Quantum Foundations Lecture 23

April 30, 2018
Dr. Matthew Leifer leifer@chapman.edu HSC112

Announcements

- Assignments: Final Version due May 2.
- Homework 4 due April 30.
- Homework 5 due May 25.
\odot Final Exam to be issued later this week.

Translafion Hamilionian

- Suppose now that the Hamiltonian of our system is proportional to the momentum

$$
\widehat{H}=g \hat{p}
$$

\odot The propagator $\widehat{U}\left(t, t_{0}\right)=e^{-i g\left(t-t_{0}\right) \hat{p}}$ is a translation operator, so the wavefunction will move to the right at a rate g.

Von Neumann Measurement Model

- Now we want to show how a measurement of any Hermitian observable \hat{A} can be accomplished by coupling the system to the position of a pointer, and then measuring the position of the pointer.
- Suppose \hat{A} has eigenstates $\hat{A}\left|\phi_{j}\right\rangle=a_{j}\left|\phi_{j}\right\rangle$ and suppose, for now, that the system is prepared in one of its eigenstates $\left|\phi_{j}\right\rangle_{s}$.
- We prepare our pointer in a narrow Gaussian wavepacket, centered at $x=0$, i.e. $\left|\Psi\left(t_{0}\right)\right\rangle_{M}$ with

$$
\left\langle x \mid \Psi\left(\mathrm{t}_{0}\right)\right\rangle=\Psi\left(x, t_{0}\right)=\frac{1}{\sqrt{\sqrt{\pi} \sigma}} \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right)
$$

Von Neumann Measurement Model

- We now couple the system and pointer using the Hamiltonian

$$
\widehat{H}=\hat{A}_{S} \otimes \hat{p}_{M}
$$

- We run the dynamics for time $t-t_{0}=1$, which will generate the propagator

$$
\widehat{U}_{S M}=e^{-i \hat{A}_{S} \otimes \hat{p}_{M}}=\sum_{n=0}^{\infty} \frac{(-i)^{n} \hat{A}_{s}^{n} \otimes \hat{p}_{M}^{n}}{n!}
$$

Von Neumann Measurement Model

- When this acts on the state of the system and pointer, we get

$$
\begin{aligned}
\widehat{U}_{S M}\left|\phi_{j}\right\rangle_{S} \otimes|\Psi\rangle_{M} & =\sum_{n=0}^{\infty} \frac{(-i)^{n} \hat{A}_{S}^{n}\left|\phi_{j}\right\rangle_{S} \otimes \hat{p}_{M}^{n}|\Psi\rangle_{M}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{(-i)^{n} a_{j}^{n}\left|\phi_{j}\right\rangle_{S} \otimes \hat{p}_{M}^{n}|\Psi\rangle_{M}}{n!} \\
& =\left[\sum_{n=0}^{\infty} \frac{\left(-i a_{j} \hat{p}_{M}\right)^{n}}{n!}\right]\left|\phi_{j}\right\rangle_{S} \otimes|\Psi\rangle_{M} \\
& =\left|\phi_{j}\right\rangle_{S} \otimes e^{-i a_{j} \hat{p}_{M}}|\Psi\rangle_{M}
\end{aligned}
$$

Von Neumann Measurement Model

- In other words, the wavefunction $\Psi(x)$ of the pointer will be translated to

$$
\Psi_{a_{j}}(x)=\Psi\left(x-a_{j}\right)
$$

- If the width σ of the initial Gaussian is sufficiently small, measuring the position of the pointer will yield the probability density

$$
\mathrm{p}(x)=\left|\Psi_{a_{j}}(x)\right|^{2}
$$

which will be very close to a_{j} with near certainty.

Von Neumann Measurement Model

- Now consider what happens if we start the system in an arbitrary state $|\psi\rangle_{S}$, which can be written as a superposition of eigenstates of \hat{A}.

$$
|\psi\rangle_{S}=\sum_{j} \alpha_{j}\left|\phi_{j}\right\rangle_{M}
$$

- By the superposition principle, the evolution will be

$$
\begin{aligned}
& \widehat{U}_{S M}|\psi\rangle_{S} \otimes|\Psi\rangle_{M}=\sum_{j} \alpha_{j}\left|\phi_{j}\right\rangle_{S} \otimes e^{-i a_{j} \hat{p}}|\Psi\rangle_{M} \\
&=\sum_{j} \alpha_{j}\left|\phi_{j}\right\rangle_{S} \otimes\left|\Psi_{a_{j}}\right\rangle_{M}
\end{aligned}
$$

where $\left\langle x \mid \Psi_{a_{j}}\right\rangle=\Psi_{a_{j}}(x)=\Psi\left(x-a_{j}\right)$.

