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 Suppose now that the Hamiltonian of our system is proportional to 
the momentum

෡𝐻 = 𝑔 Ƹ𝑝

 The propagator ෡𝑈 𝑡, 𝑡0 = 𝑒−𝑖𝑔 𝑡−𝑡0 ො𝑝 is a translation operator, so the 
wavefunction will move to the right at a rate 𝑔.

𝜓(𝑡0) 𝜓(𝑡)

𝑔(𝑡 − 𝑡0)



 Now we want to show how a measurement of any Hermitian 
observable መ𝐴 can be accomplished by coupling the system to the 
position of a pointer, and then measuring the position of the 
pointer.

 Suppose መ𝐴 has eigenstates መ𝐴 𝜙𝑗 = 𝑎𝑗|𝜙𝑗⟩ and suppose, for now, that 

the system is prepared in one of its eigenstates 𝜙𝑗 𝑆
.

 We prepare our pointer in a narrow Gaussian wavepacket, 
centered at 𝑥 = 0, i.e. Ψ(𝑡0) 𝑀 with

𝑥 Ψ(t0) = Ψ 𝑥, 𝑡0 =
1

𝜋𝜎
exp

−𝑥2

2𝜎2



 We now couple the system and pointer using the Hamiltonian

෡𝐻 = መ𝐴𝑆 ⊗ Ƹ𝑝𝑀

 We run the dynamics for time 𝑡 − 𝑡0 = 1, which will generate the 
propagator

෡𝑈𝑆𝑀 = 𝑒−𝑖 ෠𝐴𝑆⊗ ො𝑝𝑀 =෍
𝑛=0

∞ −𝑖 𝑛 መ𝐴𝑠
𝑛 ⊗ Ƹ𝑝𝑀

𝑛

𝑛!



 When this acts on the state of the system and pointer, we get

෡𝑈𝑆𝑀 𝜙𝑗 𝑆
⊗ Ψ 𝑀 = σ𝑛=0

∞
−𝑖 𝑛 ෠𝐴𝑠

𝑛 𝜙𝑗 𝑆
⊗ ො𝑝𝑀

𝑛 Ψ 𝑀

𝑛!

= σ𝑛=0
∞

−𝑖 𝑛𝑎𝑗
𝑛 𝜙𝑗 𝑆

⊗ ො𝑝𝑀
𝑛 Ψ 𝑀

𝑛!

= σ𝑛=0
∞ −𝑖𝑎𝑗 ො𝑝𝑀

𝑛

𝑛!
𝜙𝑗 𝑆

⊗ Ψ 𝑀

= 𝜙𝑗 𝑆
⊗𝑒−𝑖𝑎𝑗 ො𝑝𝑀 Ψ 𝑀



 In other words, the wavefunction 
Ψ(𝑥) of the pointer will be 
translated to

Ψ𝑎𝑗 𝑥 = Ψ(𝑥 − 𝑎𝑗)

 If the width 𝜎 of the initial Gaussian 
is sufficiently small, measuring the 
position of the pointer will yield the 
probability density

p 𝑥 = Ψ𝑎𝑗 𝑥
2

which will be very close to 𝑎𝑗 with 
near certainty.

𝑎𝑗

Ψ(𝑥) Ψ𝑎𝑗(𝑥)



 Now consider what happens if we start the system in an arbitrary state 
𝜓 𝑆, which can be written as a superposition of eigenstates of መ𝐴.

𝜓 𝑆 =෍

𝑗

𝛼𝑗 𝜙𝑗 𝑀

 By the superposition principle, the evolution will be

෡𝑈𝑆𝑀 𝜓 𝑆 ⊗ Ψ 𝑀 =෍

𝑗

𝛼𝑗 𝜙𝑗 𝑆
⊗𝑒−𝑖𝑎𝑗 ො𝑝 Ψ 𝑀

=෍

𝑗

𝛼𝑗 𝜙𝑗 𝑆
⊗ Ψ𝑎𝑗

𝑀

where 𝑥 Ψ𝑎𝑗 = Ψ𝑎𝑗 𝑥 = Ψ(𝑥 − 𝑎𝑗).



