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Annhouncements

@ Assignments: Final Version due May 2.
® Homework 4 due April 30.



Conditional Independence

® Two random variables, A and B are independent, denoted A L B if
P(A4,B) = P(A)P(B)
@ The conditional probability of B given A is
P(A,B)
P(BIA) = — 7
@ Independence can equivalently be written as
P(B|A) = P(B) or P(A|B) = P(4)

® Two random variables, A and B are condifionally independent
given C, denoted A 1 B|C if any of the following three equivalent
conditions holds

. P(A|B,C) = P(A|C)
2 P(B|A,C) = P(B|C)
5 P(4,B|C) = P(A|C)P(B|C)




Reichenbach’s Principle

® Scientific realists usually think that correlations need to have causes.
® Reichenbach’s principle encapsulates how this is supposed to work.

@ If A and B are correlated P(4,B) + P(A)P(B) then either:

7. Aisthe cause of B
2 Bisthe cause of A

3. There is a common cause C for both A and B, and A L B|C
P(A,B|C) = P(A|C)P(B|C)



The Markov Condition

® Reichenbach'’s principle can be formulated in the language of
Causal (Bayesian) Networks.

A =0 No alarm
A =1 Alarm sounding

F = 0 No fire in house
F =1 Fire in house

b

B = 0 No burglarin house(
B = 1 Burglar in house

P(A,B,F) = P(A|B,F)P(B)P(F)



The Markov Condition

® We draw a direcfed acyclic graph:
@ The vertices are the random variables.
® We draw an edge from A to B if A is a direct cause of B.
@ The probabilities factor according to the Markov Condifion

P(X1, X3, -, Xn) = P(Xnlpa(Xy)) -+ P(Xz|pa(X2))P(X1|pa(Xy))

where pa(X) denotes the parents of X in the graph.



Another Example

P(A,B,C,D,E) = P(E|C)P(D|B,C)P(C|A)P(B|A)P(A)



Application to Bell Experiments

@ Suppose Alice’s coin flip and answer
Eo pen at spacelike separation to
o)

s coin flip and answer.
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Since Alice and Bob’s wings of the
experiment are spacelike .
separated, according fo special
relativity gX,A cannof be direct
causes of (Y, B) and vice versa.

Let A be a complete description of
the state of affairs in a region that
screens off (X, A) from (Y, B)
Any lightlike path from (X, A) to (Y, B)
via the past must infersect the
region.

= Any common cause of (X, A)
and (Y, B) must be contained in A.



Application to Bell Experiments

@ According to special Relativity,
the possible causal relationships
are:

P(4,B,X,Y, 1)
= P(B|Y, )P(A|X, DP(Y|D)P(X|D)P () ° ° °



Application to Bell Experiments

® However, we normally assume
that the coin flips X and Y are
freely chosen, independently from
the system being measured.

@ This leads to the measurement
independence assumption
X, Y 1L A
P(X,Y|1) = P(X,Y)

® With this, we have

P(A,B,X,Y, 1)

= P(B|Y, D)P(A|X, )P(Y)P(X)P(A)



Application to Bell Experiments
P(A,B,X,Y,A) = P(B|Y,)P(A|X, )P(Y)P(X)P(Q)

@ If we conditionalize on X,Y and A, we get
P(A,B|X,Y,A) = P(B|Y,)P(A|X, )

® This condition is known as local causality

@ To reiterate, it follows from:
@ The Markov condition (Reichenbach’s principle)
@ The causal structure given by special relativity (spacelike separation)

@ The assumption that X and Y are chosen independently of the system being
investigated.



Application to Bell Experiments

@ If we now compute the observed conditional probabilities, we will get
P(A,B|X,Y) = Z P(B|Y, )P(A|X, )P()
2

@ Let’s think about what this says in ferms of the game we discussed |ast
lecture.

® Alice and Bob get together to determine a joint strategy — call it A.

@ Based on A and X, Alice flips a biased coin to determine A with
probability P(A|X, 7).

@ Based on A1 andY, Bob flips a biased coin to determine B with
probability P(B|Y, 7).

® But this is exactly the sort of strategy we showed must satisty the CHSG
inequality.

@ The quantum violation therefore rules out a locally causal model.



Implications

@ If you accept the Markov ® We could instead reject the
condifion and measurement Markov condition:
independence, then there o Correlations do not have to have
must be a superluminal causal causal explanations.
inﬂU@nC? (nonlocality). For ® This is appealing to anti-realists.
example: ® We could modify the Markov

condition:

® Causal explanations work

o‘ e differently in quantum theory.
° o ® We could reject measurement
° iIndependence:

® There is no free choice.