Von Neuman Measurement Model

- If we look at the probability density for the pointer position, we will get

$$
\begin{aligned}
& \mathrm{p}(x)=\sum_{j k}\left(\alpha _ { j } ^ { * } \left\langle\left.\phi_{j}\right|_{S}\right.\right. \otimes\left\langle\left.\Psi_{a_{j}}\right|_{M}\right)|x\rangle_{M}\langle x|\left(\alpha_{k}\left|\phi_{k}\right\rangle_{S} \otimes\left|\Psi_{a_{j}}\right\rangle_{M}\right) \\
&=\sum_{j}\left|\alpha_{j}\right|^{2}\left|\Psi_{a_{j}}(x)\right|^{2}
\end{aligned}
$$

Von Neumann Measurement Model

A Map Of The Madness

	Realist		Copenhagenish	
	Ontological Model	Exotic Ontology	Objective	Perspectival
$\boldsymbol{\psi}$-epsitemic		Ironic Many Worlds	Copenhagen	QBism
		Quantum Logical Realism	Healy's Quantum Pragmatism	Rovelli's Relational Quantum Mechanics
			Bub's "Information" Interpretation	
$\boldsymbol{\psi}$-ontic	de Broglie-Bohm	Everett/Many Worlds		
	Spontaneous Collapse			
	Modal Interpretations			

10.iil) de Broglie-Bohm Theory

- A brief history:
- The $1^{\text {st }}$ order form of dBB theory was discovered and then abandoned by de Broglie in the 1920's.
- dBB was rediscovered, in 2nd order form, by Bohm in 1952.
- The forgotten $1^{\text {st }}$ order form was promoted by Bell in the 1970's and 80's.
- Proponents still fight over which form is better. I will follow Bell's approach here.
- See T. Norsen, "Foundations of Quantum Mechanics" (Springer,2017) for an overview of this theory.

Onfology of dBB Theory

\odot The goal of any interpretation is to:

- Provide an ontology: a statement of what exists and how it behaves.
- Save the phenomena: Explain the quantum predictions and our everyday experience in terms of the ontology.
- Bohmians typically divide the ontology into two pieces:
- Primitive ontology: The things that determine what we experience. Usually assumed to be localized in spacetime local beables. In dBB this is particle trajectories.
- The rest: Needed to determine how the primitive ontology behaves. In dBB this is the quantum state.

Single Particle Theory in 1 -Dimension

- For particles with no internal degrees of freedom (spin), we use the wavefunction

$$
\psi(x, t)=\langle x \mid \psi(t)\rangle
$$

- The quantum state obeys the Schrödinger equation: $i \frac{\partial|\psi\rangle}{\partial t}=H|\psi\rangle$
- dBB also has an actual particle with position X.
- This obeys the guidance equation:

$$
\frac{d X}{d t}=\left.\frac{1}{m} \frac{\operatorname{Im}\left(\psi^{*}(x, t) \frac{\partial \psi(x, t)}{\partial x}\right)}{\psi^{*}(x, t) \psi(x, t)}\right|_{x=X}
$$

Single Particle Theory in 3-Dimensions

$\odot \operatorname{In} 3$-dimensions, we introduce the basis $|\vec{q}\rangle=|x\rangle \otimes|y\rangle \otimes|z\rangle$
\odot For particles with no internal degrees of freedom (spin), we use the wavefunction

$$
\psi(\vec{q}, t)=\langle\vec{q} \mid \psi(t)\rangle=\langle x|\langle y|\langle z \mid \psi(t)\rangle
$$

