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 Suppose now that the Hamiltonian of our system is proportional to 
the momentum

𝐻 = 𝑔 Ƹ𝑝

 The propagator 𝑈 𝑡, 𝑡0 = 𝑒−𝑖𝑔 𝑡−𝑡0 ො𝑝 is a translation operator, so the 
wavefunction will move to the right at a rate 𝑔.

𝜓(𝑡0) 𝜓(𝑡)

𝑔(𝑡 − 𝑡0)



 Now we want to show how a measurement of any Hermitian 
observable መ𝐴 can be accomplished by coupling the system to the 
position of a pointer, and then measuring the position of the 
pointer.

 Suppose መ𝐴 has eigenstates መ𝐴 𝜙𝑗 = 𝑎𝑗|𝜙𝑗⟩ and suppose, for now, that 

the system is prepared in one of its eigenstates 𝜙𝑗 𝑆
.

 We prepare our pointer in a narrow Gaussian wavepacket, 
centered at 𝑥 = 0, i.e. Ψ(𝑡0) 𝑀 with

𝑥 Ψ(t0) = Ψ 𝑥, 𝑡0 =
1

𝜋𝜎
exp

−𝑥2

2𝜎2



 We now couple the system and pointer using the Hamiltonian

𝐻 = መ𝐴𝑆 ⊗ Ƹ𝑝𝑀

 We run the dynamics for time 𝑡 − 𝑡0 = 1, which will generate the 
propagator

𝑈𝑆𝑀 = 𝑒−𝑖 𝐴𝑆⊗ ො𝑝𝑀 =
𝑛=0

∞ −𝑖 𝑛 መ𝐴𝑠
𝑛 ⊗ Ƹ𝑝𝑀

𝑛

𝑛!



 When this acts on the state of the system and pointer, we get

𝑈𝑆𝑀 𝜙𝑗 𝑆
⊗ Ψ 𝑀 = σ𝑛=0

∞
−𝑖 𝑛 𝐴𝑠

𝑛 𝜙𝑗 𝑆
⊗ ො𝑝𝑀

𝑛 Ψ 𝑀

𝑛!

= σ𝑛=0
∞

−𝑖 𝑛𝑎𝑗
𝑛 𝜙𝑗 𝑆

⊗ ො𝑝𝑀
𝑛 Ψ 𝑀

𝑛!

= σ𝑛=0
∞ −𝑖𝑎𝑗 ො𝑝𝑀

𝑛

𝑛!
𝜙𝑗 𝑆

⊗ Ψ 𝑀

= 𝜙𝑗 𝑆
⊗𝑒−𝑖𝑎𝑗 ො𝑝𝑀 Ψ 𝑀



 In other words, the wavefunction 
Ψ(𝑥) of the pointer will be 
translated to

Ψ𝑎𝑗 𝑥 = Ψ(𝑥 − 𝑎𝑗)

 If the width 𝜎 of the initial Gaussian 
is sufficiently small, measuring the 
position of the pointer will yield the 
probability density

p 𝑥 = Ψ𝑎𝑗 𝑥
2

which will be very close to 𝑎𝑗 with 
near certainty.

𝑎𝑗

Ψ(𝑥) Ψ𝑎𝑗(𝑥)



 Now consider what happens if we start the system in an arbitrary state 
𝜓 𝑆, which can be written as a superposition of eigenstates of መ𝐴.

𝜓 𝑆 =

𝑗

𝛼𝑗 𝜙𝑗 𝑀

 By the superposition principle, the evolution will be

𝑈𝑆𝑀 𝜓 𝑆 ⊗ Ψ 𝑀 =

𝑗

𝛼𝑗 𝜙𝑗 𝑆
⊗𝑒−𝑖𝑎𝑗 ො𝑝 Ψ 𝑀

=

𝑗

𝛼𝑗 𝜙𝑗 𝑆
⊗ Ψ𝑎𝑗

𝑀

where 𝑥 Ψ𝑎𝑗 = Ψ𝑎𝑗 𝑥 = Ψ(𝑥 − 𝑎𝑗).



