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 Two random variables, 𝐴 and 𝐵 are independent, denoted 𝐴 ⊥ 𝐵 if
𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝑃(𝐵)

 The conditional probability of 𝐵 given 𝐴 is

𝑃 𝐵 𝐴 =
𝑃(𝐴, 𝐵)

𝑃(𝐴)

 Independence can equivalently be written as

𝑃 𝐵 𝐴 = 𝑃(𝐵) or        𝑃 𝐴 𝐵 = 𝑃(𝐴)

 Two random variables, 𝐴 and 𝐵 are conditionally independent 
given 𝐶, denoted 𝐴 ⊥ 𝐵|𝐶 if any of the following three equivalent 
conditions holds

1. 𝑃 𝐴 𝐵, 𝐶 = 𝑃 𝐴 𝐶

2. 𝑃 𝐵 𝐴, 𝐶 = 𝑃 𝐵 𝐶

3. 𝑃 𝐴, 𝐵 𝐶 = 𝑃 𝐴 𝐶 𝑃(𝐵|𝐶)



 Scientific realists usually think that correlations need to have causes.

 Reichenbach’s principle encapsulates how this is supposed to work.

 If 𝐴 and 𝐵 are correlated 𝑃 𝐴, 𝐵 ≠ 𝑃 𝐴 𝑃(𝐵) then either:

1. 𝐴 is the cause of 𝐵

2. 𝐵 is the cause of 𝐴

3. There is a common cause 𝐶 for both 𝐴 and 𝐵, and 𝐴 ⊥ 𝐵|𝐶
𝑃 𝐴, 𝐵 𝐶 = 𝑃 𝐴 𝐶 𝑃(𝐵|𝐶)



 Reichenbach’s principle can be formulated in the language of 
Causal (Bayesian) Networks.

𝑃 𝐴, 𝐵, 𝐹 = 𝑃 𝐴 𝐵, 𝐹 𝑃 𝐵 𝑃(𝐹)

𝐴 = 0 No alarm

𝐴 = 1 Alarm sounding

𝐵 = 0 No burglar in house

𝐵 = 1 Burglar in house

𝐹 = 0 No fire in house

𝐹 = 1 Fire in house



 We draw a directed acyclic graph:

 The vertices are the random variables.

 We draw an edge from 𝐴 to 𝐵 if 𝐴 is a direct cause of 𝐵.

 The probabilities factor according to the Markov Condition

𝑃 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 = 𝑃(𝑋𝑛|pa(𝑋𝑛))⋯𝑃(𝑋2|pa(𝑋2))𝑃(𝑋1|pa(𝑋1))

where pa 𝑋 denotes the parents of 𝑋 in the graph.



𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐸 𝐶 𝑃 𝐷 𝐵, 𝐶 𝑃 𝐶 𝐴 𝑃 𝐵 𝐴 𝑃(𝐴)



 Suppose Alice’s coin flip and answer 
happen at spacelike separation to 
Bob’s coin flip and answer.

• Since Alice and Bob’s wings of the 
experiment are spacelike 
separated, according to special 
relativity (𝑋, 𝐴) cannot be direct 
causes of (𝑌, 𝐵) and vice versa.

• Let 𝜆 be a complete description of 
the state of affairs in a region that 
screens off 𝑋, 𝐴 from (𝑌, 𝐵)
• Any lightlike path from (X, A) to (𝑌, 𝐵)

via the past must intersect the 
region.

• ⇒ Any common cause of (𝑋, 𝐴)
and (𝑌, 𝐵) must be contained in 𝜆.



 According to special Relativity, 
the possible causal relationships 
are:

𝑃 𝐴, 𝐵, 𝑋, 𝑌, 𝜆

= 𝑃 𝐵 𝑌, 𝜆 𝑃 𝐴 𝑋, 𝜆 𝑃 𝑌 𝜆 𝑃 𝑋 𝜆 𝑃(𝜆)



 However, we normally assume 
that the coin flips 𝑋 and 𝑌 are 
freely chosen, independently from 
the system being measured.

