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¼Emergency Phyzza: Monday 4/23 AF207.

¼Assignments: Final Version due May 2.

¼Homework 4 due April 25.



¼ The 18-ray proof is based on a test space.  We can generalize this 
approach to arbitrary test spaces.

¼ Recall that a finite test space ὢȟɫ consists of

¼ A finite set ὢof outcomes .

¼ A finite set ɫof tests.

¼ Each test Ὁis a finite subset of ὢ, interpreted as the set of 
outcomes for a measurement that can be performed on the 
system.

¼Example: SpeckerõsTriangle  

ὩȟὪȟὫȟὩȟὪȟὪȟὫȟὫȟὩ



¼ A state on a test space is a function ‫ȡὢᴼ πȟρ such that

Ὁᶅᶰɫȟ

ᶰ

‫Ὡ ρ

¼ Let Hὢȟɫ be the set of states on ὢȟὉ.  For a finite test space this is a 
polytope.

¼ An unnormalized state on a test space is a function ‫ȡὢᴼ πȟρ such that

Ὁᶅᶰɫȟ

ᶰ

‫Ὡ ρ

¼ Let H ὢȟɫ be the set of unnormalized states on ὢȟɫ.  For a finite test 
space this is also a polytope.

¼ The advantage is that not all test spaces have states, but they do all have 
unnormalized states.

¼ Interpretation.  We let our measurements sometimes fail, and not register 
an outcome.  The probability of this happening can depend on which test 
we are measuring.



¼ We proved previously that the 
only normalized state on a 
Specker triangle is 

‫Ὡ ‫Ὢ ‫Ὣ
ρ

ς
¼ Unnormalized states just have to 

satisfy the inequalities

‫Ὡ πȟ ‫Ὢ πȟ ‫Ὣ π

‫Ὡ ‫Ὢ ρ
‫Ὢ ‫Ὣ ρ
‫Ὣ ‫Ὡ ρ



¼ By a similar argument to Specker , 
the only normalized state is

‫ for Ὦ πȟρȟςȟσȟτ

¼ For unnormalized states we have
‫ π

‫ ‫ ÍÏÄυ ρ

¼ From this, we can derive

‫ ‫ ‫ ‫ ‫
υ

ς
which is saturated by the 

normalized state.



¼ A value function ὺȡὢᴼ πȟρ on a test space is a function such that, 
for every test Ὁᶰɫ, ὺὩ ρfor exactly one Ὡɴ Ὁand is πotherwise.

¼ A KS noncontextual state on ὢȟɫ is a state ‫that can be written as

‫ ὴὺ

where ὴ π, Вὴ ρ, and ὺ is a value function.

¼ Let 8ὢȟɫ be the set of KS noncontextual states on ὢȟɫ.

¼ Clearly, 8ὢȟɫ is a polytope and 8ὢȟɫṖHὢȟɫ.

¼ The existence of KS contextuality proofs shows the inclusion is strict 
for some test spaces, e.g. 18 ray proof.



¼ An unnormalized value function ὺȡὢᴼ πȟρ on a test space is a 
function such that, for every test Ὁᶰɫ, ὺὩ ρfor at most one Ὡɴ Ὁ
and is πotherwise.

¼ A unnormalized KS noncontextual state on ὢȟɫ is a state ‫that 
can be written as

‫ ὴὺ

where ὴ π, Вὴ ρ, and ὺ is an unnormalized value function.

¼ Let 8 ὢȟɫ be the set of KS noncontextual states on ὢȟɫ.

¼ Clearly, 8 ὢȟɫ is a polytope and 8 ὢȟɫṖH ὢȟɫ.

¼ The existence of Klyatchko style KS contextuality proofs shows the 
inclusion is strict for some test spaces.



¼ There are no normalized states as if 
ὺὩ ρthen 

ὺὪ ὺὫ π

but one of ὺὪ, ὺὫ has to be ρ.

¼ The unnormalized states are the 
polytope with extreme points

πȟπȟπȟρȟπȟπȟπȟρȟπȟπȟπȟρ

¼ There are fewer KS noncontextual
states than general states.



¼ There are no normalized KS 
noncontextual states.

¼ The unnormalized states form a 
polytope with extreme points

πȟπȟπȟπȟπ

ρȟπȟπȟπȟπ and cyclic permutations

ρȟπȟρȟπȟπ and cyclic permutations

ρȟπȟπȟρȟπ and cyclic permutations

¼ Unnnormalized KS noncontextual
states satisfy
‫ ‫ ‫ ‫ ‫ ς



¼ A frame function Ὢassigns a projector, Ὢὼ ɩ to every outcome 
ὼɴ ὢsuch that, for every test Ὁᶰɫȟ
¼ If ὼȟώɴ Ὁ, ὼ ώ, then ɩɩ π

¼ Вᶰ ɩ Ὅ

¼ A quantum state on ὢȟɫ is a state ‫that can be written as
‫ὼ 4Òɩ”

for some frame function and some density matrix ”.

¼ Let Fὢȟɫ be the set of quantum states on ὢȟɫ.

