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 Two random variables, 𝐴 and 𝐵 are independent, denoted 𝐴 ⊥ 𝐵 if
𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝑃(𝐵)

 The conditional probability of 𝐵 given 𝐴 is

𝑃 𝐵 𝐴 =
𝑃(𝐴, 𝐵)

𝑃(𝐴)

 Independence can equivalently be written as

𝑃 𝐵 𝐴 = 𝑃(𝐵) or        𝑃 𝐴 𝐵 = 𝑃(𝐴)

 Two random variables, 𝐴 and 𝐵 are conditionally independent 
given 𝐶, denoted 𝐴 ⊥ 𝐵|𝐶 if any of the following three equivalent 
conditions holds

1. 𝑃 𝐴 𝐵, 𝐶 = 𝑃 𝐴 𝐶

2. 𝑃 𝐵 𝐴, 𝐶 = 𝑃 𝐵 𝐶

3. 𝑃 𝐴, 𝐵 𝐶 = 𝑃 𝐴 𝐶 𝑃(𝐵|𝐶)



 Scientific realists usually think that correlations need to have causes.

 Reichenbach’s principle encapsulates how this is supposed to work.

 If 𝐴 and 𝐵 are correlated 𝑃 𝐴, 𝐵 ≠ 𝑃 𝐴 𝑃(𝐵) then either:

1. 𝐴 is the cause of 𝐵

2. 𝐵 is the cause of 𝐴

3. There is a common cause 𝐶 for both 𝐴 and 𝐵, and 𝐴 ⊥ 𝐵|𝐶
𝑃 𝐴, 𝐵 𝐶 = 𝑃 𝐴 𝐶 𝑃(𝐵|𝐶)



 Reichenbach’s principle can be formulated in the language of 
Causal (Bayesian) Networks.

𝑃 𝐴, 𝐵, 𝐹 = 𝑃 𝐴 𝐵, 𝐹 𝑃 𝐵 𝑃(𝐹)

𝐴 = 0 No alarm

𝐴 = 1 Alarm sounding

𝐵 = 0 No burglar in house

𝐵 = 1 Burglar in house

𝐹 = 0 No fire in house

𝐹 = 1 Fire in house



 We draw a directed acyclic graph:

 The vertices are the random variables.

 We draw an edge from 𝐴 to 𝐵 if 𝐴 is a direct cause of 𝐵.

 The probabilities factor according to the Markov Condition

𝑃 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 = 𝑃(𝑋𝑛|pa(𝑋𝑛))⋯𝑃(𝑋2|pa(𝑋2))𝑃(𝑋1|pa(𝑋1))

where pa 𝑋 denotes the parents of 𝑋 in the graph.



𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐸 𝐶 𝑃 𝐷 𝐵, 𝐶 𝑃 𝐶 𝐴 𝑃 𝐵 𝐴 𝑃(𝐴)



 Suppose Alice’s coin flip and answer 
happen at spacelike separation to 
Bob’s coin flip and answer.

• Since Alice and Bob’s wings of the 
experiment are spacelike 
separated, according to special 
relativity (𝑋, 𝐴) cannot be direct 
causes of (𝑌, 𝐵) and vice versa.

• Let 𝜆 be a complete description of 
the state of affairs in a region that 
screens off 𝑋, 𝐴 from (𝑌, 𝐵)
• Any lightlike path from (X, A) to (𝑌, 𝐵)

via the past must intersect the 
region.

• ⇒ Any common cause of (𝑋, 𝐴)
and (𝑌, 𝐵) must be contained in 𝜆.



 According to special Relativity, 
the possible causal relationships 
are:

𝑃 𝐴, 𝐵, 𝑋, 𝑌, 𝜆

= 𝑃 𝐵 𝑌, 𝜆 𝑃 𝐴 𝑋, 𝜆 𝑃 𝑌 𝜆 𝑃 𝑋 𝜆 𝑃(𝜆)



 However, we normally assume 
that the coin flips 𝑋 and 𝑌 are 
freely chosen, independently from 
the system being measured.

