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Annhouncements

® Emergency Phyzza: Monday 4/23 AF207.
® Assignments: Final Version due May 2.
® Homework 4 due April 25.



KS Contexiuvality in Test Spaces

® The 18-ray proof is based on a test space. We can generalize this
approach to arbitrary test spaces.

@ Recall that a finite test space (X,X) consists of
® A finite set X of outcomes.

® A finite set X of fests.

® Each fest E is a finite subset of X, interpreted as the set of
outcomes for a measurement that can be performed on the

system.
@ Example: Specker’s Triangle
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KS Contexiuvality in Test Spaces

® A state on a fest space is a function w: X — [0,1] such that

VE € 3, Zw(e)—l

© Let S(X,X) be the set of states on (X, E). For a finite test space thisis a
polytope.
® An unnormalized stafe on a test space is a function w: X — [0,1] such that

VEEL Zw(e)S1

© Let §,(X,X) be the set of unnormalized states on (X, X). For a finite test
space this is also a polytope.

® The advantage is that not all test spaces have states, but they do all have
unnormalized states.

@ Interpretation. We let our measurements sometimes fail, and not register
an outcome. The probability of this happening can depend on which test
we are measuring.



Example: Specker Triangle

® We proved previously that the
only normalized state on @
Specker triangle is

1
w(e) = w(f) = w(g) = >
® Unnormalized states just have to
satisfy the inequalities

w(e) =0, w(f) =0, w(g) =0

wle)+w(f)<1
o(f) +w(g) <1
w(g) +wle) <1

1.00

"70.00

1.00



Example Klyachko

@ By a similar argument to Specker,
the only normalized state is

wj =~ forj =0,1,234
® For unnormalized states we have
(Uj = 0
w; + wj;q (mod 5) <1
® From this, we can derive

5

(1)0+(1)1+(1)2+(1)3+(U4SE

which is saturated by the
normalized state.




KS Contexiuvality in Test Spaces

® A value function v: X — {0,1} on a test space is a function such that,
for every test E € X, v(e) = 1 for exactly one e € E and is 0 otherwise.

@ A KS noncontextual state on (X, ) is a state w that can be written as
= z Pjvj
J

where p; = 0, 2 ;p; = 1, and v; is a value function.
® Let C(X,XZ) be the set of KS noncontextual states on (X, X).
@ Clearly, C(X,X) is a polytope and C(X, %) € S(X, %).

® The existence of KS contextuality proofs shows the inclusion is strict
for some test spaces, e.g. 18 ray proof.



KS Contexiuvality in Test Spaces

® An unnormalized value function v: X — {0,1} on a test space is @
function such that, for every test E € %, v(e) = 1 for at most one e € E
and is 0 otherwise.

@ A unnormalized KS nonconfextual state on (X, %) is a state w that

can be written as
w = z p]U]
J

where p; = 0, 2 ;p; = 1, and v; is an unnormalized value function.

© Let C, (X, Z) be the set of KS honcontextual states on (X, X).
@ Clearly, C,(X,X) is a polytope and C,(X,2) € S, (X, ).

® The existence of Klyatchko style KS contextuality proofs shows the
Inclusion is strict for some test spaces.



Example: Specker Triangle

® There are no normalized states as if

v(e) =1 then
v(f)=v(g) =0
but one of v(f), v(g) has to be 1.

® The unnormalized states are the
polytope with extreme points

(0,0,0), (1,0,0), (0,1,0), (0,0,1)

1.00

® There are fewer KS noncontextual
states than general states.




Example Klyachko

® There are no normalized KS
noncontextual states.

® The unnormalized states form a
polytope with extreme points
(0,0,0,0,0)

(1,0,0,0,0) and cyclic permutations
(1,0,1,0,0) and cyclic permutations
(1,0,0,1,0) and cyclic permutations

® Unnnormalized KS noncontextual
states satisfy
(1)0+Cl)1+(1)2+(1)3+(1)4£2




KS Contexiuvality in Test Spaces

® A frame function f assigns a projector, f(x) = II, to every outcome
x € X such that, for every test E € %,

o Ifx,y€E, x#y, thenll,Il, =0
© ZxEE I, =1
® A quantum state on (X, Z) is a state w that can be written as
w(x) = Tr(Ilxp)
for some frame function and some density matrix p.
o Let 9(X,X) be the set of quantum states on (X, X).
® Q(X,X) is a convex set, but not necessarily a polytope.

© C(X,Z) € 9(X,%) € S(X,X) and the inclusions are strict for some test
Spaces.



C(X,%2) € 9(X,X)

e Let V(X,X) be the set of value functions on (X, %).
® There are a finite number of them because X is finite.