- The quantum state obeys the Schrödinger equation: $i \frac{\partial|\psi\rangle}{\partial t}=H|\psi\rangle$
- dBB also has an actual particle with position vector \vec{Q}
- This obeys the guidance equation:

$$
\frac{d \vec{Q}}{d t}=\left.\frac{1}{m} \frac{\operatorname{Im}\left(\psi^{*}(\vec{q}, t) \vec{\nabla} \psi(\vec{q}, t)\right)}{\psi^{*}(q, t) \psi(q, t)}\right|_{\vec{q}=\vec{Q}}
$$

General Case

- To describe N particles, we need to specify a position vector for each of them

$$
\boldsymbol{q}=\left(\vec{q}_{1}, \vec{q}_{2}, \cdots, \vec{q}_{3}\right)
$$

- Notation: \vec{q} denotes a vector in \mathbb{R}^{3}. \boldsymbol{q} denotes a vector in $\mathbb{R}^{3 N}$, called a configuration vector.
- $\mathbb{R}^{3 N}$ is called configuration space.
- We can write a quantum state as a wavefunction on configuration space:

$$
\psi(\boldsymbol{q}, t)=\psi\left(\vec{q}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{N}, t\right)=\langle\boldsymbol{q} \mid \psi(t)\rangle=\left\langle\vec{q}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{N} \mid \psi(t)\right\rangle
$$

- The wavefunction obeys the Schrödinger equation: $i \frac{\partial|\psi\rangle}{\partial t}=H|\psi\rangle$
- dBB also has an actual point in configuration space:

$$
\boldsymbol{Q}=\left(\vec{Q}_{1}, \vec{Q}_{2}, \ldots, \vec{Q}_{N}\right)
$$

- This obeys the guidance equation:

$$
\frac{d \vec{Q}_{k}}{d t}=\left.\frac{\hbar}{m_{k}} \frac{\operatorname{Im}\left(\psi^{*}(\boldsymbol{q}, t) \vec{\nabla}_{k} \psi(\boldsymbol{q}, t)\right)}{\psi^{*}(\boldsymbol{q}, t) \psi(\boldsymbol{q}, t)}\right|_{\boldsymbol{q}=\boldsymbol{Q}}
$$

Equillibrium Hypothesis and Equivariance

- One more postulate is required to obtain the same predictions as standard quantum theory - Quantum Equilibrium Hypothesis:
- At time $t=t_{0}$, the probability density of the system occupying configuration point \boldsymbol{Q} is:

$$
\rho(\boldsymbol{Q})=|\psi(\boldsymbol{Q})|^{2}
$$

- Under the dBB evolution we will show that if this holds at $t=t_{0}$ then it holds at all times. This is known as equivariance.
- There is controversy about what $\rho(\boldsymbol{Q})$ means as dBB is applied to the entire universe, which only has a single configuration space point.
- Roughly speaking, if we prepare many systems in the state $|\psi\rangle \otimes|\psi\rangle \otimes \cdots \otimes|\psi\rangle$, the probability density of configurations is $\rho(\boldsymbol{Q})$.
- Note that the quantum state is playing two independent roles:
- It governs dynamics via the guidance equation.
- It is used to set the probability density.

Conlinulity Equalions

- Consider a volume of space in which there is a total mass $m(t)$.
- Let $\vec{J}(\vec{r}, t)$ be the mass current, i.e.

Net amount off mass flowing through a unit crosssectional area per unit time.

- We use surface area vectors $\mathrm{d} \vec{A}$ pointing out of the volume.
- Then

$$
\frac{\mathrm{d} m}{\mathrm{~d} t}+\int \vec{J}(\vec{r}, t) \cdot \mathrm{d} \vec{A}=0
$$

- We can write $m(t)=\int \rho(\vec{r}, t) d V$, where $\rho(\vec{r}, t)$ is the mass density.

Continuility Equations

- Using the divergence theorem, we can also write

$$
\int \vec{J}(\vec{r}, t) \cdot \mathrm{d} \vec{A}=\int \vec{\nabla} \cdot \vec{J}(\vec{r}, t) \mathrm{d} V
$$

so we have

$$
\int\left[\frac{\mathrm{d} \rho(\vec{r}, t)}{\mathrm{d} t}+\vec{\nabla} \cdot \vec{J}(\vec{r}, t)\right] d V=0
$$

- Since this has to hold for any volume, we have

$$
\frac{\mathrm{d} \rho(\vec{r}, t)}{\mathrm{d} t}+\vec{\nabla} \cdot \vec{J}(\vec{r}, t)=0
$$

\odot This is called the continuity equation.

