Quantum Foundations Lecture 22

April 25, 2018
Dr. Matthew Leifer leifer@chapman.edu HSC112

Announcements

\odot Assignments: Final Version due May 2.

- Homework 4 due April 30.

Condifional Independence

\odot Two random variables, A and B are independent, denoted $A \perp B$ if

$$
P(A, B)=P(A) P(B)
$$

- The conditional probability of B given A is

$$
P(B \mid A)=\frac{P(A, B)}{P(A)}
$$

- Independence can equivalently be written as

$$
P(B \mid A)=P(B) \quad \text { or } \quad P(A \mid B)=P(A)
$$

- Two random variables, A and B are conditionally independent given C, denoted $A \perp B \mid C$ if any of the following three equivalent conditions holds

$$
\begin{array}{ll}
\text { 1. } & P(A \mid B, C)=P(A \mid C) \\
\text { 2. } & P(B \mid A, C)=P(B \mid C) \\
\text { 3. } & P(A, B \mid C)=P(A \mid C) P(B \mid C)
\end{array}
$$

Reichenbach's Principle

- Scientific realists usually think that correlations need to have causes.
- Reichenbach's principle encapsulates how this is supposed to work.
- If A and B are correlated $P(A, B) \neq P(A) P(B)$ then either:

1. A is the cause of B
2. B is the cause of A
3. There is a common cause C for both A and B, and $A \perp B \mid C$

$$
P(A, B \mid C)=P(A \mid C) P(B \mid C)
$$

The Markov Condition

- Reichenbach's principle can be formulated in the language of Causal (Bayesian) Networks.

The Markov Condition

- We draw a directed acyclic graph:
- The vertices are the random variables.
- We draw an edge from A to B if A is a direct cause of B.
- The probabilities factor according to the Markov Condition

$$
P\left(X_{1}, X_{2}, \cdots, X_{n}\right)=P\left(X_{n} \mid \mathrm{pa}\left(X_{n}\right)\right) \cdots P\left(X_{2} \mid \operatorname{pa}\left(X_{2}\right)\right) P\left(X_{1} \mid \mathrm{pa}\left(X_{1}\right)\right)
$$

where $\mathrm{pa}(X)$ denotes the parents of X in the graph.

Another Example

$$
P(A, B, C, D, E)=P(E \mid C) P(D \mid B, C) P(C \mid A) P(B \mid A) P(A)
$$

Application to Bell Experiments

- Suppose Alice's coin flip and answer happen at spacelike separation to Bob's coin flip and answer.

- Since Alice and Bob's wings of the experiment are spacelike separated, according to special relativity (X, A) cannot be direct causes of (Y, B) and vice versa.
- Let λ be a complete description of the state of affairs in a region that screens off (X, A) from (Y, B)
- Any lightlike path from (X, A) to (Y, B) via the past must intersect the region.
- \Rightarrow Any common cause of (X, A) and (Y, B) must be contained in λ.

Application fo Bell Experiments

- According to special Relativity, the possible causal relationships are:

$$
\begin{aligned}
& P(A, B, X, Y, \lambda) \\
& \quad=P(B \mid Y, \lambda) P(A \mid X, \lambda) P(Y \mid \lambda) P(X \mid \lambda) P(\lambda)
\end{aligned}
$$

Application to Bell Experiments

- However, we normally assume that the coin flips X and Y are freely chosen, independently from the system being measured.
- This leads to the measurement independence assumption

$$
\begin{gathered}
X, Y \perp \lambda \\
P(X, Y \mid \lambda)=P(X, Y)
\end{gathered}
$$

- With this, we have

$$
P(A, B, X, Y, \lambda)
$$

$$
=P(B \mid Y, \lambda) P(A \mid X, \lambda) P(Y) P(X) P(\lambda)
$$

Application to Bell Experiments

$$
P(A, B, X, Y, \lambda)=P(B \mid Y, \lambda) P(A \mid X, \lambda) P(Y) P(X) P(\lambda)
$$

- If we conditionalize on X, Y and λ, we ge \dagger

$$
P(A, B \mid X, Y, \lambda)=P(B \mid Y, \lambda) P(A \mid X, \lambda)
$$

- This condition is known as local causality
- To reiterate, it follows from:
- The Markov condition (Reichenbach's principle)
- The causal structure given by special relativity (spacelike separation)
- The assumption that X and Y are chosen independently of the system being investigated.