 This leads to the measurement 
independence assumption

𝑋, 𝑌 ⊥ 𝜆
𝑃 𝑋, 𝑌 𝜆 = 𝑃(𝑋, 𝑌)

 With this, we have

𝑃 𝐴, 𝐵, 𝑋, 𝑌, 𝜆

= 𝑃 𝐵 𝑌, 𝜆 𝑃 𝐴 𝑋, 𝜆 𝑃(𝑌)𝑃(𝑋)𝑃(𝜆)



𝑃 𝐴, 𝐵, 𝑋, 𝑌, 𝜆 = 𝑃 𝐵 𝑌, 𝜆 𝑃 𝐴 𝑋, 𝜆 𝑃(𝑌)𝑃(𝑋)𝑃(𝜆)

 If we conditionalize on 𝑋, 𝑌 and 𝜆, we get
𝑃 𝐴, 𝐵 𝑋, 𝑌, 𝜆 = 𝑃 𝐵 𝑌, 𝜆 𝑃(𝐴|𝑋, 𝜆)

 This condition is known as local causality

 To reiterate, it follows from:

 The Markov condition (Reichenbach’s principle)

 The causal structure given by special relativity (spacelike separation)

 The assumption that 𝑋 and 𝑌 are chosen independently of the system being 
investigated.



 If we now compute the observed conditional probabilities, we will get

𝑃 𝐴, 𝐵 𝑋, 𝑌 =෍

𝜆

𝑃 𝐵 𝑌, 𝜆 𝑃 𝐴 𝑋, 𝜆 𝑃(𝜆)

 Let’s think about what this says in terms of the game we discussed last 
lecture.

 Alice and Bob get together to determine a joint strategy – call it 𝜆.

 Based on 𝜆 and 𝑋, Alice flips a biased coin to determine 𝐴 with 
probability 𝑃(𝐴|𝑋, 𝜆).

 Based on 𝜆 and 𝑌, Bob flips a biased coin to determine 𝐵 with 
probability 𝑃(𝐵|𝑌, 𝜆).

 But this is exactly the sort of strategy we showed must satisfy the CHSG 
inequality.

 The quantum violation therefore rules out a locally causal model.



 If you accept the Markov 
condition and measurement 
independence, then there 
must be a superluminal causal 
influence (nonlocality).  For 
example:

 Your model violates relativity at 
the ontological level.

 We could instead reject the 
Markov condition:
 Correlations do not have to have 

causal explanations.

 This is appealing to anti-realists.

 We could modify the Markov 
condition:
 Causal explanations work 

differently in quantum theory.

 We could reject measurement 
independence:
 There is no free choice.

 Superdeterminism

 Retrocausality



 If our interpretation of quantum mechanics fits into the ontological 
models framework then it has to have a number of unappealing 
features:

 Excess baggage

 Contextuality

 𝜓-ontology

 Nonlocality

 Two options:

 Bite the bullet and adopt an interpretation that has these features, viewing 
the no-go theorems as justification for why we have to have these features 
(de Broglie-Bohm, Spontaneous Collapse theories).

 Go anti-realist or adopt a more exotic ontology that does not fit into the 
ontological models framework (Copenhagenish, many-worlds).



i. Continuous Variable Quantum Theory

ii. De Broglie-Bohm Theory

iii. Spontaneous Collapse Theories

iv. Everett/Many-Worlds

v. Copenhagenish Interpretations



 De Broglie-Bohm and Spontaneous Collapse privilege the position 
representation of quantum theory, so we will have to quickly review 
how this works.

 There is a good reason for this:

 The world around us looks localized in position, i.e. we do not directly 
experience a chair that is in a superposition of two locations.

 If we add something to quantum theory that localizes objects in position 
space, we will be able to explain this and save the phenomena of ordinary 
experience.

 Some classical experiences do not seem to be directly related to position, 
e.g. the voltage in a circuit or my experience of color.

 However, the claim is that these can always be explained in terms of position, 
e.g. the position of a needle on a voltmeter or the positions of electrons in my 
synapses.



 Recall that observables in quantum theory are Hermitian operators.  
Their eigenvalues are the possible values that can be obtained in a 
measurement.