 This leads to the measurement 
independence assumption

𝑋, 𝑌 ⊥ 𝜆
𝑃 𝑋, 𝑌 𝜆 = 𝑃(𝑋, 𝑌)

 With this, we have

𝑃 𝐴, 𝐵, 𝑋, 𝑌, 𝜆

= 𝑃 𝐵 𝑌, 𝜆 𝑃 𝐴 𝑋, 𝜆 𝑃(𝑌)𝑃(𝑋)𝑃(𝜆)



𝑃 𝐴, 𝐵, 𝑋, 𝑌, 𝜆 = 𝑃 𝐵 𝑌, 𝜆 𝑃 𝐴 𝑋, 𝜆 𝑃(𝑌)𝑃(𝑋)𝑃(𝜆)

 If we conditionalize on 𝑋, 𝑌 and 𝜆, we get
𝑃 𝐴, 𝐵 𝑋, 𝑌, 𝜆 = 𝑃 𝐵 𝑌, 𝜆 𝑃(𝐴|𝑋, 𝜆)

 This condition is known as local causality

 To reiterate, it follows from:

 The Markov condition (Reichenbach’s principle)

 The causal structure given by special relativity (spacelike separation)

 The assumption that 𝑋 and 𝑌 are chosen independently of the system being 
investigated.



 If we now compute the observed conditional probabilities, we will get

𝑃 𝐴, 𝐵 𝑋, 𝑌 =

𝜆

𝑃 𝐵 𝑌, 𝜆 𝑃 𝐴 𝑋, 𝜆 𝑃(𝜆)

 Let’s think about what this says in terms of the game we discussed last 
lecture.

 Alice and Bob get together to determine a joint strategy – call it 𝜆.

 Based on 𝜆 and 𝑋, Alice flips a biased coin to determine 𝐴 with 
probability 𝑃(𝐴|𝑋, 𝜆).

 Based on 𝜆 and 𝑌, Bob flips a biased coin to determine 𝐵 with 
probability 𝑃(𝐵|𝑌, 𝜆).

 But this is exactly the sort of strategy we showed must satisfy the CHSG 
inequality.

 The quantum violation therefore rules out a locally causal model.



 If you accept the Markov 
condition and measurement 
independence, then there 
must be a superluminal causal 
influence (nonlocality).  For 
example:

 Your model violates relativity at 
the ontological level.

 We could instead reject the 
Markov condition:
 Correlations do not have to have 

causal explanations.

 This is appealing to anti-realists.

 We could modify the Markov 
condition:
 Causal explanations work 

differently in quantum theory.

 We could reject measurement 
independence:
 There is no free choice.

 Superdeterminism

 Retrocausality



 If our interpretation of quantum mechanics fits into the ontological 
models framework then it has to have a number of unappealing 
features:

 Excess baggage

 Contextuality

 𝜓-ontology

 Nonlocality

 Two options:

 Bite the bullet and adopt an interpretation that has these features, viewing 
the no-go theorems as justification for why we have to have these features 
(de Broglie-Bohm, Spontaneous Collapse theories).

 Go anti-realist or adopt a more exotic ontology that does not fit into the 
ontological models framework (Copenhagenish, many-worlds).



i. Continuous Variable Quantum Theory

ii. De Broglie-Bohm Theory

iii. Spontaneous Collapse Theories

iv. Everett/Many-Worlds

v. Copenhagenish Interpretations



 De Broglie-Bohm and Spontaneous Collapse privilege the position 
representation of quantum theory, so we will have to quickly review 
how this works.

 There is a good reason for this:

 The world around us looks localized in position, i.e. we do not directly 
experience a chair that is in a superposition of two locations.

 If we add something to quantum theory that localizes objects in position 
space, we will be able to explain this and save the phenomena of ordinary 
experience.

 Some classical experiences do not seem to be directly related to position, 
e.g. the voltage in a circuit or my experience of color.

 However, the claim is that these can always be explained in terms of position, 
e.g. the position of a needle on a voltmeter or the positions of electrons in my 
synapses.



 Recall that observables in quantum theory are Hermitian operators.  
Their eigenvalues are the possible values that can be obtained in a 
measurement.

