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Annhouncements

v, Assignments: Final Version due May 2.
v, Homework 4 due April 30.

v, Homework 5 due May 25.

v, FInal Exam to be issued later this week.




Translation Hamiltionian

v, Suppose now that the Hamiltonian of our system is proportional to
the momentum
0 O
v, The propagator "™Mo) Q ( ) isa translation operator, so the
wavefunction will move to the right at a rate Q
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Von Neumann Measurement Model

. Now we want to show how a measurement of any Hermitian
observable 0 can be accomplished by coupling the system to the
position of a pointer, and then measuring the position of the
pointer.

v, Suppose 0 has eigenstates 0[%) ®Fbotland suppose, for now, that
the system is prepared in one of its eigenstates |%o) .

v, \WWe prepare our pointer in a narrow Gaussian wavepacket |,
centeredat w T i.e. |y o ) with
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Von Neumann Measurement Model

v We now couple the system and pointer using the Hamiltonian
O 0 8§ R

v, We run the dynamics fortime o0 0  p, which will generate the
propagator
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Von Neumann Measurement Model

v, When this acts on the state of the system and pointer, we get
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Von Neumann Measurement Model

v In other words, the wavefunction
W w of the pointer will be
translated to o

W (0w wo o

v If the width ,, of the initial Gaussian
Is sufficiently small, measuring the
position of the pointer will yield the
probability density
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which will be very closeto  ® with
near certainty.



Von Neumann Measurement Model

v Now consider what happens if we start the system in an arbitrary state
I’ ) , which can be written as a superposition of eigenstates of 0.

) | [%o)

v, By the superposition principle, the evolution will be
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Von Neuman Measurement Model

v If we look at the probabillity density for the pointer position, we will
get
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Von Neumann Measurement Model
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A Map Of The Madness

Realist Copenhagenish
Ontological Model Exotic Ontology Objective Perspectival
F -epsitemic Ironic Many Copenhagen QBism
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Pragmatism Quantum
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Interpretation
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10.if) de Broglie-Bohm Theory

v A brief history:

v, The 15t order form of dBB theory was discovered and then
abandoned by de Broglie Iin the 1920

v, dBB was rediscovered, in 2 " order form, by Bohm in 1952.

v, The forgotten1 S'or der f orm was promoted by
and 800s.

vProponents still fight over which f
approach here.

. See T.Norsen, OFoundations of Quantum Mech
(Springer,2017) for an overview of this theory.



Ontology of dBB Theory

v, The goal of any interpretation Is to:

v Provide an ontology: a statement of what exists and how it
behaves.

v, Save the phenomena: Explain the quantum predictions and our
everyday experience in terms of the ontology.

v, Bohmians typically divide the ontology into two pieces:

v, Primitive ontology : The things that determine what we
experience. Usually assumed to be localized in spacetime 0
local beables . In dBB this is particle trajectories.

v, The rest: Needed to determine how the primitive ontology
behaves. In dBB this is the quantum state.



Single Particle Theory in 1-Dimension

v, For particles with no internal degrees of freedom (spin), we use the
wavefunction .
[ (oY) g oa
s O

v, The quantum state obeys the Schrddinger equation: = & O
v, dBB also has an actual particle with position 3

v, This obeys the guidance equation
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Single Particle Theory in 3-Dimensions

v, In 3-dimensions, we introduce the basis |®) [0S |} S GO

v, For particles with no internal degrees of freedom (spin), we use the
wavefunction

(o) (B (0) ugueas (0)d
v, The quantum state obeys the Schrddinger equation: ety g O

g

v, dBB also has an actual particle with position vector U
v, This obeys the guidance equation

& p) (BT @)
Qo6 a [y (W) |




General Case

Ya
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Ya
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To describe U particles, we need to specify a position vector for each of them

A ®hplEhp

Notation: #denotes avectorin s . aAdenotesavectorin g ,calleda configuration vector
a is called configuration space
We can write a quantum state as a wavefunction on configuration space:

[(AD) [ (phpBhp D) (A (©) (HhpMBhy I (0)
The wavefunction obeys the Schrédinger equation:  '@%° g
dBB also has an actual point in configuration space:

pe

E OR B
This obeys the guidance equation
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Equilibrivm Hypothesis and Equivariance
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One more postulate is required to obtain the same predictions as standard
guantum theory - Quantum Equilibrium Hypothesis

v, Attime O 0O, the probability density of the system occupying configuration

point [t is:
(Il

Under the dBB evolution we will show that if this holds at O O thenitholds at all
times. This is known as equivariance

There is controversy about what ” |k means as dBB is applied to the entire
universe , which only has a single configuration space point.

v, Roughly speaking, if we prepare many systems in the state rYs IrY$ E$ | ), the probability
density of configurationsis " (|b).
Note that the quantum state is playing two Independent roles:

v It governs dynamics via the guidance equation.
v, Itis used to set the probability density.



Continvity Equations

v, Consider a volume of space in which there is a
total mass a o.

v, Let ® B be the mass current, i.e.

Net amount off mass flowing through a unit cross -
sectional area per unit time.

v, We use surface area vectors  A® pointing out of
the volume.

v, Then )
Al S
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v, We canwrite & 0 _ " (BDQpwhere ” B is

the mass density.



Continvity Equations

v, Using the divergence theorem, we can also write
8 AP T EE)AD

SO we have

A Tt EHD Q0 T
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v, Since this has to hold for any volume, we have

A B
A
v, This is called the continuity equation
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Hamiltonian For a Nonrelativistic Particle

v, The Hamiltonian operator "Orepresents the energy of a particle.

v, For a nonrelativistic particle in 1D we have
—~ N
O — ww
C a
where w w is the potential energy of the particle.

v, Last lecture we saw that, in the position representation

o,
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Hamiltonian for Nonrelativistic Parficles

v In 3-dimensions, this generalizes to
o £ an
C a

and if we have 0 particles, this generalizes to

A4

where A ®HhyEHM ., whih ,and




Continvity Equation for Probabillity

v, WWe can derive a continuity for the probability density "(A (A In
guantum theory.

v, Consider a single particle in 1D
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v, From the Schrodinger equation @t ' (0)G we have
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Continvity Equation For Probability

v, Substituting these into
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Continvity Equation For Probabiliiy
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Continvity Equation for Probabillity

v, Therefore, If we define

e Py e e T(GHD)
uam) <) I(r (adD) T w)
we get . .
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v, This has the form of a continuity equation.

v, U 6fD is the probability current, i.e. the rate of flow of probability out
of point @



Continvity Equation in 3D

v, For a single particle in 3D, this generalizes to

T 7o

e
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with probability current
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Muliiple particles

v, For multiple particles in 3D, this generalizes to

A4
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Bell’s derivation of the guidance equation
and equivariance

v, Solutions of the Schrodinger equation satisfy the continuity equation:

T g b)l i lay) T
where ¥ a) is the probability current:
L &mem Mo ® A4 —)ir* 1 a

v, If we consider a preparation of _|I[ Y8 | )& E we wantto consider las a flow of
particle density rather than probability.

v, If we assume this is generated by a velocity field O A, e.g.as in hydrodynamics,
then " 0, so the equation for the velocity field should be:

o(® 4w 2L,

A

which gives the dBB velocitiesifwe set " (|F) I (O] .



Trajectories for a 1D Gaussian
Wavepacket
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