Hamilionian For a Nonrelativistic Particle

- The Hamiltonian operator \hat{H} represents the energy of a particle.
- For a nonrelativistic particle in 1D we have

$$
\widehat{H}=\frac{\hat{p}^{2}}{2 m}+V(\hat{x})
$$

where $V(x)$ is the potential energy of the particle.

- Last lecture we saw that, in the position representation

$$
\hat{p}=-i \frac{\partial}{\partial x}
$$

so $\hat{p}^{2}=-\frac{\partial^{2}}{\partial x^{2}}$ and

$$
\widehat{H}=-\frac{1}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)
$$

Hamillionian for Nonrelativistic Panticles

- In 3-dimensions, this generalizes to

$$
\widehat{H}=-\frac{1}{2 m} \nabla^{2}+V(\vec{q})
$$

and if we have N particles, this generalizes to

$$
\widehat{H}=-\sum_{k=1}^{N} \frac{1}{2 m_{k}} \nabla_{k}^{2}+V(\boldsymbol{q})
$$

where $\boldsymbol{q}=\left(\vec{q}_{1}, \vec{q}_{2}, \cdots, \vec{q}_{N}\right), \vec{q}_{k}=\left(x_{k}, y_{k}, z_{k}\right)$, and

$$
\nabla_{k}^{2}=\frac{\partial^{2}}{\partial x_{k}^{2}}+\frac{\partial^{2}}{\partial y_{k}^{2}}+\frac{\partial^{2}}{\partial z_{k}^{2}}
$$

Conifinulity Equation for Probability

- We can derive a continuity for the probability density $\rho(\boldsymbol{q})=|\psi(\boldsymbol{q})|^{2}$ in quantum theory.
- Consider a single particle in ID

$$
\frac{\partial \rho}{\partial t}=\frac{\partial\left(\psi^{*}(x, t) \psi(x, t)\right)}{\partial t}=\psi^{*}(x, t) \frac{\partial \psi(x, t)}{\partial t}+\frac{\partial \psi^{*}(x, t)}{\partial t} \psi(x, t)
$$

- From the Schrödinger equation $i \frac{\partial|\psi(t)\rangle}{\partial t}=\widehat{H}|\psi(t)\rangle$, we have

$$
\begin{gathered}
\frac{\partial \psi(x, t)}{\partial t}=\frac{i}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial^{2} x}-i V(x) \psi(x, t) \\
\frac{\partial \psi^{*}(x, t)}{\partial t}=\frac{-i}{2 m} \frac{\partial^{2} \psi^{*}(x, t)}{\partial^{2} x}+i V(x) \psi^{*}(x, t)
\end{gathered}
$$

Continuility Equation For Probabilility

- Substituting these into

$$
\frac{\partial \rho}{\partial t}=\psi^{*}(x, t) \frac{\partial \psi(x, t)}{\partial t}+\frac{\partial \psi^{*}(x, t)}{\partial t} \psi(x, t)
$$

gives

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=\frac{i}{2 m}\left[\psi^{*}(x, t) \frac{\partial^{2} \psi(x, t)}{\partial^{2} x}-\frac{\partial^{2} \psi^{*}(x, t)}{\partial^{2} x} \psi(x, t)\right] \\
& -i V(x)\left[\psi^{*}(x, t) \psi(x, t)-\psi(x, t) \psi^{*}(x, t)\right] \text { (this term cancels) }
\end{aligned}
$$

Continuility Equation For Probabilility

$$
\begin{gathered}
\psi^{*}(x, t) \frac{\partial^{2} \psi(x, t)}{\partial^{2} x}-\frac{\partial^{2} \psi^{*}(x, t)}{\partial^{2} x} \psi(x, t) \\
=\psi^{*}(x, t) \frac{\partial^{2} \psi(x, t)}{\partial^{2} x}+\frac{\partial \psi^{*}(x, t)}{\partial x} \frac{\partial \psi(x, t)}{\partial x}-\frac{\partial \psi(x, t)}{\partial x} \frac{\partial \psi^{*}(x, t)}{\partial x}-\frac{\partial^{2} \psi^{*}(x, t)}{\partial^{2} x} \psi(x, t) \\
=\frac{\partial}{\partial x}\left[\psi^{*}(x, t) \frac{\partial \psi(x, t)}{\partial x}-\frac{\partial \psi^{*}(x, t)}{\partial x} \psi(x, t)\right] \\
=\frac{\partial}{\partial x}\left[2 i \operatorname{Im}\left(\psi^{*}(x, t) \frac{\partial \psi(x, t)}{\partial x}\right)\right]
\end{gathered}
$$