 If we want position to be described in this way then we need a 
Hermitian operator with a continuum of eigenvalues and 
eigenvectors:

ො𝑥 = න
−∞

+∞

d𝑥 𝑥|𝑥⟩⟨𝑥|

 Compare this to the discrete case

መ𝐴 =

𝑗

𝑎𝑗|𝜙𝑗⟩⟨𝜙𝑗|



 In the discrete case, the eigenstates |𝜙𝑗⟩ form a complete 
orthonormal basis, so we can write any state as

𝜓 =

𝑗

𝛼𝑗|𝜙𝑗⟩

 We can recover the coefficients 𝛼𝑗 via 𝛼𝑗 = ⟨𝜙𝑗|𝜓⟩.

 We want the position eigenstates to form a complete orthonormal 
basis, so that we can write a state as

𝜓 = න
−∞

+∞

d𝑥 𝜓 𝑥 |𝑥⟩

where 𝜓(𝑥) is a function (called the wavefunction) that replaces 𝛼𝑗.



 We would like to preserve the formula 𝜓 𝑥 = ⟨𝑥|𝜓⟩ which 
generalizes 𝛼𝑗 = ⟨𝜙𝑗|𝜓⟩.

 In order to do this, we need

𝜓 𝑥 = 𝑥 𝜓 = න
−∞

+∞

d𝑥′𝜓 𝑥′ 𝑥 𝑥′

 So we need the inner product ⟨𝑥|𝑥′⟩ to be a “function” 𝑥 𝑥′ =
𝛿(𝑥′ − 𝑥) that behaves like:

න
−∞

+∞

d𝑥′ 𝜓 𝑥′ 𝛿 𝑥′ − 𝑥 = 𝜓(𝑥)

 The generalized function 𝛿(𝑥′ − 𝑥) is called the Dirac 𝛿-function.



 To recap, the Dirac 𝛿-function 𝛿(𝑥) is defined by the property

න
−∞

+∞

d𝑥 𝛿 𝑥 𝑓(𝑥) = 𝑓(0)

for any function 𝑓(𝑥).

 Roughly speaking, it takes the value ∞ at 𝑥 = 0 and is zero 
elsewhere.

 If we have the defining property, then by change of variables we 
will have

න
−∞

+∞

d𝑥′ 𝑓 𝑥′ 𝛿 𝑥′ − 𝑥 = 𝑓(𝑥)

as required.



 The position eigenstates satisfy
𝑥 𝑥′ = 𝛿(𝑥′ − 𝑥)

 Compare this with the discrete case
𝜙𝑗 𝜙𝑘 = 𝛿𝑗𝑘

 The Dirac 𝛿(𝑥′ − 𝑥) plays the same role as the Kronecker 𝛿𝑗𝑘, but 
there is an important difference.
 𝛿𝑗𝑗 = 1, so our orthonormal basis consists of unit vectors.

 𝛿 0 = ∞, so |𝑥⟩ vectors are not normalized.  They are unnormalizable.

 Still, we treat 𝑥 𝑥′ = 𝛿(𝑥′ − 𝑥) as the correct condition for an 
orthonormal basis in the continuum case.

 We still have the convenient completeness relation

መ𝐼 = න
−∞

+∞

d𝑥 |𝑥⟩⟨𝑥|



 Note: The |𝑥⟩ state is the eigenstate of the position operator ො𝑥 with 
eigenvalue 𝑥,

ො𝑥 𝑥 = 𝑥 𝑥

 We can take this as the defining property of 𝑥 .

 In the discrete case, 𝜙𝑗 𝜓
2

is the probability of obtaining value 𝑎𝑗
in a measurement of መ𝐴 when the system is prepared in state |𝜓⟩.