 If we look at the probability density for the pointer position, we will 
get

p 𝑥 =

𝑗𝑘

𝛼𝑗
∗⟨𝜙𝑗 ቚ

𝑆
⊗ Ψ𝑎𝑗

𝑀
𝑥 𝑀⟨𝑥| 𝛼𝑘 𝜙𝑘 𝑆 ⊗ Ψ𝑎𝑗

𝑀

=

𝑗

𝛼𝑗
2
Ψ𝑎𝑗 𝑥

2



Ψ 𝑥 2

𝛼1
2 Ψ𝑎1 𝑥

2

𝛼2
2 Ψ𝑎2 𝑥

2

𝛼3
2 Ψ𝑎3 𝑥

2

𝑎1 𝑎2 𝑎3
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Quantum 
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Relational 
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Interpretation
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Collapse
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 A brief history:

 The 1st order form of dBB theory was discovered and then 
abandoned by de Broglie in the 1920’s.

 dBB was rediscovered, in 2nd order form, by Bohm in 1952.

 The forgotten 1st order form was promoted by Bell in the 1970’s 
and 80’s.

 Proponents still fight over which form is better.  I will follow Bell’s 
approach here.

 See T. Norsen, “Foundations of Quantum Mechanics” 
(Springer,2017) for an overview of this theory.



 The goal of any interpretation is to:
 Provide an ontology: a statement of what exists and how it 

behaves.

 Save the phenomena: Explain the quantum predictions and our 
everyday experience in terms of the ontology.

 Bohmians typically divide the ontology into two pieces:
 Primitive ontology: The things that determine what we 

experience.  Usually assumed to be localized in spacetime –
local beables.  In dBB this is particle trajectories.

 The rest: Needed to determine how the primitive ontology 
behaves.  In dBB this is the quantum state.



 For particles with no internal degrees of freedom (spin), we use the 
wavefunction

𝜓 𝑥, 𝑡 = ⟨𝑥|𝜓(𝑡)⟩

 The quantum state obeys the Schrödinger equation: 𝑖
𝜕|𝜓〉

𝜕𝑡
= 𝐻|𝜓〉

 dBB also has an actual particle with position 𝑋.

 This obeys the guidance equation:

𝑑𝑋

𝑑𝑡
=
1

𝑚
ቮ

Im 𝜓∗ 𝑥, 𝑡
𝜕𝜓 𝑥, 𝑡
𝜕𝑥

𝜓∗ 𝑥, 𝑡 𝜓 𝑥, 𝑡
𝑥=𝑋



 In 3-dimensions, we introduce the basis Ԧ𝑞 = 𝑥 ⊗ 𝑦 ⊗ |𝑧⟩

 For particles with no internal degrees of freedom (spin), we use the 
wavefunction

𝜓 Ԧ𝑞, 𝑡 = Ԧ𝑞 𝜓 𝑡 = ⟨𝑥|⟨𝑦|⟨𝑧|𝜓 𝑡 ⟩

 The quantum state obeys the Schrödinger equation: 𝑖
𝜕|𝜓〉

𝜕𝑡
= 𝐻|𝜓〉

 dBB also has an actual particle with position vector 𝑄

 This obeys the guidance equation:

𝑑𝑄

𝑑𝑡
=
1

𝑚
ቮ

Im 𝜓∗ Ԧ𝑞, 𝑡 𝛻𝜓( Ԧ𝑞, 𝑡)

𝜓∗ 𝑞, 𝑡 𝜓 𝑞, 𝑡
𝑞=𝑄



 To describe 𝑁 particles, we need to specify a position vector for each of them
𝒒 = ( Ԧ𝑞1, Ԧ𝑞2, ⋯ , Ԧ𝑞3)

 Notation: Ԧ𝑞 denotes a vector in ℝ3.  𝒒 denotes a vector in ℝ3𝑁, called a configuration vector.  
 ℝ3𝑁 is called configuration space.
 We can write a quantum state as a wavefunction on configuration space:

𝜓 𝒒, 𝑡 = 𝜓 Ԧ𝑞1, Ԧ𝑞2, … , Ԧ𝑞𝑁 , 𝑡 = 𝒒 𝜓 𝑡 = Ԧ𝑞1, Ԧ𝑞2, … , Ԧ𝑞𝑁 𝜓 𝑡

 The wavefunction obeys the Schrödinger equation: 𝑖
𝜕|𝜓〉

𝜕𝑡
= 𝐻|𝜓〉

 dBB also has an actual point in configuration space:

𝑸 = (𝑄1, 𝑄2, … , 𝑄𝑁)

 This obeys the guidance equation:

𝑑𝑄𝑘
𝑑𝑡

=
ℏ

𝑚𝑘

ቮ
Im 𝜓∗ 𝒒, 𝑡 𝛻𝑘𝜓 𝒒, 𝑡

𝜓∗ 𝒒, 𝑡 𝜓 𝒒, 𝑡
𝒒=𝑸



 One more postulate is required to obtain the same predictions as standard 
quantum theory - Quantum Equilibrium Hypothesis:

 At time 𝑡 = 𝑡0, the probability density of the system occupying configuration 
point 𝑸 is:

𝜌 𝑸 = 𝜓 𝑸 2

 Under the dBB evolution we will show that if this holds at 𝑡 = 𝑡0 then it holds at all 
times.  This is known as equivariance.

 There is controversy about what 𝜌(𝑸) means as dBB is applied to the entire
universe, which only has a single configuration space point.
 Roughly speaking, if we prepare many systems in the state 𝜓 ⊗ 𝜓 ⊗⋯⊗ 𝜓 , the probability 

density of configurations is 𝜌 𝑸 .

 Note that the quantum state is playing two independent roles: 
 It governs dynamics via the guidance equation.

 It is used to set the probability density. 



 Consider a volume of space in which there is a 
total mass 𝑚(𝑡).

 Let Ԧ𝐽(Ԧ𝑟, 𝑡) be the mass current, i.e.

Net amount off mass flowing through a unit cross-
sectional area per unit time.

 We use surface area vectors d Ԧ𝐴 pointing out of 
the volume.

 Then
d𝑚

d𝑡
+ න Ԧ𝐽 Ԧ𝑟, 𝑡 ⋅ d Ԧ𝐴 = 0

 We can write 𝑚(𝑡) = ∫ 𝜌 Ԧ𝑟, 𝑡 𝑑𝑉, where 𝜌(Ԧ𝑟, 𝑡) is 
the mass density.



 Using the divergence theorem, we can also write

න Ԧ𝐽 Ԧ𝑟, 𝑡 ⋅ d Ԧ𝐴 = න𝛻 ⋅ Ԧ𝐽 Ԧ𝑟, 𝑡 d𝑉

so we have

න
d𝜌(Ԧ𝑟, 𝑡)

d𝑡
+ 𝛻 ⋅ Ԧ𝐽 (Ԧ𝑟, 𝑡) 𝑑𝑉 = 0

 Since this has to hold for any volume, we have 

d𝜌(Ԧ𝑟, 𝑡)

d𝑡
+ 𝛻 ⋅ Ԧ𝐽 Ԧ𝑟, 𝑡 = 0

 This is called the continuity equation.



 The Hamiltonian operator 𝐻 represents the energy of a particle.

 For a nonrelativistic particle in 1D we have

𝐻 =
Ƹ𝑝2

2𝑚
+ 𝑉(ො𝑥)

where 𝑉(𝑥) is the potential energy of the particle.