Application to Bell Experiments

- If we now compute the observed conditional probabilities, we will get

$$
P(A, B \mid X, Y)=\sum_{\lambda} P(B \mid Y, \lambda) P(A \mid X, \lambda) P(\lambda)
$$

- Let's think about what this says in terms of the game we discussed last lecture.
- Alice and Bob get together to determine a joint strategy - call it λ.
- Based on λ and X, Alice flips a biased coin to determine A with probability $P(A \mid X, \lambda)$.
- Based on λ and Y, Bob flips a biased coin to determine B with probability $P(B \mid Y, \lambda)$.
- But this is exactly the sort of strategy we showed must satisfy the CHSG inequality.
- The quantum violation therefore rules out a locally causal model.

Implications

- If you accept the Markov condition and measurement independence, then there must be a superluminal causal influence (nonlocality). For example:

- Your model violates relativity at the ontological level.
- We could instead reject the Markov condition:
- Correlations do not have to have causal explanations.
- This is appealing to anti-realists.
- We could modify the Markov condition:
- Causal explanations work differently in quantum theory.
- We could reject measurement independence:
- There is no free choice.
- Superdeterminism
- Retrocausality

Summary of Onfological Models

- If our interpretation of quantum mechanics fits into the ontological models framework then it has to have a number of unappealing features:
- Excess baggage
- Contextuality
- ψ-ontology
- Nonlocality
- Two options:
- Bite the bullet and adopt an interpretation that has these features, viewing the no-go theorems as justification for why we have to have these features (de Broglie-Bohm, Spontaneous Collapse theories).
- Go anti-realist or adopt a more exotic ontology that does not fit into the ontological models framework (Copenhagenish, many-worlds).

10) Interpretations of Quantum Theory

i. Continuous Variable Quantum Theory
ii. De Broglie-Bohm Theory
iii. Spontaneous Collapse Theories
iv. Everett/Many-Worlds
v. Copenhagenish Interpretations

10.ii) Confinuous Variable Quantum Theory

- De Broglie-Bohm and Spontaneous Collapse privilege the position representation of quantum theory, so we will have to quickly review how this works.
- There is a good reason for this:
- The world around us looks localized in position, i.e. we do not directly experience a chair that is in a superposition of two locations.
- If we add something to quantum theory that localizes objects in position space, we will be able to explain this and save the phenomena of ordinary experience.
- Some classical experiences do not seem to be directly related to position, e.g. the voltage in a circuit or my experience of color.
- However, the claim is that these can always be explained in terms of position, e.g. the position of a needle on a voltmeter or the positions of electrons in my synapses.

Position

- Recall that observables in quantum theory are Hermitian operators. Their eigenvalues are the possible values that can be obtained in a measurement.
- If we want position to be described in this way then we need a Hermitian operator with a continuum of eigenvalues and eigenvectors:

$$
\hat{x}=\int_{-\infty}^{+\infty} \mathrm{d} x x|x\rangle\langle x|
$$

- Compare this to the discrete case

$$
\hat{A}=\sum_{j} a_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|
$$

Position

- In the discrete case, the eigenstates $\left|\phi_{j}\right\rangle$ form a complete orthonormal basis, so we can write any state as

$$
|\psi\rangle=\sum_{j} \alpha_{j}\left|\phi_{j}\right\rangle
$$

\odot We can recover the coefficients α_{j} via $\alpha_{j}=\left\langle\phi_{j} \mid \psi\right\rangle$.

- We want the position eigenstates to form a complete orthonormal basis, so that we can write a state as

$$
|\psi\rangle=\int_{-\infty}^{+\infty} \mathrm{d} x \psi(x)|x\rangle
$$

where $\psi(x)$ is a function (called the wavefunction) that replaces α_{j}.

