
April 23, 2018

Dr. Matthew Leifer

leifer@chapman.edu

HSC112

mailto:leifer@chapman.edu


Assignments: Final Version due May 2.

Homework 4 due April 30.



 The PBR Theorem (Nature Physics 8:475-478 (2012)) proves that ontological 
models have to be 𝜓-ontic under an additional assumption called the 
Preparation Independence Postulate (PIP).

 The PIP can be broken down into two assumptions:

 The Cartesian Product Assumption:

When two systems are prepared independently in a product state 𝜓 𝐴 ⊗ 𝜙 𝐵, 
the joint ontic state space is Λ𝐴𝐵 = Λ𝐴 × Λ𝐵, i.e. each system has its own ontic 
state, i.e. the ontic state of the joint system is 𝜆𝐴𝐵 = (𝜆𝐴, 𝜆𝐵), where 𝜆𝐴 is the ontic 
state of system 𝐴 and 𝜆𝐵 is the ontic state of system 𝐵.

 The No Correlation Assumption:

The epistemic state corresponding to 𝜓 𝐴 ⊗ 𝜙 𝐵 is:

Pr 𝜆𝐴, 𝜆𝐵 𝜓𝐴, 𝜙𝐵 = Pr(𝜆𝐴|𝜓𝐴)Pr(𝜆𝐵|𝜙𝐵)



 In general, a joint system with two subsystems might have global 
ontic properties that do not reduce to properties of the individual 
subsystems. 

 In a 𝜓-ontic model with entangled states this would be the case: 𝜓 𝐴𝐵 is not a 
property of either subsystem.

 So, in general, we need Λ𝐴𝐵 = Λ𝐴 × Λ𝐵 × Λglobal.

 All we really require from the Cartesian Product Assumption is that Λglobal
plays no role in determining measurement outcomes when we prepare a 
product state, e.g. for product states 𝜆𝑔 ∈ Λglobal always takes the same 

specific value.

 Then, the No Correlation Assumption should be read as applying to the 
marginal on Λ𝐴 × Λ𝐵.



 Theorem: An ontological model of quantum theory that satisfies the 
PIP must be 𝜓-ontic.

 Proof strategy: We follow a proof by C. Moseley (arXiv:1401.0026)

1. Prove that |𝜓1⟩ and |𝜓2⟩ must be ontologically distinct whenever 

𝜓1 𝜓2
2 =

1

2
using antidistinguishability.

2. Prove the case 𝜓1 𝜓2
2 <

1

2
by reduction to 1.

3. Prove the case 
1

2
< 𝜓1 𝜓2

2 < 1 by reduction to 2.



 A set 𝜌𝑗 𝑗=1

𝑛
of 𝑛 quantum states is antidistinguishable if there exists 

an 𝑛-outcome POVM 𝐸𝑗 𝑗=1

𝑛
such that

∀𝑗, Tr 𝐸𝑗𝜌𝑗 = 0

 Example:



 We define the 𝑛-way overlap as

𝐿𝑒 𝜌1, 𝜌2, ⋯ , 𝜌𝑛 = න
Λ

min
𝑗

Pr 𝜆 𝜌𝑗 𝑑𝜆

 Lemma: If a set of states is antidistinguishable, then, in any 
ontological model 𝐿𝑒 𝜌1, 𝜌2, … , 𝜌𝑛 = 0.

 Proof for finite Λ:

 𝐿𝑒 𝜌1, 𝜌2, ⋯ , 𝜌𝑛 = σ𝜆min𝑗
Pr 𝜆 𝜌𝑗 so it is > 0 iff there exists a 𝜆 for which all 

Pr 𝜆 𝜌𝑗 > 0.

 Suppose there exists such a 𝜆.  We require Pr 𝐸𝑗 𝜆 = 0 for all 𝐸𝑗 in order to 
reproduce the quantum predictions.  

 But σ𝑗=1
𝑛 Pr 𝐸𝑗 𝜆 = 1, so no such 𝜆 can exist.