® Let (vq,v,, -+, vy) e an ordering of the value function:s.
® To x € X, we assign the prOJ(ec’ror

0
0 Vo (X 0
me=| 2( b
0 0 0 vy(x)
® For a classical state w = Y p;v;, vx6e osmgre)’rhe density matrix
pl oo
0 e 0
p=|., P2 0



Q(X,%) € S(X,X) is Sirict for some Test
Spaces

© Consider the Specker Triangle ({e, f, g}, {{e, f},{f, 9}, {g,e}})
® We require projectors I1,, Il¢, IT, such that
M0, = MM, =M, =0
® But then I, I1¢, I, are mutually orthogonal, so
M, + M+ 1, <1
® But this contradicts the requirement that

so there are no frame functions, and hence no quantum states, on
the Specker triangle.

® Conclusion: There are theories that are more Kochen-Specker
contextual than guanfum theory.




KS Contexiuvality in Test Spaces

@ An unnormalized frame function f assigns a projector I1,, fo every
outcome x € X such that, for every test E € %,

o Ifx,y€E, x#y, thenll,Il, =0
© Yreelly <1 (i.e. basis can be incomplete)

® An unnormalized quantum state on (X, Z) is a state w that can be

written as
w(x) = Tr(Il,p)
for some density matrix p.
e Let Q,(X,Z) be the set of quantum states on (X, X).
© Q,(X,X) is a convex set, but not necessarily a polytope.

e Cy,(X,X2) € Q,(X,X) € 5,(X,%) and the inclusions are strict for some
test spaces.



The General Picture

%)

® We can find inequalities saftisfied by C or
C,. These are noncontextuality
inequalities.

e.g. for Klyatchko ¥%_, w; < 2

@ Statesin Q@ or Q,, may violate these
inequalities.

® We can also find inequalities satisfied by

Q or9,. .
z a)j S \/g
Jj=0

@ Statesin S or S, may violate both sets of
inequalities, but satisfy other inequalities

e
w; < —



3.vi) $-Ontology

® We now wish to investigate whether the (pure) quantum state has
to be part of the ontology as it is in Beltrametti-Bugajski, the Bell
model and de Broglie-Bohm theory.

@ Our objective is to determine whether the kind of y-epistemic
explanations that occur in the Spekkens toy theory can work in
gquantum theory.

@ | will use naughty notation Pr(A|y) for epistemic states:

@ We can only prove preparation contextuality for mixed states anyway.

® What we will prove applies to any method of preparing [y), so it is best to
avoid cluttering notation.



Definitions

® For two quantum states [y) and |¢p), we define their
epistemic overlap in an ontological model as:

Lo, §) = fA dA min[Pr(A1y), Pr(A|¢)]

4\
Pr01v) Pe(x19)

2
| Le(y,p) 7




Epistemic Overlap and Discrimination

@ The optimal probability of correctly guessing whether [y) or |y) was
prepared if you know A is

Psuce = 5 1+ Dc(h,$))  where  Do(h, ¢) =5 [, [Pr(Alp) — Pr(Al$)| dA

© Theorem: L,(y,¢p) =1 — D.(y, p)

@ The operational interpretation of L, (y, ¢) is that, if you know A, the optimal
probability of correctly whether |y) or |¢) was prepared if you know A is

1

Psucc = 5 (2 — L, Y, ¢))



Proof of Theorem

® If we define

Ay>p = {A|Pr(A|Y) > Pr(A|¢)} and  Ay<y = {A|Pr(d|y) < Pr(1|¢)}
then

1
Dc(¥,¢) =7 (Pr(Aysg|w) = Pr(Aysg|®) + Pr(Ay<p|d) — Pr(Ay<s|¥))

1
= (1= Pr(0cgl)] = P8y g ) + [1 = Pr{ )] = Pr(A g )
= 1 = Pr(Ay=o|¥) — Pr(Ayso|d)
_1_ f dA min[Pr(Al), Pr(A|$)]
A =1- Le(l/)» ¢)



Definitions

@ |Y) and |¢) are ontologically distinct in an ontological model if L,(¢,y) = 0.

APt-(>‘h,t/) Pr(51¢) A %) pe(ag)
WA TN,
Or:oloa"Collj A\'&lﬂ‘/\(k >\ Oﬂl70|03|6u\[3 u\c.st/\cb

@ An ontological modelis called y-ontic if every pair of pure states in the model is
ontologically distinct. Otherwise, it is called y-epistemic.