 Last lecture we saw that, in the position representation

Ƹ𝑝 = −𝑖
𝜕

𝜕𝑥

so Ƹ𝑝2 = −
𝜕2

𝜕𝑥2
and

𝐻 = −
1

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)



 In 3-dimensions, this generalizes to

𝐻 = −
1

2𝑚
𝛻2 + 𝑉( Ԧ𝑞)

and if we have 𝑁 particles, this generalizes to

𝐻 = −
𝑘=1

𝑁 1

2𝑚𝑘
𝛻𝑘
2 + 𝑉 𝒒

where 𝒒 = ( Ԧ𝑞1, Ԧ𝑞2, ⋯ , Ԧ𝑞𝑁), Ԧ𝑞𝑘 = (𝑥𝑘 , 𝑦𝑘, 𝑧𝑘), and

𝛻𝑘
2 =

𝜕2

𝜕𝑥𝑘
2 +

𝜕2

𝜕𝑦𝑘
2 +

𝜕2

𝜕𝑧𝑘
2



 We can derive a continuity for the probability density 𝜌 𝒒 = 𝜓 𝒒 2 in 
quantum theory.

 Consider a single particle in 1D

𝜕𝜌

𝜕𝑡
=
𝜕 𝜓∗ 𝑥, 𝑡 𝜓 𝑥, 𝑡

𝜕𝑡
= 𝜓∗ 𝑥, 𝑡

𝜕𝜓 𝑥, 𝑡

𝜕𝑡
+
𝜕𝜓∗ 𝑥, 𝑡

𝜕𝑡
𝜓(𝑥, 𝑡)

 From the Schrödinger equation 𝑖
𝜕|𝜓 𝑡 ⟩

𝜕𝑡
= 𝐻|𝜓 𝑡 ⟩, we have

𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
=

𝑖

2𝑚

𝜕2𝜓(𝑥, 𝑡)

𝜕2𝑥
− 𝑖𝑉 𝑥 𝜓(𝑥, 𝑡)

𝜕𝜓∗(𝑥, 𝑡)

𝜕𝑡
=
−𝑖

2𝑚

𝜕2𝜓∗(𝑥, 𝑡)

𝜕2𝑥
+ 𝑖𝑉 𝑥 𝜓∗(𝑥, 𝑡)



 Substituting these into

𝜕𝜌

𝜕𝑡
= 𝜓∗ 𝑥, 𝑡

𝜕𝜓 𝑥, 𝑡

𝜕𝑡
+
𝜕𝜓∗ 𝑥, 𝑡

𝜕𝑡
𝜓(𝑥, 𝑡)

gives
𝜕𝜌

𝜕𝑡
=

𝑖

2𝑚
𝜓∗ 𝑥, 𝑡

𝜕2𝜓 𝑥, 𝑡

𝜕2𝑥
−
𝜕2𝜓∗ 𝑥, 𝑡

𝜕2𝑥
𝜓(𝑥, 𝑡)

−𝑖𝑉(𝑥) 𝜓∗ 𝑥, 𝑡 𝜓 𝑥, 𝑡 − 𝜓 𝑥, 𝑡 𝜓∗(𝑥, 𝑡) (this term cancels)



𝜓∗ 𝑥, 𝑡
𝜕2𝜓 𝑥, 𝑡

𝜕2𝑥
−
𝜕2𝜓∗ 𝑥, 𝑡

𝜕2𝑥
𝜓 𝑥, 𝑡

= 𝜓∗ 𝑥, 𝑡
𝜕2𝜓 𝑥, 𝑡

𝜕2𝑥
+
𝜕𝜓∗(𝑥, 𝑡)

𝜕𝑥

𝜕𝜓(𝑥, 𝑡)

𝜕𝑥
−
𝜕𝜓(𝑥, 𝑡)

𝜕𝑥

𝜕𝜓∗(𝑥, 𝑡)

𝜕𝑥
−
𝜕2𝜓∗ 𝑥, 𝑡

𝜕2𝑥
𝜓 𝑥, 𝑡

=
𝜕

𝜕𝑥
𝜓∗ 𝑥, 𝑡

𝜕𝜓 𝑥, 𝑡

𝜕𝑥
−
𝜕𝜓∗ 𝑥, 𝑡

𝜕𝑥
𝜓(𝑥, 𝑡)

=
𝜕

𝜕𝑥
2𝑖Im 𝜓∗ 𝑥, 𝑡

𝜕𝜓 𝑥, 𝑡

𝜕𝑥



 Therefore, if we define

𝐽 𝑥, 𝑡 =
1

𝑚
Im 𝜓∗ 𝑥, 𝑡

𝜕𝜓 𝑥, 𝑡

𝜕𝑥

we get
𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝐽(𝑥, 𝑡)

𝜕𝑥
= 0

 This has the form of a continuity equation.