 By antidistinguishability

0 =෍
𝑘=1

𝑛

Tr(𝐸𝑘𝜌𝑘)

= න
Λ

෍

𝑘

Pr 𝐸𝑘 𝜆 Pr(𝜆|𝜌𝑘) d𝜆

≥ න
Λ

෍

𝑘

Pr 𝐸𝑘 𝜆 min
𝑗

Pr 𝜆 𝜌𝑗 d𝜆

= න
Λ

෍

𝑘

Pr 𝐸𝑘 𝜆 min
𝑗

Pr 𝜆 𝜌𝑗 d𝜆

 But σ𝑘=1
𝑛 Pr 𝐸𝑘 𝜆 = 1, so

0 = න
Λ

min
𝑗

Pr 𝜆 𝜌𝑗 d𝜆 = 𝐿𝑒(𝜌1, 𝜌2, ⋯ , 𝜌𝑛)



 Without loss of generality, we can choose a basis such that

𝜓1 = 0 , 𝜓2 = + =
1

2
0 + |1⟩

 Now consider the four states 
Ψ1 𝐴𝐵 = 0 𝐴 ⊗ 0 𝐵 , Ψ2 𝐴𝐵 = 0 𝐴 ⊗ + 𝐵
Ψ3 𝐴𝐵 = + 𝐴 ⊗ 0 𝐵 , Ψ4 𝐴𝐵 = + 𝐴 ⊗ + 𝐵

and the orthonormal basis

Φ1 𝐴𝐵 =
1

2
0 𝐴 ⊗ 1 𝐵 + 1 𝐴 ⊗ 0 𝐵 )

Φ2 𝐴𝐵 =
1

2
0 𝐴 ⊗ − 𝐵 + 1 𝐴 ⊗ + 𝐵 )

Φ3 𝐴𝐵 =
1

2
+ 𝐴 ⊗ 1 𝐵 + − 𝐴 ⊗ 0 𝐵 )

Φ4 𝐴𝐵 =
1

2
+ 𝐴 ⊗ − 𝐵 + − 𝐴 ⊗ + 𝐵 )

where ± = 1

2
0 ± 1 ).  

 You can verify that Φ𝑗 Ψ𝑗 = 0, so a measurement in this basis so { Ψ1 , Ψ2 , Ψ3 , |Ψ4⟩}
is antidistinguishable.



 By the PIP:

Pr 𝜆 𝜓1 = Pr 𝜆𝐴 0 Pr(𝜆𝐵|0)
Pr 𝜆 𝜓2 = Pr 𝜆𝐴 0 Pr(𝜆𝐵|+)
Pr 𝜆 𝜓3 = Pr 𝜆𝐴 + Pr(𝜆𝐵|0)
Pr 𝜆 𝜓4 = Pr 𝜆𝐴 + Pr(𝜆𝐵|+)

 For finite Λ, in order to 
avoid having the purple 
ontic states Pr(𝜆|0) and 
Pr(𝜆|+) must have no 
overlap.



 General proof:

0 = 𝐿𝑒 Ψ1, Ψ2, Ψ3, Ψ4 = න
Λ𝐴

d𝜆𝐴න
Λ𝐵

d𝜆𝐵 min
j

Pr(𝜆𝐴, 𝜆𝐵|Ψ𝑗)

= න
Λ𝐴

d𝜆𝐴න
Λ𝐵

d𝜆𝐵 min
Pr 𝜆𝐴 0 Pr(𝜆𝐵|0), Pr 𝜆𝐴 0 Pr(𝜆𝐵|+), Pr 𝜆𝐴 + Pr(𝜆𝐵|0),

Pr 𝜆𝐴 + Pr(𝜆𝐵|+)

= න
Λ𝐴

d𝜆𝐴 min{Pr 𝜆𝐴 0 , Pr(𝜆𝐴|+)} × න
Λ𝐵

d𝜆𝐵 min{Pr 𝜆𝐵 0 , Pr(𝜆𝐵|+)}

= 𝐿𝑒 0,+ 2



 Theorem: If 𝜓1 𝜓2
2 < 𝜓3 𝜓4

2 then there exists a CPT map  such 
that

(|𝜓1⟩⟨𝜓1|) = |𝜓3⟩⟨𝜓3|, (|𝜓2⟩⟨𝜓2|) = |𝜓4⟩⟨𝜓4|

 So, our measurement procedure will consist of mapping |𝜓1⟩ to |0⟩, 
|𝜓2⟩ to |+⟩, and then applying the same measurement as before.

 We can always choose a basis such that
𝜓1 = 0 , 𝜓2 = sin𝜃 0 + cos𝜃 1 ,

with 0 ≤ 𝜃 <
𝜋

4
.