 If we look at the probability density for the pointer position, we will 
get

p 𝑥 =෍

𝑗𝑘

𝛼𝑗
∗⟨𝜙𝑗 ቚ

𝑆
⊗ Ψ𝑎𝑗

𝑀
𝑥 𝑀⟨𝑥| 𝛼𝑘 𝜙𝑘 𝑆 ⊗ Ψ𝑎𝑗

𝑀

=෍

𝑗

𝛼𝑗
2
Ψ𝑎𝑗 𝑥

2



Ψ 𝑥 2

𝛼1
2 Ψ𝑎1 𝑥

2

𝛼2
2 Ψ𝑎2 𝑥

2

𝛼3
2 Ψ𝑎3 𝑥

2

𝑎1 𝑎2 𝑎3



Realist Copenhagenish

Ontological Model Exotic Ontology Objective Perspectival

𝝍-epsitemic Ironic Many 

Worlds

Copenhagen QBism

Quantum 

Logical Realism

Healy’s 

Quantum 

Pragmatism

Rovelli’s

Relational 

Quantum 

Mechanics

Bub’s 

“Information” 

Interpretation

𝝍-ontic de Broglie-Bohm Everett/Many 

Worlds

Spontaneous 

Collapse

Modal Interpretations



 A brief history:

 The 1st order form of dBB theory was discovered and then 
abandoned by de Broglie in the 1920’s.

 dBB was rediscovered, in 2nd order form, by Bohm in 1952.

 The forgotten 1st order form was promoted by Bell in the 1970’s 
and 80’s.

 Proponents still fight over which form is better.  I will follow Bell’s 
approach here.

 See T. Norsen, “Foundations of Quantum Mechanics” 
(Springer,2017) for an overview of this theory.



 The goal of any interpretation is to:
 Provide an ontology: a statement of what exists and how it 

behaves.

 Save the phenomena: Explain the quantum predictions and our 
everyday experience in terms of the ontology.

 Bohmians typically divide the ontology into two pieces:
 Primitive ontology: The things that determine what we 

experience.  Usually assumed to be localized in spacetime –
local beables.  In dBB this is particle trajectories.

 The rest: Needed to determine how the primitive ontology 
behaves.  In dBB this is the quantum state.



 For particles with no internal degrees of freedom (spin), we use the 
wavefunction

𝜓 𝑥, 𝑡 = ⟨𝑥|𝜓(𝑡)⟩

 The quantum state obeys the Schrödinger equation: 𝑖
𝜕|𝜓〉

𝜕𝑡
= 𝐻|𝜓〉

 dBB also has an actual particle with position 𝑋.

 This obeys the guidance equation:

𝑑𝑋

𝑑𝑡
=
1

𝑚
ቮ

Im 𝜓∗ 𝑥, 𝑡
𝜕𝜓 𝑥, 𝑡
𝜕𝑥

𝜓∗ 𝑥, 𝑡 𝜓 𝑥, 𝑡
𝑥=𝑋



 In 3-dimensions, we introduce the basis Ԧ𝑞 = 𝑥 ⊗ 𝑦 ⊗ |𝑧⟩

 For particles with no internal degrees of freedom (spin), we use the 
wavefunction

𝜓 Ԧ𝑞, 𝑡 = Ԧ𝑞 𝜓 𝑡 = ⟨𝑥|⟨𝑦|⟨𝑧|𝜓 𝑡 ⟩

 The quantum state obeys the Schrödinger equation: 𝑖
𝜕|𝜓〉

𝜕𝑡
= 𝐻|𝜓〉

 dBB also has an actual particle with position vector 𝑄

 This obeys the guidance equation:

𝑑𝑄

𝑑𝑡
=
1

𝑚
ቮ

Im 𝜓∗ Ԧ𝑞, 𝑡 𝛻𝜓( Ԧ𝑞, 𝑡)

𝜓∗ 𝑞, 𝑡 𝜓 𝑞, 𝑡
𝑞=𝑄



 To describe 𝑁 particles, we need to specify a position vector for each of them
𝒒 = ( Ԧ𝑞1, Ԧ𝑞2, ⋯ , Ԧ𝑞3)