 𝐽(𝑥, 𝑡) is the probability current, i.e. the rate of flow of probability out 
of point 𝑥.



 For a single particle in 3D, this generalizes to

𝜕𝜌( Ԧ𝑞, 𝑡)

𝜕𝑡
+ 𝛻 ⋅ Ԧ𝐽 Ԧ𝑞, 𝑡 = 0

with probability current

Ԧ𝐽 Ԧ𝑞, 𝑡 =
1

𝑚
Im 𝜓∗ Ԧ𝑞, 𝑡 𝛻𝜓( Ԧ𝑞, 𝑡)



 For multiple particles in 3D, this generalizes to

𝜕𝜌(𝒒, 𝑡)

𝜕𝑡
+ 𝛁 ⋅ 𝑱 𝒒, 𝑡 = 0

with probability current 𝑱 = ( Ԧ𝐽1, Ԧ𝐽2, ⋯ , Ԧ𝐽𝑛)

Ԧ𝐽𝑘 𝒒, 𝑡 =
1

𝑚𝑘
Im 𝜓∗ 𝒒, 𝑡 𝛻𝑘𝜓(𝒒, 𝑡)



 Solutions of the Schrödinger equation satisfy the continuity equation:

𝜕 𝜓 𝒒, 𝑡 2

𝜕𝑡
+ 𝛁 ⋅ 𝑱 𝒒, 𝑡 = 0

where 𝑱 𝒒, 𝑡 is the probability current:

𝑱 = (Ԧ𝐽1, Ԧ𝐽2, … , Ԧ𝐽𝑁) Ԧ𝐽𝑘(𝒒) =
ℏ

𝑚𝑘
Im(𝜓∗𝛻𝑘𝜓)(𝒒)

 If we consider a preparation of 𝜓 ⊗ 𝜓 ⊗⋯ we want to consider 𝑱 as a flow of 
particle density rather than probability.

 If we assume this is generated by a velocity field 𝒗(𝒒), e.g. as in hydrodynamics, 
then 𝑱 = 𝜌𝒗, so the equation for the velocity field should be:

𝒗 𝒒 =
𝑱(𝒒)

𝜌(𝒒)
Ԧ𝑣𝑘 𝒒 =

ℏ

𝑚𝑘

Im 𝜓∗𝛻𝑘𝜓

𝜌
(𝒒)

which gives the dBB velocities if we set 𝜌 𝑸 = 𝜓 𝑸 2.





C.Philippidis et. al. Il Nuovo Cimento, vol.52B, No.1 (1979) 



 Dividing the universe into system 𝑆 and environment 𝐸 allows us to define a pure state 
for the system called the conditional quantum state.

𝜓𝑸𝐸 𝑆
= 𝐸⟨𝑸𝐸 𝜓 𝑆𝐸

where 𝑸𝐸 is the actual configuration point of the environment.

 Generally, these do not evolve according to the Schrödinger equation, but they do if 
there is decoherence into localized environment states.
 For example, if 𝑸𝐸 is the pointer variable after a von Neumann measurement interaction.

 Model the measurement device as a large number of particles, with outcomes 
represented by macroscopically distinct states with very small overlap:

 In a measurement interaction:

[𝛼𝜓0 𝒒𝑆 + 𝛽𝜓1(𝒒𝑆)]Φ𝑅(𝒒𝐸) → 𝛼𝜓0 𝒒𝑆 Φ0(𝒒𝐸) + 𝛽𝜓1(𝒒𝑆)Φ1(𝒒𝐸)



𝛼𝜓0 𝒒𝑆 Φ0(𝒒𝐸) + 𝛽𝜓1(𝒒𝑆)Φ1(𝒒𝐸)

 If the lack of position overlap between Φ0(𝒒𝐸) and Φ1(𝒒𝐸) persists in time then:

 The actual configuration of the environment 𝑸𝐸 is either in the support of 
Φ0(𝒒𝐸) or the support of Φ1(𝒒𝐸).