The Dirac δ-Function

- We would like to preserve the formula $\psi(x)=\langle x \mid \psi\rangle$ which generalizes $\alpha_{j}=\left\langle\phi_{j} \mid \psi\right\rangle$.
\odot In order to do this, we need

$$
\psi(x)=\langle x \mid \psi\rangle=\int_{-\infty}^{+\infty} \mathrm{d} x^{\prime} \psi\left(x^{\prime}\right)\left\langle x \mid x^{\prime}\right\rangle
$$

- So we need the inner product $\left\langle x \mid x^{\prime}\right\rangle$ to be a "function" $\left\langle x \mid x^{\prime}\right\rangle=$ $\delta\left(x^{\prime}-x\right)$ that behaves like:

$$
\int_{-\infty}^{+\infty} \mathrm{d} x^{\prime} \psi\left(x^{\prime}\right) \delta\left(x^{\prime}-x\right)=\psi(x)
$$

\odot The generalized function $\delta\left(x^{\prime}-x\right)$ is called the Dirac δ-function.

The Dirac δ-function

- To recap, the Dirac δ-function $\delta(x)$ is defined by the property

$$
\int_{-\infty}^{+\infty} \mathrm{d} x \delta(x) f(x)=f(0)
$$

for any function $f(x)$.
\odot Roughly speaking, it takes the value ∞ at $x=0$ and is zero elsewhere.

- If we have the defining property, then by change of variables we will have

$$
\int_{-\infty}^{+\infty} \mathrm{d} x^{\prime} f\left(x^{\prime}\right) \delta\left(x^{\prime}-x\right)=f(x)
$$

as required.

Posifion Eligenstales

- The position eigenstates satisfy

$$
\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x^{\prime}-x\right)
$$

- Compare this with the discrete case

$$
\left\langle\phi_{j} \mid \phi_{k}\right\rangle=\delta_{j k}
$$

\odot The Dirac $\delta\left(x^{\prime}-x\right)$ plays the same role as the Kronecker $\delta_{j k}$, but there is an important difference.

- $\delta_{j j}=1$, so our orthonormal basis consists of unit vectors.
$\odot \delta(0)=\infty$, so $|x\rangle$ vectors are not normalized. They are unnormalizable.
- Still, we treat $\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x^{\prime}-x\right)$ as the correct condition for an orthonormal basis in the continuum case.
- We still have the convenient completeness relation

$$
\hat{I}=\int_{-\infty}^{+\infty} \mathrm{d} x|x\rangle\langle x|
$$

Position Eigenstates and Probabilities

- Note: The $|x\rangle$ state is the eigenstate of the position operator \hat{x} with eigenvalue x,

$$
\hat{x}|x\rangle=x|x\rangle
$$

- We can take this as the defining property of $|x\rangle$.
\odot In the discrete case, $\left|\left\langle\phi_{j} \mid \psi\right\rangle\right|^{2}$ is the probability of obtaining value a_{j} in a measurement of \hat{A} when the system is prepared in state $|\psi\rangle$.
- In the continuum, we have

$$
\begin{aligned}
|\langle x \mid \psi\rangle|^{2}=\langle\psi \mid x\rangle\langle x \mid \psi\rangle=\int_{-\infty}^{+\infty} \mathrm{d} x^{\prime} \int_{-\infty}^{+\infty} \mathrm{d} x^{\prime \prime} \psi^{*}\left(x^{\prime}\right)\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime \prime}\right\rangle \psi\left(x^{\prime \prime}\right) \\
=\int_{-\infty}^{+\infty} \mathrm{d} x^{\prime} \int_{-\infty}^{+\infty} \mathrm{d} x^{\prime \prime} \psi^{*}\left(x^{\prime}\right) \delta\left(x-x^{\prime}\right) \delta\left(x^{\prime \prime}-x\right) \psi\left(x^{\prime \prime}\right)=\psi^{*}(x) \psi(x)=|\psi(x)|^{2}
\end{aligned}
$$

Position Elgenstates and Probabillites

- Since we are dealing with the continuum, we have to interpret

$$
|\langle x \mid \psi\rangle|^{2}=|\psi(x)|^{2}
$$

as the probability density for finding the particle at x in a position measurement. In other words

$$
\operatorname{Prob}(a \leq x \leq b)=\int_{a}^{b} \mathrm{~d} x|\psi(x)|^{2}
$$

- In order to have this interpretation, we need

$$
\begin{aligned}
\langle\psi \mid \psi\rangle=\langle\psi| \hat{I}|\psi\rangle= & \int_{-\infty}^{+\infty} \mathrm{d} x\langle\psi \mid x\rangle\langle x \mid \psi\rangle=\int_{-\infty}^{+\infty} \mathrm{d} x \psi^{*}(x) \psi(x) \\
& =\int_{-\infty}^{+\infty} \mathrm{d} x|\psi(x)|^{2}=1
\end{aligned}
$$

- Physically realizable states must be normalized $\Rightarrow|x\rangle$ is not a realizable state.