 Then, you can check that  𝜌 = 𝑀1𝜌𝑀1
† +𝑀2𝜌𝑀2

†
with

𝑀1 = |0⟩⟨0 +tan𝜃 1⟩⟨1|, 𝑀2 =
1 − tan2𝜃

2
0 + 1 ⟨1|

is CPT and does the job.



 Let 

Ψ1 = 𝜓1
⊗𝑛 and Ψ2 = 𝜓2

⊗𝑛

 Since Ψ1 Ψ2
2 = 𝜓1 𝜓2

2𝑛, there exists an 𝑛 such that

Ψ1 Ψ2
2 <

1

2
 Apply the previous argument to |Ψ1⟩ and |Ψ2⟩, i.e. the four states

Ψ1 ⊗ Ψ1 , Ψ1 ⊗ Ψ2
Ψ2 ⊗ Ψ1 , Ψ2 ⊗ |Ψ2⟩

 From this, we get 𝐿𝑒 Ψ1, Ψ2 = 0



 By the PIP,
Pr 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 Ψ1 = Pr 𝜆1 𝜓1 Pr 𝜆2 𝜓1 ⋯Pr(𝜆𝑛|𝜓1)
Pr 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 Ψ2 = Pr 𝜆1 𝜓2 Pr 𝜆2 𝜓2 ⋯Pr(𝜆𝑛|𝜓2)

and hence
0 = 𝐿𝑒 Ψ1, Ψ2

= න
Λ1

d𝜆1න
Λ2

d𝜆2⋯න
Λ𝑛

d𝜆𝑛 min Pr 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 Ψ1 , Pr 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 Ψ2

= Λ1׬
d𝜆1min Pr 𝜆1 𝜓1 , Pr 𝜆1 𝜓1 × Λ2׬

d𝜆2min Pr 𝜆2 𝜓1 , Pr 𝜆2 𝜓1 ×⋯

× Λ𝑛׬
d𝜆𝑛 min Pr 𝜆𝑛 𝜓1 , Pr 𝜆𝑛 𝜓1

= න
Λ

d𝜆 min Pr 𝜆 𝜓1 , Pr 𝜆 𝜓2

𝑛

= 𝐿𝑒 𝜓1, 𝜓2
𝑛



 The PBR theorem renders 𝜓-epistemic explanations implausible 
within the ontological models framework.

 The upshot of overlap bounds is more ambiguous.

 Apart from fundamental interest, 𝜓-ontology theorems are 
interesting because they imply most of the other known no-go 
theorems.
 From this point of view, the extra assumptions needed for PBR are not ideal.

 It is still possible that:
 Better overlap bounds could be obtained.

 𝜓-epistemic models are impossible for infinite dimensional Hilbert Spaces.

 𝜓-epistemic models are impossible for POVMs (We already know that the 
Kochen-Specker model cannot be extended to POVMs).



 Recall, back in lecture 10, we described the EPR argument.

 The entangled state

Φ+ =
1

2
0 𝐴 ⊗ 0 𝐵 + 1 𝐴 ⊗ 1 𝐵

exhibits perfect correlations when both Alice and Bob measure in the 
{ 0 , |1⟩} basis (or indeed the {|𝑛+⟩, |𝑛−⟩} basis with 𝑛 in the 𝑥 − 𝑧 plane.

 According to the orthodox interpretation, Bob’s outcomes “pop into 
existence” nonlocally when Alice makes her measurement and the 
quantum state collapses.

 EPR argued that the measurement outcomes must pre-exist in order 
to avoid nonlocality.

 This is exactly how it works in the Spekkens toy theory.



 In 1964, John 
Stewart Bell 
proved that the 
correlations of 
entangled 
quantum systems 
cannot be 
explained in this 
way.

 We will explain a 
version due to 
Clauser, Horne, 
Shimony and 
Holt.



Get into groups of four. 
 In each group, choose one person to be:

Alice Bob Charlie Dora



1. Alice and Bob get together for a few minutes to decide their strategy.

2. Bob leaves the room with Dora.  Alice and Charlie stay.

3. Charlie and Dora each flip a coin.  Write down the outcome.

4. Alice and Bob have to write either +1 or -1 in response.

5. Alice and Bob win the game if:

 Whenever the coin flips are HH, HT, or TH, they give the same answer.