 Notation: Ԧ𝑞 denotes a vector in ℝ3.  𝒒 denotes a vector in ℝ3𝑁, called a configuration vector.  
 ℝ3𝑁 is called configuration space.
 We can write a quantum state as a wavefunction on configuration space:

𝜓 𝒒, 𝑡 = 𝜓 Ԧ𝑞1, Ԧ𝑞2, … , Ԧ𝑞𝑁 , 𝑡 = 𝒒 𝜓 𝑡 = Ԧ𝑞1, Ԧ𝑞2, … , Ԧ𝑞𝑁 𝜓 𝑡

 The wavefunction obeys the Schrödinger equation: 𝑖
𝜕|𝜓〉

𝜕𝑡
= 𝐻|𝜓〉

 dBB also has an actual point in configuration space:

𝑸 = (𝑄1, 𝑄2, … , 𝑄𝑁)

 This obeys the guidance equation:

𝑑𝑄𝑘
𝑑𝑡

=
ℏ

𝑚𝑘

ቮ
Im 𝜓∗ 𝒒, 𝑡 𝛻𝑘𝜓 𝒒, 𝑡

𝜓∗ 𝒒, 𝑡 𝜓 𝒒, 𝑡
𝒒=𝑸



 One more postulate is required to obtain the same predictions as standard 
quantum theory - Quantum Equilibrium Hypothesis:

 At time 𝑡 = 𝑡0, the probability density of the system occupying configuration 
point 𝑸 is:

𝜌 𝑸 = 𝜓 𝑸 2

 Under the dBB evolution we will show that if this holds at 𝑡 = 𝑡0 then it holds at all 
times.  This is known as equivariance.

 There is controversy about what 𝜌(𝑸) means as dBB is applied to the entire
universe, which only has a single configuration space point.
 Roughly speaking, if we prepare many systems in the state 𝜓 ⊗ 𝜓 ⊗⋯⊗ 𝜓 , the probability 

density of configurations is 𝜌 𝑸 .

 Note that the quantum state is playing two independent roles: 
 It governs dynamics via the guidance equation.

 It is used to set the probability density. 



 Consider a volume of space in which there is a 
total mass 𝑚(𝑡).

 Let Ԧ𝐽(Ԧ𝑟, 𝑡) be the mass current, i.e.

Net amount off mass flowing through a unit cross-
sectional area per unit time.

 We use surface area vectors d Ԧ𝐴 pointing out of 
the volume.

 Then
d𝑚

d𝑡
+ න Ԧ𝐽 Ԧ𝑟, 𝑡 ⋅ d Ԧ𝐴 = 0

 We can write 𝑚(𝑡) = ∫ 𝜌 Ԧ𝑟, 𝑡 𝑑𝑉, where 𝜌(Ԧ𝑟, 𝑡) is 
the mass density.



 Using the divergence theorem, we can also write

න Ԧ𝐽 Ԧ𝑟, 𝑡 ⋅ d Ԧ𝐴 = න𝛻 ⋅ Ԧ𝐽 Ԧ𝑟, 𝑡 d𝑉

so we have

න
d𝜌(Ԧ𝑟, 𝑡)

d𝑡
+ 𝛻 ⋅ Ԧ𝐽 (Ԧ𝑟, 𝑡) 𝑑𝑉 = 0

 Since this has to hold for any volume, we have 

d𝜌(Ԧ𝑟, 𝑡)

d𝑡
+ 𝛻 ⋅ Ԧ𝐽 Ԧ𝑟, 𝑡 = 0

 This is called the continuity equation.



 The Hamiltonian operator ෡𝐻 represents the energy of a particle.

 For a nonrelativistic particle in 1D we have

෡𝐻 =
Ƹ𝑝2

2𝑚
+ 𝑉(ො𝑥)

where 𝑉(𝑥) is the potential energy of the particle.