 If we want position to be described in this way then we need a 
Hermitian operator with a continuum of eigenvalues and 
eigenvectors:

ො𝑥 = න
−∞

+∞

d𝑥 𝑥|𝑥⟩⟨𝑥|

 Compare this to the discrete case

መ𝐴 =෍

𝑗

𝑎𝑗|𝜙𝑗⟩⟨𝜙𝑗|



 In the discrete case, the eigenstates |𝜙𝑗⟩ form a complete 
orthonormal basis, so we can write any state as

𝜓 =෍

𝑗

𝛼𝑗|𝜙𝑗⟩

 We can recover the coefficients 𝛼𝑗 via 𝛼𝑗 = ⟨𝜙𝑗|𝜓⟩.

 We want the position eigenstates to form a complete orthonormal 
basis, so that we can write a state as

𝜓 = න
−∞

+∞

d𝑥 𝜓 𝑥 |𝑥⟩

where 𝜓(𝑥) is a function (called the wavefunction) that replaces 𝛼𝑗.



 We would like to preserve the formula 𝜓 𝑥 = ⟨𝑥|𝜓⟩ which 
generalizes 𝛼𝑗 = ⟨𝜙𝑗|𝜓⟩.

 In order to do this, we need

𝜓 𝑥 = 𝑥 𝜓 = න
−∞

+∞

d𝑥′𝜓 𝑥′ 𝑥 𝑥′

 So we need the inner product ⟨𝑥|𝑥′⟩ to be a “function” 𝑥 𝑥′ =
𝛿(𝑥′ − 𝑥) that behaves like:

න
−∞

+∞

d𝑥′ 𝜓 𝑥′ 𝛿 𝑥′ − 𝑥 = 𝜓(𝑥)

 The generalized function 𝛿(𝑥′ − 𝑥) is called the Dirac 𝛿-function.



 To recap, the Dirac 𝛿-function 𝛿(𝑥) is defined by the property

න
−∞

+∞

d𝑥 𝛿 𝑥 𝑓(𝑥) = 𝑓(0)

for any function 𝑓(𝑥).

 Roughly speaking, it takes the value ∞ at 𝑥 = 0 and is zero 
elsewhere.

 If we have the defining property, then by change of variables we 
will have

න
−∞

+∞

d𝑥′ 𝑓 𝑥′ 𝛿 𝑥′ − 𝑥 = 𝑓(𝑥)

as required.



 The position eigenstates satisfy
𝑥 𝑥′ = 𝛿(𝑥′ − 𝑥)

 Compare this with the discrete case
𝜙𝑗 𝜙𝑘 = 𝛿𝑗𝑘

 The Dirac 𝛿(𝑥′ − 𝑥) plays the same role as the Kronecker 𝛿𝑗𝑘, but 
there is an important difference.
 𝛿𝑗𝑗 = 1, so our orthonormal basis consists of unit vectors.

 𝛿 0 = ∞, so |𝑥⟩ vectors are not normalized.  They are unnormalizable.

 Still, we treat 𝑥 𝑥′ = 𝛿(𝑥′ − 𝑥) as the correct condition for an 
orthonormal basis in the continuum case.

 We still have the convenient completeness relation

መ𝐼 = න
−∞

+∞

d𝑥 |𝑥⟩⟨𝑥|



 Note: The |𝑥⟩ state is the eigenstate of the position operator ො𝑥 with 
eigenvalue 𝑥,

ො𝑥 𝑥 = 𝑥 𝑥

 We can take this as the defining property of 𝑥 .

 In the discrete case, 𝜙𝑗 𝜓
2

is the probability of obtaining value 𝑎𝑗
in a measurement of መ𝐴 when the system is prepared in state |𝜓⟩.

 In the continuum, we have

𝑥 𝜓 2 = 𝜓 𝑥 𝑥 𝜓 = න
−∞

+∞

d𝑥′න
−∞

+∞

d𝑥′′ 𝜓∗(𝑥′)⟨𝑥′|𝑥⟩⟨𝑥|𝑥′′⟩𝜓(𝑥′′)

= න
−∞

+∞

d𝑥′න
−∞

+∞

d𝑥′′ 𝜓∗ 𝑥′ 𝛿 𝑥 − 𝑥′ 𝛿 𝑥′′ − 𝑥 𝜓 𝑥′′ = 𝜓∗ 𝑥 𝜓 𝑥 = 𝜓 𝑥 2



 Since we are dealing with the continuum, we have to interpret
𝑥 𝜓 2 = 𝜓 𝑥 2

as the probability density for finding the particle at 𝑥 in a position 
measurement.  In other words