Conifinulity Equation for Probability

- Therefore, if we define

$$
J(x, t)=\frac{1}{m} \operatorname{Im}\left(\psi^{*}(x, t) \frac{\partial \psi(x, t)}{\partial x}\right)
$$

we get

$$
\frac{\partial \rho(x, t)}{\partial t}+\frac{\partial J(x, t)}{\partial x}=0
$$

- This has the form of a continuity equation.
$\odot J(x, t)$ is the probability current, i.e. the rate of flow of probability out of point x.

Continuity Equation iin 3D

- For a single particle in 3D, this generalizes to

$$
\frac{\partial \rho(\vec{q}, t)}{\partial t}+\vec{V} \cdot \vec{J}(\vec{q}, t)=0
$$

with probability current

$$
\vec{J}(\vec{q}, t)=\frac{1}{m} \operatorname{Im}\left(\psi^{*}(\vec{q}, t) \vec{\nabla} \psi(\vec{q}, t)\right)
$$

Multiple particles

- For multiple particles in 3D, this generalizes to

$$
\frac{\partial \rho(\boldsymbol{q}, t)}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{q}, t)=0
$$

with probability current $\boldsymbol{J}=\left(\vec{J}_{1}, \vec{J}_{2}, \cdots, \vec{J}_{n}\right)$

$$
\vec{J}_{k}(\boldsymbol{q}, t)=\frac{1}{m_{k}} \operatorname{Im}\left(\psi^{*}(\boldsymbol{q}, t) \vec{\nabla}_{k} \psi(\boldsymbol{q}, t)\right)
$$

Bellis derivation of the guidance equation and equivariance

- Solutions of the Schrödinger equation satisfy the continuity equation:

$$
\frac{\partial|\psi(\boldsymbol{q}, t)|^{2}}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{q}, t)=0
$$

where $\boldsymbol{J}(\boldsymbol{q}, t)$ is the probability current:

$$
J=\left(\vec{U}_{1}, \vec{J}_{2}, \ldots, \vec{J}_{N}\right) \quad \vec{J}_{k}(\boldsymbol{q})=\frac{\hbar}{m_{k}} \operatorname{Im}\left(\psi^{*} \vec{V}_{k} \psi\right)(\boldsymbol{q})
$$

- If we consider a preparation of $|\psi\rangle \otimes|\psi\rangle \otimes \cdots$ we want to consider \boldsymbol{J} as a flow of particle density rather than probability.
- If we assume this is generated by a velocity field $\boldsymbol{v}(\boldsymbol{q})$, e.g. as in hydrodynamics, then $\boldsymbol{J}=\rho \boldsymbol{v}$, so the equation for the velocity field should be:

$$
\boldsymbol{v}(\boldsymbol{q})=\frac{J(\boldsymbol{q})}{\rho(\boldsymbol{q})} \quad \vec{v}_{k}(\boldsymbol{q})=\frac{\hbar}{m_{k}} \frac{\operatorname{Im}\left(\psi^{*} \vec{\nabla}_{k} \psi\right)}{\rho}(\boldsymbol{q})
$$

which gives the dBB velocities if we set $\rho(\boldsymbol{Q})=|\psi(\boldsymbol{Q})|^{2}$.