® Your model violates relativity af ® Superdeterminism
the ontological level. ® Retrocausality



Summary of Ontological Models

@ If our interpretation of quantum mechanics fits info the ontological
models framework then it has to have a number of unappealing
features:

® Excess baggage
@ Contextuadlity

® Y-ontology

@ Nonlocality

® Two opfions:

@ Bite the bullet and adopt an interpretation that has these features, viewing
the no-go theorems as justification for why we have to have these features
(de Broglie-Bohm, Spontaneous Collapse theories).

@ Go anti-realist or adopt a more exotic ontology that does not fit into the
ontological models framework (Copenhagenish, many-worlds).



10) Interpretations of Quantum Theory

.. Confinuous Variable Quantum Theory
i. De Broglie-Bohm Theory

i. Spontaneous Collapse Theories

iv. Everett/Many-Worlds

v. Copenhagenish Interpretations



10.i) Continuous Variable Quantum
Theory

® De Broglie-Bohm and Spontaneous Collapse privilege the position
representation of quantum theory, so we will have to quickly review
how this works.

@ There is a good reason for this:

® The world around us looks localized in position, i.e. we do not directly
experience a chair that is in a superposition of two locations.

@ If we add something to quantum theory that localizes objects in position
space, we will be able to explain this and save the phenomena of ordinary
experience.

® Some classical experiences do not seem to be directly related to position,
e.g. the voltage in a circuit or my experience of color.

® However, the claim is that these can always be explained in tferms of position,
e.g. the position of a needle on a voltmeter or the positions of electrons in my
synapses.



Position

® Recall that observables in quantum theory are Hermitian operators.

Their eigenvalues are the possible values that can be obtained in @
measurement.

@ If we want position to be described in this way then we need a

Hermitian operator with a continuum of eigenvalues and
eigenvectors:

+00
9?=J dx x|x){(x|

® Compare this to the discrete case

A=) alo)e,
J



Position

® In the discrete case, the eigenstates |¢;) form a complete
orthonormal basis, so we can write any state as

)= al))

]
® We can recover the coefficients a; via a; = (¢;|).

®@ We want the position eigenstates to form a complete orthonormal
basis, so that we can write a state as

) = f dx ()|x)

where (x) is a function (called the wavefunction) that replaces «;.



The Dirac §-Function

@ We would like to preserve the formula ¥(x) = (x|y) which
generalizes a; = (¢;[).

® In order to do this, we need o
W) = (el = | el

® SO we need the inner product (x|x") to be a “function” (x|x") =
S(x" — x) that behoveJrsoJike:

j dx' xS — %) = P(x)

@ The generalized function § (x" — x) is called the Dirac §-function.



The Dirac d-function

® To recap, the Dirac 6—qug:oTion J(x) Is defined by the property
| arsere = o

for any function f(x).

® Roughly speaking, it takes the value « at x = 0 and is zero
elsewhere.

@ If we have the defining property, then by change of variables we
will have

[ ax pense -0 =

as required.



Posliion Eigenstates

® The position eigenstates safisfy
(x|x") = 6(x" — x)
® Compare this with the discrete cose
CHEE
® The Dirac §(x" — x) plays the same role as the Kronecker 6, but
there is an important difference.
® 6;; = 1, so our orthonormal basis consists of unit vectors.
® 6(0) = o0, SO |x) vectors are not normalized. They are unnormalizable.

o Still, we freat (x|x") = §(x" — x) as the correct condition for an
orthonormal basis in the confinuum case.

® We still have the convenient completeness relation

+ 00

[ = dx |x){(x]

— 00



Position Eigenstates and Probabilities

® Note: The |x) state is the eigenstate of the position operator X with
eigenvalue x,

xX|x) = x|x)

® We can take this as the defining property of |x).

o In the discrete case, |(¢;])|” is the probability of obtaining value a,
in a measurement of 4 when the system is prepared in state |).

® In tThe continuum, we have

[(xyp)

+00
= f dx’
o J

2 — (lx)xlp) = f ax’ j A’ () (o ) (el Y (™)
()8 — 2D — DY) = YY) = 012

— 00



Position Eigenstates and Probabilities

@ Since we are dealing with the continuum, we have 1o interpret
[(x|P)? = [ ()2

as the probability density for finding the particle at x in a position
measurement. In other words

b
Prob(a <x <b) = f dx [y (x)]*

® In order to have this in’reerrre’ro’rion, we need

Wiy = Wlilw) = [ ax @l = [ axy v

- j i oo = 1

co

@ Physically realizable states must be normalized = |x) is not a
realizable state.



Momenium

@ We also want a Hermitian operator representing a parficle’s
momentum. We can proceed as with position and just define an
operator

+00
5 = j dp pIp)®|

where |p) is a state of definite momentum p and the eigenstates

safisty
(p'lp) =6 —p")
® That works, but we need to know how the |x) and |p) states are

related to each other. For that, we actually have to do some
physics.



Wave-Particle Duality

® One of the founding ideas of quantum mechanics is that particles
sometimes exhibit wave-like behavior and vice versa.