Prob 𝑎 ≤ 𝑥 ≤ 𝑏 = න
𝑎

𝑏

d𝑥 𝜓 𝑥 2

 In order to have this interpretation, we need

𝜓 𝜓 = 𝜓 መ𝐼 𝜓 = න
−∞

+∞

d𝑥 𝜓 𝑥 𝑥 𝜓 =න
−∞

+∞

d𝑥 𝜓∗(𝑥)𝜓(𝑥)

= න
−∞

+∞

d𝑥 𝜓 𝑥 2 = 1

 Physically realizable states must be normalized ⇒ |𝑥⟩ is not a 
realizable state.



 We also want a Hermitian operator representing a particle’s 
momentum.  We can proceed as with position and just define an 
operator

Ƹ𝑝 = න
−∞

+∞

d𝑝 𝑝|𝑝⟩⟨𝑝|

where |𝑝⟩ is a state of definite momentum 𝑝 and the eigenstates 
satisfy

𝑝′ 𝑝 = 𝛿(𝑝 − 𝑝′)

 That works, but we need to know how the |𝑥⟩ and |𝑝⟩ states are 
related to each other.  For that, we actually have to do some 
physics.



 One of the founding ideas of quantum mechanics is that particles 
sometimes exhibit wave-like behavior and vice versa.

 The de Broglie hypothesis states that a free particle of momentum 𝑝
is associated with a plane wave of wave-number 𝑘 satisfying

𝑝 = ℏ𝑘

 ℏ is a constant called Planck’s constant.  In this course, we have 
been implicitly working in units such that ℏ = 1, so we’ll use 𝑝 = 𝑘.

 If the particle has energy 𝐸 then Planck’s hypothesis says that the 
wave has angular frequency 𝜔 satisfying

𝐸 = ℏ𝜔

or 𝐸 = 𝜔 in our units.



 The upshot is that we expect the wavefunction of a momentum state to 
be a plane wave, i.e.

𝑝 = 𝐴න
−∞

+∞

d𝑥 𝑒𝑖 𝑘𝑥−𝜔𝑡 |𝑥⟩ = 𝐴න
−∞

+∞

d𝑥 𝑒𝑖 𝑝𝑥−𝐸𝑡 |𝑥⟩

so that
𝜓𝑝 𝑥 = 𝑥 𝑝 = 𝐴𝑒𝑖 𝑝𝑥−𝐸𝑡

 Now, note that

−𝑖
𝜕𝜓𝑝 𝑥

𝜕𝑥
= −𝑖𝐴𝑖𝑝𝑒𝑖 𝑝𝑥−𝐸𝑡 = 𝑝𝜓𝑝(𝑥)

 Therefore, if we want Ƹ𝑝 𝑝 = 𝑝|𝑝⟩ we need to have

Ƹ𝑝 𝜓 = න
−∞

+∞

d𝑥 −𝑖
𝜕𝜓(𝑥)

𝜕𝑥
|𝑥⟩



 The momentum operator Ƹ𝑝 maps a wavefunction 𝜓(𝑥) to −𝑖
𝜕𝜓

𝜕𝑥
.

 We say that the position representation of the momentum operator 
is

ොp → −𝑖
𝜕

𝜕𝑥



 We can now determine that the position and momentum operators 
do not commute.  In fact

ො𝑥, Ƹ𝑝 = ො𝑥 Ƹ𝑝 − Ƹ𝑝 ො𝑥 = 𝑖 መ𝐼

which is called the canonical commutation relation.

 Note: We are often lazy and write ො𝑥, Ƹ𝑝 = 𝑖.

 This is responsible for the uncertainty principle: There are no states 
that predict a precise value for both ො𝑥 and Ƹ𝑝.

 To derive the commutation relation, we show that
ො𝑥, Ƹ𝑝 |𝜓⟩ = 𝑖|𝜓⟩

for any vector |𝜓⟩.