Trajectories for a 11D Gaussian
Wavepacket
O Consider an initial Gaussian wavapachet moving towards the right

$$
\psi(x, 0)=\frac{1}{\left(2 \pi \delta_{0}^{2}\right)^{1 / 4}} \exp \left[-\frac{x^{2}}{4 \delta_{0}^{2}}+i k x\right]
$$

- Under free-porticle evolution this moves with group velocity $u=\frac{\hbar k}{m}$
and spreads $\sigma_{t}=\sigma_{0} \sqrt{1+\frac{\hbar^{2} t^{2}}{4 m^{2} \sigma_{0}^{4}}}$
○ If we consider a timescale sit. Spreading is negligible $t^{2} \ll \frac{2 m \sigma_{0}^{2}}{\hbar}$
then the $d B B$ velocity $\frac{d X}{d t} \simeq u$

Particle is dragged along with wavepachet at group velocity

See e.g. A. Pan, Prumana J. Phys. $74: 867$ (2010)

Double-Slit Trajectories

C.Philippidis et. al. Il Nuovo Cimento, vol.52B, No. 1 (1979)

Model with Gaussian slits.

$$
\psi(\vec{q}, t)=\psi_{B}(\vec{q}, t)+\psi_{B^{\prime}}(\vec{q}, t)
$$

When Ψ_{B}, ψ_{B} have approximately no overlap (close to slits)

$$
\begin{aligned}
& \vec{J} \simeq \vec{J}_{B}+\vec{J}_{B^{\prime}} \\
& \vec{J}_{B}=\frac{1}{m} \operatorname{Im} \psi_{B}^{*} \vec{\nabla} \psi_{B} \\
& \vec{J}_{B^{\prime}}=\frac{1}{m} \operatorname{Im} \psi_{B^{\prime}}^{*} \vec{\nabla} \psi_{B}
\end{aligned}
$$

The trajectories are as in geometric optics, ieee perpendicular to wavetronts
(1) When they overlap there are cross-terms (interference) in the current, causing deflections which give the cherateristic double-slit pattern.

Measurements in de Broglie-Bohm Theory

- Dividing the universe into system S and environment E allows us to define a pure state for the system called the conditional quantum state.

$$
\left|\psi_{\boldsymbol{Q}_{E}}\right\rangle_{S}={ }_{E}\left\langle\boldsymbol{Q}_{E} \mid \psi\right\rangle_{S E}
$$

where \boldsymbol{Q}_{E} is the actual configuration point of the environment.

- Generally, these do not evolve according to the Schrödinger equation, but they do if there is decoherence into localized environment states.
- For example, if \boldsymbol{Q}_{E} is the pointer variable after a vo Newman measurement interaction.
- Model the measurement device as a large number of particles, with outcomes represented by macroscopically distinct states with very small overlap:

- In a measurement interaction:

$$
\left[\alpha \psi_{0}\left(\boldsymbol{q}_{S}\right)+\beta \psi_{1}\left(\boldsymbol{q}_{S}\right)\right] \Phi_{R}\left(\boldsymbol{q}_{E}\right) \rightarrow \alpha \psi_{0}\left(\boldsymbol{q}_{S}\right) \Phi_{0}\left(\boldsymbol{q}_{E}\right)+\beta \psi_{1}\left(\boldsymbol{q}_{S}\right) \Phi_{1}\left(\boldsymbol{q}_{E}\right)
$$

Measurements in de Brogle=Bohm Theory

$$
\alpha \psi_{0}\left(\boldsymbol{q}_{S}\right) \Phi_{0}\left(\boldsymbol{q}_{E}\right)+\beta \psi_{1}\left(\boldsymbol{q}_{S}\right) \Phi_{1}\left(\boldsymbol{q}_{E}\right)
$$