 In the continuum, we have

𝑥 𝜓 2 = 𝜓 𝑥 𝑥 𝜓 = න
−∞

+∞

d𝑥′න
−∞

+∞

d𝑥′′ 𝜓∗(𝑥′)⟨𝑥′|𝑥⟩⟨𝑥|𝑥′′⟩𝜓(𝑥′′)

= න
−∞

+∞

d𝑥′න
−∞

+∞

d𝑥′′ 𝜓∗ 𝑥′ 𝛿 𝑥 − 𝑥′ 𝛿 𝑥′′ − 𝑥 𝜓 𝑥′′ = 𝜓∗ 𝑥 𝜓 𝑥 = 𝜓 𝑥 2



 Since we are dealing with the continuum, we have to interpret
𝑥 𝜓 2 = 𝜓 𝑥 2

as the probability density for finding the particle at 𝑥 in a position 
measurement.  In other words

Prob 𝑎 ≤ 𝑥 ≤ 𝑏 = න
𝑎

𝑏

d𝑥 𝜓 𝑥 2

 In order to have this interpretation, we need

𝜓 𝜓 = 𝜓 መ𝐼 𝜓 = න
−∞

+∞

d𝑥 𝜓 𝑥 𝑥 𝜓 =න
−∞

+∞

d𝑥 𝜓∗(𝑥)𝜓(𝑥)

= න
−∞

+∞

d𝑥 𝜓 𝑥 2 = 1

 Physically realizable states must be normalized ⇒ |𝑥⟩ is not a 
realizable state.



 We also want a Hermitian operator representing a particle’s 
momentum.  We can proceed as with position and just define an 
operator

Ƹ𝑝 = න
−∞

+∞

d𝑝 𝑝|𝑝⟩⟨𝑝|

where |𝑝⟩ is a state of definite momentum 𝑝 and the eigenstates 
satisfy

𝑝′ 𝑝 = 𝛿(𝑝 − 𝑝′)

 That works, but we need to know how the |𝑥⟩ and |𝑝⟩ states are 
related to each other.  For that, we actually have to do some 
physics.



 One of the founding ideas of quantum mechanics is that particles 
sometimes exhibit wave-like behavior and vice versa.

 The de Broglie hypothesis states that a free particle of momentum 𝑝
is associated with a plane wave of wave-number 𝑘 satisfying

𝑝 = ℏ𝑘

 ℏ is a constant called Planck’s constant.  In this course, we have 
been implicitly working in units such that ℏ = 1, so we’ll use 𝑝 = 𝑘.

 If the particle has energy 𝐸 then Planck’s hypothesis says that the 
wave has angular frequency 𝜔 satisfying

𝐸 = ℏ𝜔

or 𝐸 = 𝜔 in our units.



 The upshot is that we expect the wavefunction of a momentum state to 
be a plane wave, i.e.

𝑝 = 𝐴න
−∞

+∞

d𝑥 𝑒𝑖 𝑘𝑥−𝜔𝑡 |𝑥⟩ = 𝐴න
−∞

+∞

d𝑥 𝑒𝑖 𝑝𝑥−𝐸𝑡 |𝑥⟩

so that
𝜓𝑝 𝑥 = 𝑥 𝑝 = 𝐴𝑒𝑖 𝑝𝑥−𝐸𝑡

 Now, note that

−𝑖
𝜕𝜓𝑝 𝑥

𝜕𝑥
= −𝑖𝐴𝑖𝑝𝑒𝑖 𝑝𝑥−𝐸𝑡 = 𝑝𝜓𝑝(𝑥)

 Therefore, if we want Ƹ𝑝 𝑝 = 𝑝|𝑝⟩ we need to have

Ƹ𝑝 𝜓 = න
−∞

+∞

d𝑥 −𝑖
𝜕𝜓(𝑥)

𝜕𝑥
|𝑥⟩



 The momentum operator Ƹ𝑝 maps a wavefunction 𝜓(𝑥) to −𝑖
𝜕𝜓

𝜕𝑥
.

 We say that the position representation of the momentum operator 
is

ොp → −𝑖
𝜕

𝜕𝑥



 We can now determine that the position and momentum operators 
do not commute.  In fact

ො𝑥, Ƹ𝑝 = ො𝑥 Ƹ𝑝 − Ƹ𝑝 ො𝑥 = 𝑖 መ𝐼

which is called the canonical commutation relation.

 Note: We are often lazy and write ො𝑥, Ƹ𝑝 = 𝑖.

 This is responsible for the uncertainty principle: There are no states 
that predict a precise value for both ො𝑥 and Ƹ𝑝.