 Whenever the coin flips are TT, they give a different answer.

6. Repeat steps 3-5.

7. Bob and Dora come back in the room.  They count how many times 
Alice and Bob won as well as the total number of times they played.

8. Report the results back to me.  The goal is to win the game 85% of the 
time.



Assuming the coin flips are uniformly random, Alice and 
Bob will win at most 75% of the time in the long run.



Alice H + + + + + + + + - - - - - - - -

T + + + + - - - - + + + + - - - -

Bob H + + - - + + - - + + - - + + - -

T + - + - + - + - + - + - + - + -

Winning 

Probability

75% 75% 25% 25% 75% 25% 75% 25% 25% 75% 25% 75% 25% 25% 75% 75%



 Suppose Alice and Bob do not choose a fixed strategy, but use 
classical randomness (coin flips, dice throws, etc.) to choose it each 
time, i.e. they decide to use strategy 𝑗, 𝑘, 𝑙, 𝑚 with probability 𝑝𝑗,𝑘,𝑙,𝑚
(𝑗, 𝑘, 𝑙, 𝑚 = ±1).

 On each round of the game they will still end up using a 
deterministic strategy with winning probability ≤ 75%.

 The average of the winning probability cannot be higher than the 
winning probability for the best deterministic strategy.

 Alice and Bob might as well just pick the best deterministic strategy.



 Alice and Bob each have four local deterministic strategies 
(ignoring what the other person is doing)

 Alice and Bob could decide as follows:
 Alice waits until she sees the outcome of her coin flip.

 If it is H, she picks +/− with probability 𝑝±
H (e.g. by flipping a biased coin)

 If it is T, she picks +/− with probability 𝑝±
T

 Bob does similarly with distributions 𝑞±
H and 𝑞±

T

 But this just amounts to picking strategy 𝑗, 𝑘, 𝑙, 𝑚 with probability
𝑝𝑗,𝑘,𝑙,𝑚 = 𝑝𝑗

H𝑝𝑘
T𝑞𝑙

H𝑞𝑚
H

 In other words, Alice and Bob could just have flipped all their coins 
at the beginning, so we are back to the previous case.

H + + - -

T + - + -



 Whatever strategy Alice and Bob use (deterministic, 
nodeterministic, delayed), their outcome probabilities satisfy

𝑃 𝑎 = 𝑏 𝐻,𝐻 + 𝑃 𝑎 = 𝑏 𝐻, 𝑇 + 𝑃 𝑎 = 𝑏 𝑇,𝐻 + 𝑃 𝑎 ≠ 𝑏 𝑇𝑇 ≤ 3

 This is (a version of) the CHSH inequality.



 Now suppose that we allow Alice and Bob to use quantum systems 
to play the game.

 They initially prepare two qubits in a state 𝜓 𝐴𝐵.  Alice takes system 
𝐴 with her and Bob takes system 𝐵.

 If Alice’s coin flip is heads, she measures her system in the basis 
{ 𝑛H + , |𝑛H−⟩}.  If she gets the 𝑛H ± outcome she answers 𝑎 = ±1.

 If Alice’s coin flip is tails, she measures her system in the basis 
{ 𝑛T + , |𝑛T−⟩}.  If she gets the 𝑛T ± outcome she answers 𝑎 = ±1.

 Bob does the same thing on his system with the bases 
{ 𝑚H + , |𝑚H−⟩} and { 𝑚T + , |𝑚T−⟩}.



 Suppose Alice and Bob prepare the state

Φ+ =
1

2
0 𝐴 ⊗ 0 𝐵 + 1 𝐴 ⊗ 1 𝐵

 Fortunately, you proved in Hwk 3, that the outcome probabilities 
are

𝑃 𝑛+,𝑚 + = 1
2 cos

2𝜙
2 , 𝑃 𝑛+,𝑚 − = 1

2 sin
2𝜙
2

𝑃 𝑛−,𝑚 − = 1
2 cos

2𝜙
2 , 𝑃 𝑛−,𝑚 + = 1

2 sin
2𝜙
2

where 𝜙 is the angle between 𝑛 and 𝑚 on the 𝑥-𝑧 plane of the Bloch 
sphere.

 So we just have to choose the measurement angles and see what 
we get.