 Last lecture we saw that, in the position representation

Ƹ𝑝 = −𝑖
𝜕

𝜕𝑥

so Ƹ𝑝2 = −
𝜕2

𝜕𝑥2
and

෡𝐻 = −
1

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)



 In 3-dimensions, this generalizes to

෡𝐻 = −
1

2𝑚
𝛻2 + 𝑉( Ԧ𝑞)

and if we have 𝑁 particles, this generalizes to

෡𝐻 = −෍
𝑘=1

𝑁 1

2𝑚𝑘
𝛻𝑘
2 + 𝑉 𝒒

where 𝒒 = ( Ԧ𝑞1, Ԧ𝑞2, ⋯ , Ԧ𝑞𝑁), Ԧ𝑞𝑘 = (𝑥𝑘 , 𝑦𝑘, 𝑧𝑘), and

𝛻𝑘
2 =

𝜕2

𝜕𝑥𝑘
2 +

𝜕2

𝜕𝑦𝑘
2 +

𝜕2

𝜕𝑧𝑘
2



 We can derive a continuity for the probability density 𝜌 𝒒 = 𝜓 𝒒 2 in 
quantum theory.

 Consider a single particle in 1D

𝜕𝜌

𝜕𝑡
=
𝜕 𝜓∗ 𝑥, 𝑡 𝜓 𝑥, 𝑡

𝜕𝑡
= 𝜓∗ 𝑥, 𝑡

𝜕𝜓 𝑥, 𝑡

𝜕𝑡
+
𝜕𝜓∗ 𝑥, 𝑡

𝜕𝑡
𝜓(𝑥, 𝑡)

 From the Schrödinger equation 𝑖
𝜕|𝜓 𝑡 ⟩

𝜕𝑡
= ෡𝐻|𝜓 𝑡 ⟩, we have

𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
=

𝑖

2𝑚

𝜕2𝜓(𝑥, 𝑡)

𝜕2𝑥
− 𝑖𝑉 𝑥 𝜓(𝑥, 𝑡)

𝜕𝜓∗(𝑥, 𝑡)

𝜕𝑡
=
−𝑖

2𝑚

𝜕2𝜓∗(𝑥, 𝑡)

𝜕2𝑥
+ 𝑖𝑉 𝑥 𝜓∗(𝑥, 𝑡)



 Substituting these into

𝜕𝜌

𝜕𝑡
= 𝜓∗ 𝑥, 𝑡

𝜕𝜓 𝑥, 𝑡

𝜕𝑡
+
𝜕𝜓∗ 𝑥, 𝑡

𝜕𝑡
𝜓(𝑥, 𝑡)

gives
𝜕𝜌

𝜕𝑡
=

𝑖

2𝑚
𝜓∗ 𝑥, 𝑡

𝜕2𝜓 𝑥, 𝑡

𝜕2𝑥
−
𝜕2𝜓∗ 𝑥, 𝑡

𝜕2𝑥
𝜓(𝑥, 𝑡)

−𝑖𝑉(𝑥) 𝜓∗ 𝑥, 𝑡 𝜓 𝑥, 𝑡 − 𝜓 𝑥, 𝑡 𝜓∗(𝑥, 𝑡) (this term cancels)



𝜓∗ 𝑥, 𝑡
𝜕2𝜓 𝑥, 𝑡

𝜕2𝑥
−
𝜕2𝜓∗ 𝑥, 𝑡

𝜕2𝑥
𝜓 𝑥, 𝑡

= 𝜓∗ 𝑥, 𝑡
𝜕2𝜓 𝑥, 𝑡

𝜕2𝑥
+
𝜕𝜓∗(𝑥, 𝑡)

𝜕𝑥

𝜕𝜓(𝑥, 𝑡)

𝜕𝑥
−
𝜕𝜓(𝑥, 𝑡)

𝜕𝑥

𝜕𝜓∗(𝑥, 𝑡)

𝜕𝑥
−
𝜕2𝜓∗ 𝑥, 𝑡

𝜕2𝑥
𝜓 𝑥, 𝑡

=
𝜕

𝜕𝑥
𝜓∗ 𝑥, 𝑡

𝜕𝜓 𝑥, 𝑡

𝜕𝑥
−
𝜕𝜓∗ 𝑥, 𝑡

𝜕𝑥
𝜓(𝑥, 𝑡)

=
𝜕

𝜕𝑥
2𝑖Im 𝜓∗ 𝑥, 𝑡

𝜕𝜓 𝑥, 𝑡

𝜕𝑥



 Therefore, if we define

𝐽 𝑥, 𝑡 =
1

𝑚
Im 𝜓∗ 𝑥, 𝑡

𝜕𝜓 𝑥, 𝑡

𝜕𝑥

we get
𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝐽(𝑥, 𝑡)

𝜕𝑥
= 0

 This has the form of a continuity equation.