- If the lack of position overlap between $\Phi_{0}\left(\boldsymbol{q}_{E}\right)$ and $\Phi_{1}\left(\boldsymbol{q}_{E}\right)$ persists in time then:
- The actual configuration of the environment \boldsymbol{Q}_{E} is either in the support of $\Phi_{0}\left(\boldsymbol{q}_{E}\right)$ or the support of $\Phi_{1}\left(\boldsymbol{q}_{E}\right)$.
- By equivariance, it will be in the support of $\Phi_{0}\left(\boldsymbol{q}_{E}\right)$ with probability $|\alpha|^{2}$ and in the support of $\Phi_{1}\left(\boldsymbol{q}_{E}\right)$ with probability $|\beta|^{2}$.
- The conditional state of the system will either be $\propto \psi_{0}\left(\boldsymbol{q}_{S}\right)$ or $\propto \psi_{1}\left(\boldsymbol{q}_{S}\right)$.
- $\psi_{0}\left(\boldsymbol{q}_{S}\right)$ and $\psi_{1}\left(\boldsymbol{q}_{S}\right)$ each evolve according to the Schrödinger equation.
- The current breaks into two terms $\boldsymbol{J}=\boldsymbol{J}_{0}+\boldsymbol{J}_{1}$, with $\boldsymbol{J}_{0}=0$ in the support of $\Phi_{1}\left(\boldsymbol{q}_{E}\right)$ and vice versa, i.e. no cross terms in the guidance equation.
- We get an effective collapse into either $\psi_{0}\left(\boldsymbol{q}_{S}\right) \Phi_{0}\left(\boldsymbol{q}_{E}\right)$ or $\psi_{1}\left(\boldsymbol{q}_{S}\right) \Phi_{1}\left(\boldsymbol{q}_{E}\right)$ and we can use the corresponding current \boldsymbol{J}_{0} or \boldsymbol{J}_{1} in the guidance equation to compute subsequent evolution.

Measurements in de Broglie-Bohm Theory

- If the measurement is an (approximate) position measurement then also $\psi_{0}\left(\boldsymbol{q}_{S}\right) \psi_{1}\left(\boldsymbol{q}_{S}\right) \approx 0$.
- The initial configuration \boldsymbol{Q}_{S} of the system is either in the support of $\psi_{0}\left(\boldsymbol{q}_{S}\right)$ with probability $|\alpha|^{2}$ or in the support of $\psi_{1}\left(\boldsymbol{q}_{S}\right)$ with probability $|\beta|^{2}$.
- The measurement outcome is a deterministic function of \boldsymbol{Q}_{S} : position measurements simply reveal the pre-existing position.
- However, for other observables, e.g. momentum, $\psi_{0}\left(\boldsymbol{q}_{S}\right) \psi_{1}\left(\boldsymbol{q}_{S}\right) \neq 0$, i.e. the initial configuration does not necessarily "belong" to one of the two eigenstates.
- Which measurement outcome occurs is a function of both \boldsymbol{Q}_{S} and \boldsymbol{Q}_{E}.
- Momentum measurement does not measure the dBB momentum $m_{k} \frac{d \overrightarrow{\underline{Q}}_{k}}{d t}$.
- The theory is deterministic: outcome uniquely determined by ontic states of system and measuring device.
- But not outcome deterministic: outcome uniquely determined by ontic state of system on its own.

Treatment of Spin

- In the minimalist Bell approach to dBB , no observables apart from position are part of the primitive ontology.
- Spin only appears in the wavefunction.
- We can write a wavefunction including spin as a spinor, e.g. for a single particle:

$$
\psi_{0}(\vec{q}) \otimes|\uparrow\rangle+\psi_{1}(\vec{q}) \otimes|\downarrow\rangle \quad \rightarrow \quad \bar{\psi}(\vec{q})=\binom{\psi_{0}(\vec{q})}{\psi_{1}(\vec{q})}
$$

- For N spin-1/2 particles, we would have a 2^{N} dimensional spinor vector.
- The guidance equation is now:

$$
\frac{d \vec{Q}_{k}}{d t}=\frac{\hbar}{m_{k}} \frac{\operatorname{Im}\left(\bar{\psi}^{*} \cdot \vec{\nabla}_{k} \bar{\psi}\right)}{\bar{\psi}^{*} \cdot \bar{\psi}}(\boldsymbol{Q})
$$

where \cdot is spinor inner product.

- It is possible instead to have primitive ontic states for any complete orthonormal basis, but discrete bases require a stochastic guidance equation.

Counterinfuilive Feafures of dBB Tirajectories

- dBB trajectories display several features that violate classical intuitions about particle trajectories.
- It is important to note that, if decoherence occurs in an environmental basis that is localized in position, dBB trajectories of the system will approximately follow classical trajectories.
- dBB doesn't owe us anything more than that. So long as:
- It reproduces the predictions of quantum theory in measurements.
- Macroscopic systems typically have approximately classical trajectories. then the theory saves the phenomena.
- Since quantum and classical predictions are different, dBB trajectories must differ from classical ones in some situations.
- The question is only if they are weirder than absolutely necessary to reproduce quantum theory, and whether that is a bad thing.