𝑃 𝑎 = 𝑏 H, H

= 𝑃 𝑛H+,𝑚H + + 𝑃 𝑛H−,𝑚H −

= cos2 𝜋
8

=
1 + cos 𝜋

4

2

= 1
2 1 + 1

2



𝑃 𝑎 = 𝑏 H, T

= 𝑃 𝑛H+,𝑚T + + 𝑃 𝑛H−,𝑚T −

= cos2 𝜋
8

=
1 + cos 𝜋

4

2

= 1
2 1 + 1

2



𝑃 𝑎 = 𝑏 T, H

= 𝑃 𝑛T+,𝑚H + + 𝑃 𝑛T−,𝑚H −

= cos2 𝜋
8

=
1 + cos 𝜋

4

2

= 1
2 1 + 1

2



𝑃 𝑎 ≠ 𝑏 T, T

= 𝑃 𝑛T+,𝑚T − + 𝑃 𝑛T−,𝑚T +

= sin2 3𝜋
8 = cos2 𝜋

8

=
1 + cos 𝜋

4

2

= 1
2 1 + 1

2



 Therefore, in the quantum case, we can get

𝑃 𝑎 = 𝑏 𝐻,𝐻 + 𝑃 𝑎 = 𝑏 𝐻, 𝑇 + 𝑃 𝑎 = 𝑏 𝑇,𝐻 + 𝑃 𝑎 ≠ 𝑏 𝑇𝑇

4cos2 𝜋
8 = 2 1 + 1

2
≈ 3.141 > 3

 Therefore, with quantum mechanics you can win the game with 
probability

cos2 𝜋
8 = 1

2 1 + 1

2
≈ 85.4% > 75%

 This is actually the maximum possible success probability in 
quantum mechanics, known as the Tsirelson bound.



 The CHSH inequality is usually expressed in terms of expectation 
values of observables rather than probabilities.

 To do this, note that we actually have four inequalities

1 ≤ 𝑃 𝑎 = 𝑏 𝐻,𝐻 + 𝑃 𝑎 = 𝑏 𝐻, 𝑇 + 𝑃 𝑎 = 𝑏 𝑇,𝐻 + 𝑃 𝑎 ≠ 𝑏 𝑇𝑇 ≤ 3



1 ≤ 𝑃 𝑎 ≠ 𝑏 𝐻,𝐻 + 𝑃 𝑎 ≠ 𝑏 𝐻, 𝑇 + 𝑃 𝑎 ≠ 𝑏 𝑇,𝐻 + 𝑃 𝑎 = 𝑏 𝑇𝑇 ≤ 3

or

−3 ≤ −𝑃 𝑎 ≠ 𝑏 𝐻,𝐻 − 𝑃 𝑎 ≠ 𝑏 𝐻, 𝑇 − 𝑃 𝑎 ≠ 𝑏 𝑇,𝐻 − 𝑃 𝑎 = 𝑏 𝑇𝑇 ≤ −1



 Because Alice and Bob’s answers 𝑎, 𝑏 take values ±1

𝑎𝑏 = 𝑃 𝑎 = 𝑏 − 𝑃(𝑎 ≠ 𝑏)

1 ≤ 𝑃 𝑎 = 𝑏 𝐻,𝐻 + 𝑃 𝑎 = 𝑏 𝐻, 𝑇 + 𝑃 𝑎 = 𝑏 𝑇,𝐻 + 𝑃 𝑎 ≠ 𝑏 𝑇𝑇 ≤ 3
−3 ≤ −𝑃 𝑎 ≠ 𝑏 𝐻,𝐻 − 𝑃 𝑎 ≠ 𝑏 𝐻, 𝑇 − 𝑃 𝑎 ≠ 𝑏 𝑇, 𝐻 − 𝑃 𝑎 = 𝑏 𝑇𝑇 ≤ −1

 Summing these gives:

−2 ≤ 𝑎𝑏 HH + 𝑎𝑏 HT + 𝑎𝑏 TH − 𝑎𝑏 TT ≤ 2
which is the usual CHSH inequality.

 And our quantum strategy gives

4cos2 𝜋
8 − 4 1 − cos2 𝜋

8 = 8cos2 𝜋
8 − 4 = 8

2 1 + 1

2
− 4 = 2 2 ≈ 2.828

which is what is usually called the Tsirelson bound.