]‘?r i) (g) 901 ety 4 O 1)

[\/\/\/L -7 X

@-onkc Y -cpislemic




P-epistemic models exist

@ P-epistemic models exist in all finite Hilbert space dimension:s.
@ For d=2, the Kochen-Specker model is y-epistemic.

p0) AN

@ For d>2, it was proved by Lewis et. al. (Phys. Rev. Lett. 109:150404 (2012)) and
Aaronson eft. al. (Phys. Rev. A 88:032111 (2013)).



What next for yp-ontology?

® Given that y-epistemic models exist, is that the end of the
storye No.

® We can try to prove something weaker than -ontology, that sfill
makes Y-epistemic explanations implausible:

= non maximal y-epistemicity

® We can add additional assumptions to the ontological models
framework to prove -ontology:

= Pusey-Barrett-Rudolph (PBR) theorem



Maximally -epistemic models

@ Consider the y-epistemic explanation of the indistinguishability of quantum states:

Pe(Nv) WD P> ard 16D Cannat be PQ)’FQ(’H‘\'B J(g("’b hed

beco-u)xe/ SOMQL;M es H'\e ontic shate (.S exach the
Same rcjo\fo\less o{— whetha™ (¢ 2 or |¢) was Prepatﬁ-
D)

@ This explanation is rendered implausible if a suitable measure of the overlap of
the probability distributions is small compared to a suitable measure of the
overlap/indistinguishability of the quantum states.

e Pe(MF) 0 (> ¢) bk VLBIWYNE s large

m :> (‘WS ehp‘w/‘“L"O" IOI“:P a[mosl' no \To\e.
) )
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Maximally -epistemic models

© We need fo be comparing measures of quantum and probability overlap that
have a comparable operational meaning.

® We already have the epistemic overlap measure:
Lo, @) = | 2 min[Pr(Al), Pro)]

A
@ This measure has the following inferpretation:

@ If the system is prepared in state |y) or state |¢) with 50/50 probability and you don’t know which,
then if you knew the exact ontic state 1 your optimal probability of guessing correctly is

p=32-L )
® The comparable guantum overlap measure is:

Ly, ¢) =1 —/1—[(plh)|2

@ If the system is prepared in state |y) or state |¢) with 50/50 probability and you don’t know which,
then if you want to guess based on the outcome of a quantum measurement, your optimal
probability of guessing correctly is

p=32- Ly, 9))




Maximally -epistemic models

@ An ontological model is maximally y-epistemic if, for every pair of
pure states |Y) and |¢),

L, (l/), ¢) = Lq W, ).

@ The indistinguishability of nonorthogonal states is entirely accounted for by the
indistinguishability of the epistemic states.

® Spekkens’ toy theory and the Kochen-Specker model are maximally
Y-epistemic.

® But such models can be ruled out for d = 3 using noncontextuality
inequalities.



Ruling out Maximally -epistemic models
O Ficsk note thab | (9, 6) = deman{ﬂ(xwumcwﬁ < «(Af Pr (N1¥)
where Ng = YA Pr(atp) >0
O We already showed taak Mg € [ for any mewsoencat M thab s [g) a< o

Ownlcome .
O Since Faig g brue (,o( ol such M ST allo have
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Ruling out Maximally -epistemic models
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Resulis from Various Contextuality

|  Dimension | Nostates | (L) | (L)
Barrett et. al. Prime power
d >4 d? 1/d? 1-J1-1/d
Leifer d=3 2d-1 1/24-1 1,1 —-1/d
Branciard d=4 n>2 1/n 1 — \/1 —dp-1/@-2)
Amaral et. al. d = n, n; =? nf~1 - /%_

J. Barrrett et. al., Phys. Rev. Lett. 112, 250403 (2014)
M. Leifer, Phys. Rev. Lett. 112, 160404 (2014)

C. Branciard, Phys. Rev. Lett. 113, 020409 (2014)

B. Amaral et. al., Phys. Rev. A 92, 062125 (2015)



Opfimizing for (L;) — (L)

_ Optimal Dimension Optimal No. states Optimal (L,) — (L,)

Barrett et. al. 0.0715
Leifer 7 64 0.0586
Branciard 4 n — oo 0.134

Amaral et. al. d — o0 nj — o 0.293



Is non maximal P-epistemicity
significant?

® In any ontological model, there are two ways of
explaining the indistinguishability of quantum states:
@ The epistemic states overlap.
®@ Quantum measurements only reveal coarse-grained information
about A.

@ It Is not clear why the second explanation should not play
some role in a yY-epistemic theory.

o Therefore, | would say that we want to get (L,) — (L.) as

close 1o 1 as possible in order to convincingly rule out -
epistemic models.