ො𝑥, Ƹ𝑝 𝜓 = ො𝑥 Ƹ𝑝 − Ƹ𝑝 ො𝑥 ∞−׬
+∞

d𝑥 𝜓 𝑥 |𝑥⟩

= ∞−׬
+∞

d𝑥 ො𝑥( Ƹ𝑝𝜓(𝑥)|𝑥⟩) − Ƹ𝑝( ො𝑥𝜓(𝑥)|𝑥⟩)

= ∞−׬
+∞

d𝑥 𝑥 −𝑖
𝜕𝜓

𝜕𝑥
− −𝑖

𝜕

𝜕𝑥
𝑥𝜓 𝑥 |𝑥⟩

= 𝑖 ∞−׬
+∞

d𝑥 −𝑥
𝜕𝜓

𝜕𝑥
+ 𝜓 𝑥 + 𝑥

𝜕𝜓

𝜕𝑥
|𝑥⟩

= 𝑖 ∞−׬
+∞

d𝑥 𝜓(𝑥)|𝑥⟩ = 𝑖|𝜓⟩



 Suppose a function 𝑓(𝑡) has a Taylor series

𝑓 𝑡 = ෍

𝑛=0

∞

𝑎𝑛𝑡
𝑛

 Then, for an operator መ𝐴, we define

𝑓 መ𝐴 = ෍

𝑛=0

∞

𝑎𝑛 መ𝐴
𝑛

 In particular, 𝑒 ෠𝐴 = σ𝑛=0
∞ 1

𝑛!
መ𝐴𝑛

 From this you can derive that, if መ𝐴 and ෠𝐵 commute then

𝑒 ෠𝐴𝑒 ෠𝐵 = 𝑒 ෠𝐴+ ෠𝐵



 Note that, if መ𝐴 is Hermitian, then ෡𝑈 = 𝑒𝑖 ෠𝐴 is unitary
෡𝑈† ෡𝑈 = 𝑒−𝑖 ෠𝐴

†
𝑒𝑖 ෠𝐴 = 𝑒−𝑖 ෠𝐴𝑒𝑖 ෠𝐴 = 𝑒−𝑖 ෠𝐴+𝑖 ෠𝐴 = 𝑒𝑖0 = መ𝐼

 We know that discrete time dynamics is unitary
𝜓 𝑡 = ෡𝑈 𝑡, 𝑡0 |𝜓 𝑡0 ⟩

 and that continuous time dynamics satisfies the Schrödinger equation

𝑖
𝜕|𝜓 𝑡 ⟩

𝜕𝑡
= ෡𝐻 𝜓 𝑡

⇒ 𝑖
𝜕෡𝑈 𝑡, 𝑡0

𝜕𝑡
|𝜓 𝑡0 ⟩ = ෡𝐻෡𝑈(𝑡, 𝑡0)|𝜓 𝑡0 ⟩

 Because this has to hold for any initial state |𝜓 𝑡0 ⟩, we have

𝑖
𝜕෡𝑈 𝑡, 𝑡0

𝜕𝑡
= ෡𝐻෡𝑈(𝑡, 𝑡0)



 If ෡𝐻 is independent of time, then the solution to this equation is

෡𝑈 𝑡, 𝑡0 = 𝑒−𝑖 ෡𝐻 𝑡−𝑡0

 Check:

𝑖
𝜕෡𝑈 𝑡, 𝑡0

𝜕𝑡
= 𝑖 −𝑖 ෡𝐻𝑒−𝑖 ෡𝐻 𝑡−𝑡0 = ෡𝐻𝑒−𝑖 ෡𝐻 𝑡−𝑡0 = ෡𝐻෡𝑈(𝑡, 𝑡0)

 Note, we want ෡𝑈 𝑡0, 𝑡0 = መ𝐼, which is why we must have (𝑡 − 𝑡0) in the 
exponential rather than (𝑡 + 𝑎) for an arbitrary 𝑎.

 The operator ෡𝑈(𝑡, 𝑡0) is called the propagator.



 An operator of the form ෡𝑈 𝑎 = 𝑒−𝑖𝑎 ො𝑝 is called a translation operator.

 ෡𝑈(𝑎) is unitary because −𝑎 Ƹ𝑝 is Hermitian.