 𝐽(𝑥, 𝑡) is the probability current, i.e. the rate of flow of probability out 
of point 𝑥.



 For a single particle in 3D, this generalizes to

𝜕𝜌( Ԧ𝑞, 𝑡)

𝜕𝑡
+ 𝛻 ⋅ Ԧ𝐽 Ԧ𝑞, 𝑡 = 0

with probability current

Ԧ𝐽 Ԧ𝑞, 𝑡 =
1

𝑚
Im 𝜓∗ Ԧ𝑞, 𝑡 𝛻𝜓( Ԧ𝑞, 𝑡)



 For multiple particles in 3D, this generalizes to

𝜕𝜌(𝒒, 𝑡)

𝜕𝑡
+ 𝛁 ⋅ 𝑱 𝒒, 𝑡 = 0

with probability current 𝑱 = ( Ԧ𝐽1, Ԧ𝐽2, ⋯ , Ԧ𝐽𝑛)

Ԧ𝐽𝑘 𝒒, 𝑡 =
1

𝑚𝑘
Im 𝜓∗ 𝒒, 𝑡 𝛻𝑘𝜓(𝒒, 𝑡)



 Solutions of the Schrödinger equation satisfy the continuity equation:

𝜕 𝜓 𝒒, 𝑡 2

𝜕𝑡
+ 𝛁 ⋅ 𝑱 𝒒, 𝑡 = 0

where 𝑱 𝒒, 𝑡 is the probability current:

𝑱 = (Ԧ𝐽1, Ԧ𝐽2, … , Ԧ𝐽𝑁) Ԧ𝐽𝑘(𝒒) =
ℏ

𝑚𝑘
Im(𝜓∗𝛻𝑘𝜓)(𝒒)

 If we consider a preparation of 𝜓 ⊗ 𝜓 ⊗⋯ we want to consider 𝑱 as a flow of 
particle density rather than probability.

 If we assume this is generated by a velocity field 𝒗(𝒒), e.g. as in hydrodynamics, 
then 𝑱 = 𝜌𝒗, so the equation for the velocity field should be:

𝒗 𝒒 =
𝑱(𝒒)

𝜌(𝒒)
Ԧ𝑣𝑘 𝒒 =

ℏ

𝑚𝑘

Im 𝜓∗𝛻𝑘𝜓

𝜌
(𝒒)

which gives the dBB velocities if we set 𝜌 𝑸 = 𝜓 𝑸 2.





C.Philippidis et. al. Il Nuovo Cimento, vol.52B, No.1 (1979) 



 Dividing the universe into system 𝑆 and environment 𝐸 allows us to define a pure state 
for the system called the conditional quantum state.

𝜓𝑸𝐸 𝑆
= 𝐸⟨𝑸𝐸 𝜓 𝑆𝐸

where 𝑸𝐸 is the actual configuration point of the environment.

 Generally, these do not evolve according to the Schrödinger equation, but they do if 
there is decoherence into localized environment states.
 For example, if 𝑸𝐸 is the pointer variable after a von Neumann measurement interaction.

 Model the measurement device as a large number of particles, with outcomes 
represented by macroscopically distinct states with very small overlap:

 In a measurement interaction:

[𝛼𝜓0 𝒒𝑆 + 𝛽𝜓1(𝒒𝑆)]Φ𝑅(𝒒𝐸) → 𝛼𝜓0 𝒒𝑆 Φ0(𝒒𝐸) + 𝛽𝜓1(𝒒𝑆)Φ1(𝒒𝐸)



𝛼𝜓0 𝒒𝑆 Φ0(𝒒𝐸) + 𝛽𝜓1(𝒒𝑆)Φ1(𝒒𝐸)

 If the lack of position overlap between Φ0(𝒒𝐸) and Φ1(𝒒𝐸) persists in time then:

 The actual configuration of the environment 𝑸𝐸 is either in the support of 
Φ0(𝒒𝐸) or the support of Φ1(𝒒𝐸).