Momentum

- We also want a Hermitian operator representing a particle's momentum. We can proceed as with position and just define an operator

$$
\hat{p}=\int_{-\infty}^{+\infty} \mathrm{d} p p|p\rangle\langle p|
$$

where $|p\rangle$ is a state of definite momentum p and the eigenstates satisfy

$$
\left\langle p^{\prime} \mid p\right\rangle=\delta\left(p-p^{\prime}\right)
$$

- That works, but we need to know how the $|x\rangle$ and $|p\rangle$ states are related to each other. For that, we actually have to do some physics.

Wave=Particle Duality

- One of the founding ideas of quantum mechanics is that particles sometimes exhibit wave-like behavior and vice versa.
- The de Broglie hypothesis states that a free particle of momentum p is associated with a plane wave of wave-number k satisfying

$$
p=\hbar k
$$

$\odot \hbar$ is a constant called Planck's constant. In this course, we have been implicitly working in units such that $\hbar=1$, so we'll use $p=k$.

- If the particle has energy E then Planck's hypothesis says that the wave has angular frequency ω satisfying

$$
E=\hbar \omega
$$

or $E=\omega$ in our units.

Momentum In the Position Basis

- The upshot is that we expect the wavefunction of a momentum state to be a plane wave, i.e.

$$
|p\rangle=A \int_{-\infty}^{+\infty} \mathrm{d} x e^{i(k x-\omega t)}|x\rangle=A \int_{-\infty}^{+\infty} \mathrm{d} x e^{i(p x-E t)}|x\rangle
$$

so that

$$
\psi_{p}(x)=\langle x \mid p\rangle=A e^{i(p x-E t)}
$$

- Now, note that

$$
-i \frac{\partial \psi_{p}(x)}{\partial x}=-i A i p e^{i(p x-E t)}=p \psi_{p}(x)
$$

- Therefore, if we want $\hat{p}|p\rangle=p|p\rangle$ we need to have

$$
\hat{p}|\psi\rangle=\int_{-\infty}^{+\infty} \mathrm{d} x\left(-i \frac{\partial \psi(x)}{\partial x}\right)|x\rangle
$$

Momentum In the Position Basis

- The momentum operator \hat{p} maps a wavefunction $\psi(x)$ to $-i \frac{\partial \psi}{\partial x}$.
- We say that the position representation of the momentum operator is

$$
\hat{\mathrm{p}} \rightarrow-i \frac{\partial}{\partial x}
$$

Canonical Commutation Relations

- We can now determine that the position and momentum operators do not commute. In fact

$$
[\hat{x}, \hat{p}]=\hat{x} \hat{p}-\hat{p} \hat{x}=i \hat{I}
$$

which is called the canonical commutation relation.

- Note: We are often lazy and write $[\hat{x}, \hat{p}]=i$.
\odot This is responsible for the uncertainty principle: There are no states that predict a precise value for both \hat{x} and \hat{p}.
- To derive the commutation relation, we show that

$$
[\hat{x}, \hat{p}]|\psi\rangle=i|\psi\rangle
$$

for any vector $|\psi\rangle$.