 To derive the commutation relation, we show that
ො𝑥, Ƹ𝑝 |𝜓⟩ = 𝑖|𝜓⟩

for any vector |𝜓⟩.



ො𝑥, Ƹ𝑝 𝜓 = ො𝑥 Ƹ𝑝 − Ƹ𝑝 ො𝑥 ∞−
+∞

d𝑥 𝜓 𝑥 |𝑥⟩

= ∞−
+∞

d𝑥 ො𝑥( Ƹ𝑝𝜓(𝑥)|𝑥⟩) − Ƹ𝑝( ො𝑥𝜓(𝑥)|𝑥⟩)

= ∞−
+∞

d𝑥 𝑥 −𝑖
𝜕𝜓

𝜕𝑥
− −𝑖

𝜕

𝜕𝑥
𝑥𝜓 𝑥 |𝑥⟩

= 𝑖 ∞−
+∞

d𝑥 −𝑥
𝜕𝜓

𝜕𝑥
+ 𝜓 𝑥 + 𝑥

𝜕𝜓

𝜕𝑥
|𝑥⟩

= 𝑖 ∞−
+∞

d𝑥 𝜓(𝑥)|𝑥⟩ = 𝑖|𝜓⟩



 Suppose a function 𝑓(𝑡) has a Taylor series

𝑓 𝑡 = 

𝑛=0

∞

𝑎𝑛𝑡
𝑛

 Then, for an operator መ𝐴, we define

𝑓 መ𝐴 = 

𝑛=0

∞

𝑎𝑛 መ𝐴
𝑛

 In particular, 𝑒 𝐴 = σ𝑛=0
∞ 1

𝑛!
መ𝐴𝑛

 From this you can derive that, if መ𝐴 and 𝐵 commute then

𝑒 𝐴𝑒 𝐵 = 𝑒 𝐴+ 𝐵



 Note that, if መ𝐴 is Hermitian, then 𝑈 = 𝑒𝑖 𝐴 is unitary
𝑈† 𝑈 = 𝑒−𝑖 𝐴

†
𝑒𝑖 𝐴 = 𝑒−𝑖 𝐴𝑒𝑖 𝐴 = 𝑒−𝑖 𝐴+𝑖 𝐴 = 𝑒𝑖0 = መ𝐼

 We know that discrete time dynamics is unitary
𝜓 𝑡 = 𝑈 𝑡, 𝑡0 |𝜓 𝑡0 ⟩

 and that continuous time dynamics satisfies the Schrödinger equation

𝑖
𝜕|𝜓 𝑡 ⟩

𝜕𝑡
= 𝐻 𝜓 𝑡

⇒ 𝑖
𝜕𝑈 𝑡, 𝑡0

𝜕𝑡
|𝜓 𝑡0 ⟩ = 𝐻𝑈(𝑡, 𝑡0)|𝜓 𝑡0 ⟩

 Because this has to hold for any initial state |𝜓 𝑡0 ⟩, we have

𝑖
𝜕𝑈 𝑡, 𝑡0

𝜕𝑡
= 𝐻𝑈(𝑡, 𝑡0)



 If 𝐻 is independent of time, then the solution to this equation is

𝑈 𝑡, 𝑡0 = 𝑒−𝑖 𝐻 𝑡−𝑡0

 Check:

𝑖
𝜕𝑈 𝑡, 𝑡0

𝜕𝑡
= 𝑖 −𝑖 𝐻𝑒−𝑖 𝐻 𝑡−𝑡0 = 𝐻𝑒−𝑖 𝐻 𝑡−𝑡0 = 𝐻𝑈(𝑡, 𝑡0)

 Note, we want 𝑈 𝑡0, 𝑡0 = መ𝐼, which is why we must have (𝑡 − 𝑡0) in the 
exponential rather than (𝑡 + 𝑎) for an arbitrary 𝑎.

 The operator 𝑈(𝑡, 𝑡0) is called the propagator.



 An operator of the form 𝑈 𝑎 = 𝑒−𝑖𝑎 ො𝑝 is called a translation operator.

 𝑈(𝑎) is unitary because −𝑎 Ƹ𝑝 is Hermitian.