® The de Broglie hypothesis states that a free particle of momentum p
Is associated with a plane wave of wave-number k saftisfying
p = hk
® his a constant called Planck’s consfant. In this course, we have
been implicitly working in units such that A = 1, so we'll use p = k.

@ If the particle has energy E then Planck’s hypothesis says that the
wave has angular frequency w satisfying
E=hw

or E = w in our units.



Momentum In the Position Basis

® The upshot is that we expect the wavefunction of a momentum state to
be a plane wave, i.e.

+ oo + 00
|p> J dx el(kx wt)|x> J dx el(px Et)|x>

so that
P, (x) = (x|p) = Ae'P¥~ED
® Now, note that
G
0x
@ Therefore, it we want plp) = p|pl we need to have

.0
o) = [ ax (<122

= —iAipe!P*~ED = py (x)




Momentum In the Position Basis

® The momentum operator p maps a wavefunction y(x) to —ig—f.

® We say that the position representation of the momentum operator
IS



Canonical Commutation Relations

® We can now determine that the position and momentum operators
do not commute. In fact

[£,p] =%p—px =il
which is called the canonical commutation relation.
@ Note: We are often lazy and write [X,p] = i.

@ This is responsible for the uncertainty principle: There are no states
that predict a precise value for both ¥ and p.

® To derive the commutation relation, we show that
1%, D]11Y) = i)

for any vector [y).



Canonical Commutation Relations

[2,p11Y) = (& — pR) [, dx (x)|x)
= [ dx [RBY(0)]x)) — PERPY(x)|x))]
= f_t: dx [x (—ig—f) — (—i% (xtp(x)))] |x)
= lfj;o dx [—xg—f + P(x) + xz—lﬂ | x)

=i [ dx ()|x) = i)



Functions of Operators

® Suppose a function f(t) has a Taylor series

FO =) ant"

n=0
o Then, for an operator 4, we define

f(A) =) andr
n=0

. 1 1 A
® In particular, e4 = Y=o A"

® From this you can derive that, if A and B commute then
eApB — pA+B



Formal Solution of the Schrodinger
Equation

® Note that, if 4 is Hermitian, then U = !4 is Uni’rcry

OT0 = e~ AT plA — p-id, iA _ —iA+iA _

N)

® We know that discrete time dynamics is unitary
[W(t)) = UL, to) |y (Ep))
® and that confinuous time dynomlcs safisfies the Schrodinger equation

@) _ _ Al O)

0 ——
L U(t tO) [Y(te)) = HU(E, to) |y (Eo))

® Because this has to hold for “any inifial state [P (ty)), we have
aU(t o) =00t
at ( ) 0)




Formal Solution of the Schrodinger
Equation

o If H is independent of time, then the solution to this equation is

U(t, ty) = e~ tH(t-to)

® Check;

al(t,t o - o
i (Ot o) _ i(—ifle=(E=t0)) = Fe~i=to) = F(t, to)

® Note, we want U(ty, t,) = I, which is why we must have (t — t,) in the
exponential rather than (t + a) for an arbitrary a.

® The operator U(t, t,) is called the propagator.



Translation Operators

® An operator of the form U(a) = e~'? is called a translation operator.
® U(a) is unitary because —ap is Hermitian.

® Next, consider U(Aa)xUT(Aa) for small Aa

U(Aa)2UT(Aa) = (I —irap)x([ + iAap) + 0(Aa?)
= X + iAa(Xp — pX) + 0(Aa?)
= % + iAa[Z, P]
= % + iAa(il)
=% — Aal



Translation Operators

® From this, we can derive




Translation Operators

® Further, we can derive
U(a)|x) =|x + a)
® Start with the eigenvalue equation and act with U(a)

xX|x) = x|x)
U(@)x|x) = xU(a)|x)
U@)xUT(a)U(a)|x) = xU(a)|x) by unitatiry
(2 —al)(U(a)|x)) = x(T(a)|x))
2(U(@lx)) = (x + a)(U(a)|x))

® In other words, U(a)|x) is an eigenstate of £ with eigenvalue x + a,
which is precisely the definition of |x + a).



Translation Operators

® We can now see what U(a) does to the wavefunction y(x)

T(@)lp) = f dx YT (@)|x)
= f oodx Y(x)|x + a)
r_-P%o

- [ axpe-am

® The wavefunction ¢'(x) = (x|T(a)|[¢) = ¥(x — a) of U(a)|p) is the
wavefunction of |Y), franslated to the right by a. Hence the name
translation operator.




Translation Hamiltionian

® Suppose now that the Hamiltonian of our system is proportional 1o
the momentum

AN

H=gp

o The propagator U(t, t,) = e~9(E-t)? js o translation operator, so the
wavefunction will move to the right at a rate g.

5 gt —ty)

()
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