 By equivariance, it will be in the support of Φ0(𝒒𝐸) with probability 𝛼 2 and in 
the support of Φ1(𝒒𝐸) with probability 𝛽 2.

 The conditional state of the system will either be ∝ 𝜓0 𝒒𝑆 or ∝ 𝜓1 𝒒𝑆 .

 𝜓0 𝒒𝑆 and 𝜓1 𝒒𝑆 each evolve according to the Schrödinger equation.

 The current breaks into two terms 𝑱 = 𝑱0 + 𝑱1, with 𝑱0 = 0 in the support of 
Φ1(𝒒𝐸) and vice versa, i.e. no cross terms in the guidance equation.

 We get an effective collapse into either 𝜓0 𝒒𝑆 Φ0(𝒒𝐸) or 𝜓1(𝒒𝑆)Φ1(𝒒𝐸) and we 
can use the corresponding current 𝑱0 or 𝑱1 in the guidance equation to compute 
subsequent evolution.



 If the measurement is an (approximate) position measurement then also 
𝜓0 𝒒𝑆 𝜓1 𝒒𝑆 ≈ 0.

 The initial configuration 𝑸𝑆 of the system is either in the support of 𝜓0 𝒒𝑆 with 
probability 𝛼 2 or in the support of 𝜓1 𝒒𝑆 with probability 𝛽 2.

 The measurement outcome is a deterministic function of 𝑸𝑆: position 
measurements simply reveal the pre-existing position.

 However, for other observables, e.g. momentum, 𝜓0 𝒒𝑆 𝜓1 𝒒𝑆 ≠ 0, i.e. the initial 
configuration does not necessarily “belong” to one of the two eigenstates.

 Which measurement outcome occurs is a function of both 𝑸𝑆 and 𝑸𝐸 .

 Momentum measurement does not measure the dBB momentum 𝑚𝑘
𝑑𝑄𝑘
𝑑𝑡

.

 The theory is deterministic: outcome uniquely determined by ontic states of 
system and measuring device.

 But not outcome deterministic: outcome uniquely determined by ontic state of 
system on its own.



 In the minimalist Bell approach to dBB, no observables apart from position are 
part of the primitive ontology.

 Spin only appears in the wavefunction.

 We can write a wavefunction including spin as a spinor, e.g. for a single particle:

𝜓0 Ԧ𝑞 ⊗ ↑ + 𝜓1 Ԧ𝑞 ⊗ ↓ → ത𝜓 Ԧ𝑞 =
𝜓0( Ԧ𝑞)

𝜓1( Ԧ𝑞)

 For 𝑁 spin-1/2 particles, we would have a 2𝑁 dimensional spinor vector.

 The guidance equation is now:

𝑑𝑄𝑘

𝑑𝑡
=

ℏ

𝑚𝑘

Im ഥ𝜓∗⋅𝛻𝑘ഥ𝜓

ഥ𝜓∗⋅ഥ𝜓
(𝑸),

where ⋅ is spinor inner product.

 It is possible instead to have primitive ontic states for any complete orthonormal 
basis, but discrete bases require a stochastic guidance equation.



 dBB trajectories display several features that violate classical intuitions about 
particle trajectories.

 It is important to note that, if decoherence occurs in an environmental basis that 
is localized in position, dBB trajectories of the system will approximately follow 
classical trajectories.

 dBB doesn’t owe us anything more than that.  So long as:

 It reproduces the predictions of quantum theory in measurements.

 Macroscopic systems typically have approximately classical trajectories.

then the theory saves the phenomena.

 Since quantum and classical predictions are different, dBB trajectories must differ 
from classical ones in some situations.

 The question is only if they are weirder than absolutely necessary to reproduce 
quantum theory, and whether that is a bad thing.