 Next, consider 𝑈 Δ𝑎 ො𝑥𝑈† Δ𝑎 for small Δ𝑎

𝑈 Δ𝑎 ො𝑥𝑈† Δ𝑎 = መ𝐼 − 𝑖Δ𝑎 Ƹ𝑝 ො𝑥 መ𝐼 + 𝑖Δ𝑎 Ƹ𝑝 + 𝑂(Δ𝑎2)

= ො𝑥 + 𝑖Δ𝑎 ො𝑥 Ƹ𝑝 − Ƹ𝑝 ො𝑥 + 𝑂(Δ𝑎2)

= ො𝑥 + 𝑖Δ𝑎 ො𝑥, Ƹ𝑝

= ො𝑥 + 𝑖Δ𝑎(𝑖 መ𝐼)

= ො𝑥 − Δ𝑎 መ𝐼



 From this, we can derive
𝑈 𝑎 ො𝑥 𝑈† 𝑎 = ො𝑥 − 𝑎 መ𝐼

𝑈 𝑎 ො𝑥𝑈† 𝑎 = lim
𝑁→∞

𝑈
𝑎

𝑁

𝑁
ො𝑥 𝑈† 𝑎

𝑁

𝑁

= lim
𝑁→∞

𝑈
𝑎

𝑁

𝑁−1
ො𝑥 −

𝑎

𝑁
መ𝐼 𝑈† 𝑎

𝑁

𝑁−1
+ 𝑂

1

𝑁2

= lim
𝑁→∞

𝑈
𝑎

𝑁

𝑁−1
ො𝑥 𝑈† 𝑎

𝑁

𝑁−1
−

𝑎

𝑁
መ𝐼 + 𝑂

1

𝑁2

= lim
𝑁→∞

ො𝑥 − 𝑎 መ𝐼 + 𝑂
1

𝑁
= ො𝑥 − 𝑎 መ𝐼



 Further, we can derive
𝑈 𝑎 𝑥 = |𝑥 + 𝑎⟩

 Start with the eigenvalue equation and act with 𝑈(𝑎)

ො𝑥 𝑥 = 𝑥 𝑥
𝑈 𝑎 ො𝑥 𝑥 = 𝑥𝑈 𝑎 𝑥

𝑈 𝑎 ො𝑥𝑈† 𝑎 𝑈 𝑎 𝑥 = 𝑥𝑈 𝑎 |𝑥⟩ by unitatiry

ො𝑥 − 𝑎 መ𝐼 𝑈 𝑎 𝑥 = 𝑥 𝑈 𝑎 |𝑥⟩

ො𝑥 𝑈 𝑎 𝑥 = (𝑥 + 𝑎) 𝑈 𝑎 |𝑥⟩

 In other words, 𝑈 𝑎 𝑥 is an eigenstate of ො𝑥 with eigenvalue 𝑥 + 𝑎, 
which is precisely the definition of |𝑥 + 𝑎⟩.



 We can now see what 𝑈(𝑎) does to the wavefunction 𝜓(𝑥)

𝑈 𝑎 𝜓 = න
−∞

+∞

d𝑥 𝜓 𝑥 𝑈(𝑎)|𝑥⟩

= න
−∞

+∞

d𝑥 𝜓 𝑥 |𝑥 + 𝑎⟩

= න
−∞

+∞

d𝑥 𝜓 𝑥 − 𝑎 |𝑥⟩

 The wavefunction 𝜓′ 𝑥 = 𝑥 𝑈 𝑎 𝜓 = 𝜓 𝑥 − 𝑎 of 𝑈 𝑎 𝜓 is the 
wavefunction of |𝜓⟩, translated to the right by 𝑎.  Hence the name 
translation operator.



 Suppose now that the Hamiltonian of our system is proportional to 
the momentum

𝐻 = 𝑔 Ƹ𝑝

 The propagator 𝑈 𝑡, 𝑡0 = 𝑒−𝑖𝑔 𝑡−𝑡0 ො𝑝 is a translation operator, so the 
wavefunction will move to the right at a rate 𝑔.

𝜓(𝑡0) 𝜓(𝑡)

𝑔(𝑡 − 𝑡0)