 By equivariance, it will be in the support of Φ0(𝒒𝐸) with probability 𝛼 2 and in 
the support of Φ1(𝒒𝐸) with probability 𝛽 2.

 The conditional state of the system will either be ∝ 𝜓0 𝒒𝑆 or ∝ 𝜓1 𝒒𝑆 .

 𝜓0 𝒒𝑆 and 𝜓1 𝒒𝑆 each evolve according to the Schrödinger equation.

 The current breaks into two terms 𝑱 = 𝑱0 + 𝑱1, with 𝑱0 = 0 in the support of 
Φ1(𝒒𝐸) and vice versa, i.e. no cross terms in the guidance equation.

 We get an effective collapse into either 𝜓0 𝒒𝑆 Φ0(𝒒𝐸) or 𝜓1(𝒒𝑆)Φ1(𝒒𝐸) and we 
can use the corresponding current 𝑱0 or 𝑱1 in the guidance equation to compute 
subsequent evolution.



 If the measurement is an (approximate) position measurement then also 
𝜓0 𝒒𝑆 𝜓1 𝒒𝑆 ≈ 0.

 The initial configuration 𝑸𝑆 of the system is either in the support of 𝜓0 𝒒𝑆 with 
probability 𝛼 2 or in the support of 𝜓1 𝒒𝑆 with probability 𝛽 2.

 The measurement outcome is a deterministic function of 𝑸𝑆: position 
measurements simply reveal the pre-existing position.

 However, for other observables, e.g. momentum, 𝜓0 𝒒𝑆 𝜓1 𝒒𝑆 ≠ 0, i.e. the initial 
configuration does not necessarily “belong” to one of the two eigenstates.

 Which measurement outcome occurs is a function of both 𝑸𝑆 and 𝑸𝐸 .

 Momentum measurement does not measure the dBB momentum 𝑚𝑘
𝑑𝑄𝑘
𝑑𝑡

.

 The theory is deterministic: outcome uniquely determined by ontic states of 
system and measuring device.

 But not outcome deterministic: outcome uniquely determined by ontic state of 
system on its own.



 In the minimalist Bell approach to dBB, no observables apart from position are 
part of the primitive ontology.

 Spin only appears in the wavefunction.

 We can write a wavefunction including spin as a spinor, e.g. for a single particle:

𝜓0 Ԧ𝑞 ⊗ ↑ + 𝜓1 Ԧ𝑞 ⊗ ↓ → ത𝜓 Ԧ𝑞 =
𝜓0( Ԧ𝑞)

𝜓1( Ԧ𝑞)

 For 𝑁 spin-1/2 particles, we would have a 2𝑁 dimensional spinor vector.

 The guidance equation is now:

𝑑𝑄𝑘

𝑑𝑡
=

ℏ

𝑚𝑘

Im ഥ𝜓∗⋅𝛻𝑘ഥ𝜓

ഥ𝜓∗⋅ഥ𝜓
(𝑸),

where ⋅ is spinor inner product.

 It is possible instead to have primitive ontic states for any complete orthonormal 
basis, but discrete bases require a stochastic guidance equation.



 dBB trajectories display several features that violate classical intuitions about 
particle trajectories.

 It is important to note that, if decoherence occurs in an environmental basis that 
is localized in position, dBB trajectories of the system will approximately follow 
classical trajectories.

 dBB doesn’t owe us anything more than that.  So long as:

 It reproduces the predictions of quantum theory in measurements.

 Macroscopic systems typically have approximately classical trajectories.

then the theory saves the phenomena.

 Since quantum and classical predictions are different, dBB trajectories must differ 
from classical ones in some situations.

 The question is only if they are weirder than absolutely necessary to reproduce 
quantum theory, and whether that is a bad thing.


