponding current J, or J; in the guidance equation o compute
subsequent evolution.



Measurements in de Broglie-Bohm Theory

@ If the measurement is an (approximate) position measurement then also
Yo(qs)P1(qs) = 0.

@ The inifial configuration Q¢ of the system is either in the support of Y,(qs) with
probability |a|? or in the support of Y, (gs) with probability |B]?.

® The measurement outcome is a deterministic function of Qs: position
measurements simply reveal the pre-existing position.

© However, for other observables, e.g. momentum, ¥,(qs)Y,(qs) # 0, i.e. the initial
configuration does not necessarily “belong” to one of the two eigenstates.

@ Which measurement outcome occurs is a function of both Qs and Q.

® Momentum measurement does not measure the dBB momentum mk%.

@ The theory is deterministic: outcome uniquely determined by onfic states of
system and measuring device.

® But not outcome deterministic: outcome uniquely determined by onftic state of
system on its own.



Treatment of Spin

@ In the minimalist Bell approach to dBB, no observables apart from position are
part of the primitive ontology.

® Spin only appears in the wavefunction.
@ We can write a wavefunction including spin as a spinor, e.g. for a single particle:

. . L (@
Yo(q) ® 1)+ ¥1(q) ® 1) Y(q) = (1/)1(67)

® For N spin-1/2 particles, we would have a 2¥ dimensional spinor vector.
@ The guidance equation is now:

dak — n Im('a_b*ﬁk@) (Q)'

dat m PP
where - is spinor inner product.

@ Itis possible instead to have primitive onfic states for any complete orthonormal
basis, but discrete bases require a stochastic guidance equation.




Counterintvitive Features of dBB
Trajectories

O]

O]

dBB trajectories display several features that violate classical intuitions about
parficle frajectories.

It is important to note that, if decoherence occurs in an environmental basis that
is localized in position, dBB trajectories of the system will approximately follow
classical trajectories.

dBB doesn’'t owe us anything more than that. So long as:

@ It reproduces the predictions of quantum theory in measurements.

® Macroscopic systems typically have approximately classical trajectories.
then the theory saves the phenomena.

Since quantum and classical predictions are different, dBB trajectories must differ
from classical ones in some situations.

The question is only if they are weirder than absolutely necessary to reproduce
quantum theory, and whether that is a bad thing.