Canonical Commutation Relations

$$
\begin{aligned}
{[\hat{x}, \hat{p}]|\psi\rangle } & =(\hat{x} \hat{p}-\hat{p} \hat{x}) \int_{-\infty}^{+\infty} \mathrm{d} x \psi(x)|x\rangle \\
& =\int_{-\infty}^{+\infty} \mathrm{d} x[\hat{x}(\hat{p} \psi(x)|x\rangle)-\hat{p}(\hat{x} \psi(x)|x\rangle)] \\
& =\int_{-\infty}^{+\infty} \mathrm{d} x\left[x\left(-i \frac{\partial \psi}{\partial x}\right)-\left(-i \frac{\partial}{\partial x}(x \psi(x))\right)\right]|x\rangle \\
& =i \int_{-\infty}^{+\infty} \mathrm{d} x\left[-x \frac{\partial \psi}{\partial x}+\psi(x)+x \frac{\partial \psi}{\partial x}\right]|x\rangle \\
& =i \int_{-\infty}^{+\infty} \mathrm{d} x \psi(x)|x\rangle=i|\psi\rangle
\end{aligned}
$$

Functions of Operafors

- Suppose a function $f(t)$ has a Taylor series

$$
f(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

- Then, for an operator \hat{A}, we define

$$
f(\hat{A})=\sum_{n=0}^{\infty} a_{n} \hat{A}^{n}
$$

- In particular, $e^{\hat{A}}=\sum_{n=0}^{\infty} \frac{1}{n!} \hat{A}^{n}$
- From this you can derive that, if \hat{A} and \hat{B} commute then

$$
e^{\hat{A}} e^{\hat{B}}=e^{\hat{A}+\hat{B}}
$$

Formal Solution of the Schroodinger Equalion

- Note that, if \hat{A} is Hermitian, then $\widehat{U}=e^{i \hat{A}}$ is unitary

$$
\widehat{U}^{\dagger} \widehat{U}=e^{-i \hat{A}^{\dagger}} e^{i \hat{A}}=e^{-i \widehat{A}} e^{i \hat{A}}=e^{-i \hat{A}+i \hat{A}}=e^{i 0}=\hat{I}
$$

- We know that discrete time dynamics is unitary

$$
|\psi(t)\rangle=\widehat{U}\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle
$$

- and that continuous time dynamics satisfies the Schrödinger equation

$$
\begin{gathered}
i \frac{\partial|\psi(t)\rangle}{\partial t}=\widehat{H}|\psi(t)\rangle \\
\Rightarrow \quad i \frac{\partial \widehat{U}\left(t, t_{0}\right)}{\partial t}\left|\psi\left(t_{0}\right)\right\rangle=\widehat{H} \widehat{U}\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle
\end{gathered}
$$

- Because this has to hold for any initial state $\left|\psi\left(t_{0}\right)\right\rangle$, we have

$$
i \frac{\partial \widehat{U}\left(t, t_{0}\right)}{\partial t}=\widehat{H} \widehat{U}\left(t, t_{0}\right)
$$

Formal Solution of the Schroodinger Equation

๑ If \widehat{H} is independent of time, then the solution to this equation is

$$
\widehat{U}\left(t, t_{0}\right)=e^{-i \widehat{H}\left(t-t_{0}\right)}
$$

- Check:

$$
i \frac{\partial \widehat{U}\left(t, t_{0}\right)}{\partial t}=i\left(-i \widehat{H} e^{-i \widehat{H}\left(t-t_{0}\right)}\right)=\widehat{H} e^{-i \widehat{H}\left(t-t_{0}\right)}=\widehat{H} \widehat{U}\left(t, t_{0}\right)
$$

\odot Note, we want $\widehat{U}\left(t_{0}, t_{0}\right)=\hat{I}$, which is why we must have $\left(t-t_{0}\right)$ in the exponential rather than $(t+a)$ for an arbitrary a.
\odot The operator $\widehat{U}\left(t, t_{0}\right)$ is called the propagator.

Tiranslation Operafors

- An operator of the form $\widehat{U}(a)=e^{-i a \hat{p}}$ is called a translation operator.
$\odot \widehat{U}(a)$ is unitary because $-a \hat{p}$ is Hermitian.
- Next, consider $\widehat{U}(\Delta a) \hat{x} \widehat{U}^{\dagger}(\Delta a)$ for small Δa

$$
\begin{aligned}
\widehat{U}(\Delta a) \hat{x} \widehat{U}^{\dagger}(\Delta a) & =(\hat{I}-i \Delta a \hat{p}) \hat{x}(\hat{I}+i \Delta a \hat{p})+O\left(\Delta a^{2}\right) \\
& =\hat{x}+i \Delta a(\hat{x} \hat{p}-\hat{p} \hat{x})+O\left(\Delta a^{2}\right) \\
& =\hat{x}+i \Delta a[\hat{x}, \hat{p}] \\
& =\hat{x}+i \Delta a(i \hat{I}) \\
& =\hat{x}-\Delta a \hat{I}
\end{aligned}
$$