 Next, consider ෡𝑈 Δ𝑎 ො𝑥෡𝑈† Δ𝑎 for small Δ𝑎

෡𝑈 Δ𝑎 ො𝑥෡𝑈† Δ𝑎 = መ𝐼 − 𝑖Δ𝑎 Ƹ𝑝 ො𝑥 መ𝐼 + 𝑖Δ𝑎 Ƹ𝑝 + 𝑂(Δ𝑎2)

= ො𝑥 + 𝑖Δ𝑎 ො𝑥 Ƹ𝑝 − Ƹ𝑝 ො𝑥 + 𝑂(Δ𝑎2)

= ො𝑥 + 𝑖Δ𝑎 ො𝑥, Ƹ𝑝

= ො𝑥 + 𝑖Δ𝑎(𝑖 መ𝐼)

= ො𝑥 − Δ𝑎 መ𝐼



 From this, we can derive
෡𝑈 𝑎 ො𝑥 ෡𝑈† 𝑎 = ො𝑥 − 𝑎 መ𝐼

෡𝑈 𝑎 ො𝑥෡𝑈† 𝑎 = lim
𝑁→∞

෡𝑈
𝑎

𝑁

𝑁
ො𝑥 ෡𝑈† 𝑎

𝑁

𝑁

= lim
𝑁→∞

෡𝑈
𝑎

𝑁

𝑁−1
ො𝑥 −

𝑎

𝑁
መ𝐼 ෡𝑈† 𝑎

𝑁

𝑁−1
+ 𝑂

1

𝑁2

= lim
𝑁→∞

෡𝑈
𝑎

𝑁

𝑁−1
ො𝑥 ෡𝑈† 𝑎

𝑁

𝑁−1
−

𝑎

𝑁
መ𝐼 + 𝑂

1

𝑁2

= lim
𝑁→∞

ො𝑥 − 𝑎 መ𝐼 + 𝑂
1

𝑁
= ො𝑥 − 𝑎 መ𝐼



 Further, we can derive
෡𝑈 𝑎 𝑥 = |𝑥 + 𝑎⟩

 Start with the eigenvalue equation and act with ෡𝑈(𝑎)

ො𝑥 𝑥 = 𝑥 𝑥
෡𝑈 𝑎 ො𝑥 𝑥 = 𝑥෡𝑈 𝑎 𝑥

෡𝑈 𝑎 ො𝑥෡𝑈† 𝑎 ෡𝑈 𝑎 𝑥 = 𝑥෡𝑈 𝑎 |𝑥⟩ by unitatiry

ො𝑥 − 𝑎 መ𝐼 ෡𝑈 𝑎 𝑥 = 𝑥 ෡𝑈 𝑎 |𝑥⟩

ො𝑥 ෡𝑈 𝑎 𝑥 = (𝑥 + 𝑎) ෡𝑈 𝑎 |𝑥⟩

 In other words, ෡𝑈 𝑎 𝑥 is an eigenstate of ො𝑥 with eigenvalue 𝑥 + 𝑎, 
which is precisely the definition of |𝑥 + 𝑎⟩.



 We can now see what ෡𝑈(𝑎) does to the wavefunction 𝜓(𝑥)

෡𝑈 𝑎 𝜓 = න
−∞

+∞

d𝑥 𝜓 𝑥 ෡𝑈(𝑎)|𝑥⟩

= න
−∞

+∞

d𝑥 𝜓 𝑥 |𝑥 + 𝑎⟩

= න
−∞

+∞

d𝑥 𝜓 𝑥 − 𝑎 |𝑥⟩

 The wavefunction 𝜓′ 𝑥 = 𝑥 ෡𝑈 𝑎 𝜓 = 𝜓 𝑥 − 𝑎 of ෡𝑈 𝑎 𝜓 is the 
wavefunction of |𝜓⟩, translated to the right by 𝑎.  Hence the name 
translation operator.



 Suppose now that the Hamiltonian of our system is proportional to 
the momentum

෡𝐻 = 𝑔 Ƹ𝑝

 The propagator ෡𝑈 𝑡, 𝑡0 = 𝑒−𝑖𝑔 𝑡−𝑡0 ො𝑝 is a translation operator, so the 
wavefunction will move to the right at a rate 𝑔.

𝜓(𝑡0) 𝜓(𝑡)

𝑔(𝑡 − 𝑡0)