Translation Operaiors

- From this, we can derive

$$
\widehat{U}(a) \widehat{x} \widehat{U}^{\dagger}(a)=\hat{x}-a \hat{I}
$$

$$
\begin{aligned}
\widehat{U}(a) \widehat{x} \widehat{U}^{\dagger}(a) & =\lim _{N \rightarrow \infty}\left(\left[\widehat{U}\left(\frac{a}{N}\right)\right]^{N} \hat{x}\left[\widehat{U}^{\dagger}\left(\frac{a}{N}\right)\right]^{N}\right) \\
& =\lim _{N \rightarrow \infty}\left(\left[\widehat{U}\left(\frac{a}{N}\right)\right]^{N-1}\left(\hat{x}-\frac{a}{N} \hat{I}\right)\left[\widehat{U}^{\dagger}\left(\frac{a}{N}\right)\right]^{N-1}+O\left(\frac{1}{N^{2}}\right)\right) \\
& =\lim _{N \rightarrow \infty}\left(\left[\widehat{U}\left(\frac{a}{N}\right)\right]^{N-1} \hat{x}\left[\widehat{U}^{\dagger}\left(\frac{a}{N}\right)\right]^{N-1}-\frac{a}{N} \hat{I}+O\left(\frac{1}{N^{2}}\right)\right) \\
& =\lim _{N \rightarrow \infty}\left(\hat{x}-a \hat{I}+O\left(\frac{1}{N}\right)\right)=\hat{x}-a \hat{I}
\end{aligned}
$$

Translation Operaiors

- Further, we can derive

$$
\widehat{U}(a)|x\rangle=|x+a\rangle
$$

- Start with the eigenvalue equation and act with $\widehat{U}(a)$

$$
\begin{aligned}
\hat{x}|x\rangle & =x|x\rangle \\
\widehat{U}(a) \hat{x}|x\rangle & =x \widehat{U}(a)|x\rangle \\
\widehat{U}(a) \hat{x} \widehat{U}^{\dagger}(a) \widehat{U}(a)|x\rangle & =x \widehat{U}(a)|x\rangle \quad \text { by unitatiry } \\
(\hat{x}-a \hat{I})(\widehat{U}(a)|x\rangle) & =x(\widehat{U}(a)|x\rangle) \\
\hat{x}(\widehat{U}(a)|x\rangle) & =(x+a)(\widehat{U}(a)|x\rangle)
\end{aligned}
$$

- In other words, $\widehat{U}(a)|x\rangle$ is an eigenstate of \hat{x} with eigenvalue $x+a$, which is precisely the definition of $|x+a\rangle$.

Tiranslation Operafors

- We can now see what $\widehat{U}(a)$ does to the wavefunction $\psi(x)$

$$
\begin{gathered}
\widehat{U}(a)|\psi\rangle=\int_{-\infty}^{+\infty} \mathrm{d} x \psi(x) \widehat{U}(a)|x\rangle \\
=\int_{--\infty}^{+\infty} \mathrm{d} x \psi(x)|x+a\rangle \\
=\int_{-\infty}^{+8} \mathrm{~d} x \psi(x-a)|x\rangle
\end{gathered}
$$

๑ The wavefunction $\psi^{\prime}(x)=\langle x| \widehat{U}(a)|\psi\rangle=\psi(x-a)$ of $\widehat{U}(a)|\psi\rangle$ is the wavefunction of $|\psi\rangle$, translated to the right by a. Hence the name translation operator.

Translafion Hamilionian

- Suppose now that the Hamiltonian of our system is proportional to the momentum

$$
\widehat{H}=g \hat{p}
$$

\odot The propagator $\widehat{U}\left(t, t_{0}\right)=e^{-i g\left(t-t_{0}\right) \hat{p}}$ is a translation operator, so the wavefunction will move to the right at a rate g.