¼Fὢȟɫ is a convex set, but not necessarily a polytope.

¼8ὢȟɫṖFὢȟɫṖHὢȟɫ and the inclusions are strict for some test 
spaces.



¼ Let Kὢȟɫ be the set of value functions on ὢȟɫ.

¼ There are a finite number of them because ὢis finite.

¼ Let ὺȟὺȟỄȟὺ be an ordering of the value functions.

¼ To ὼɴ ὢ, we assign the projector

ɩ

ὺ ὼ π Ễ π
π ὺ ὼ Ễ π

ể
π

ể
π

Ệ
π

π
ὺ ὼ

¼ For a classical state ‫ Вὴὺ, we assign the density matrix

”

ὴ π Ễ π
π ὴ Ễ π
ể
π

ể
π
Ệ
π
π
ὴ



¼ Consider the Specker Triangle ὩȟὪȟὫȟὩȟὪȟὪȟὫȟὫȟὩ

¼ We require projectors ɩ , ɩ , ɩ such that
ɩɩ ɩɩ ɩɩ π

¼ But then ɩȟɩȟɩ are mutually orthogonal, so
ɩ ɩ ɩ Ὅ

¼ But this contradicts the requirement that 
ɩ ɩ Ὅ

so there are no frame functions, and hence no quantum states, on 
the Specker triangle.

¼ Conclusion: There are theories that are more Kochen -Specker
contextual than quantum theory.



¼ An unnormalized frame function Ὢassigns a projector ɩ to every 
outcome ὼɴ ὢsuch that, for every test Ὁᶰɫȟ
¼ If ὼȟώɴ Ὁ, ὼ ώ, then ɩɩ π

¼ Вᶰ ɩ Ὅ(i.e. basis can be incomplete)

¼ An unnormalized quantum state on ὢȟɫ is a state ‫that can be 
written as

‫ὼ 4Òɩ”

for some density matrix ”.

¼ Let F ὢȟɫ be the set of quantum states on ὢȟɫ.

¼F ὢȟɫ is a convex set, but not necessarily a polytope.

¼8 ὢȟɫṖF ὢȟɫṖH ὢȟɫ and the inclusions are strict for some 
test spaces.



¼ We can find inequalities satisfied by 8or 
8 .  These are noncontextuality 
inequalities.

e.g. for  Klyatchko В ‫ ς

¼ States in F or F may violate these 
inequalities.

¼ We can also find inequalities satisfied by 
F or F .

‫ υ

¼ States in Hor H may violate both sets of 
inequalities, but satisfy other inequalities

‫
υ

ς



¼ We now wish to investigate whether the (pure) quantum state has 
to be part of the ontology as it is in Beltrametti -Bugajski, the Bell 
model and de Broglie -Bohm theory.

¼ Our objective is to determine whether the kind of ȗ-epistemic 
explanations that occur in the Spekkens toy theory can work in 
quantum theory.

¼ I will use naughty notation 0Òʇȿ‪ for epistemic states:

¼ We can only prove preparation contextuality for mixed states anyway.

¼ What we will prove applies to any method of preparing ȿ‪Ớ, so it is best to 
avoid cluttering notation.



¼For two quantum states ‪ and ȿ‰Ớ, we define their 
epistemic overlap in an ontological model as:

ὒ ‪ȟ‰ Ὠ‗ÍÉÎ 0Ò‗‪ȟ0Òʇȿה



¼ The optimal probability of correctly guessing whether ȿ‪ἃor ȿ‪ἃwas 
prepared if you know ‗is

ὴ ρ Ὀ ‪ȟ‰ where    Ὀ ‪ȟ‰ ᷿ȿ0Ò‗‪ 0Ò‗‰ȿÄ‗

¼ Theorem :  ὒ ‪ȟ‰ ρ Ὀ ‪ȟ‰

¼ The operational interpretation of ὒ ‪ȟ‰ is that, if you know ‗, the optimal 
probability of correctly whether ȿ‪ἃor ȿ‪ἃwas prepared if you know ‗is

ὴ ς ὒ ‪ȟ‰



¼ If we define 

ɤ ‗ȿ0Ò‗‪ 0Ò‗‰ and    ɤ ‗ȿ0Ò‗‪ 0Ò‗‰

then

Ὀ ‪ȟ‰
ρ

ς
0Òɤ ‪ 0Òɤ ‰ 0Òɤ ‰ 0Òɤ ‪

ρ

ς
ρ 0Òɤ ‪ 0Òɤ ‰ ρ 0Òɤ ‰ 0Òɤ ‪

ρ 0Òɤ ‪ 0Òɤ ‰

ρ Ὠ‗ÍÉÎ 0Ò‗‪ȟ0Òʇȿה

ρ ὒ ‪ȟ‰



¼ ȿ‪Ớand ȿ‰Ớare ontologically distinct in an ontological model if ὒ ‰ȟ‪ π.

¼ An ontological model is called ‪-ontic if every pair of pure states in the model is 
ontologically distinct.  Otherwise, it is called ‪-epistemic .



¼‪-epistemic models exist in all finite Hilbert space dimensions.

¼ For d=2, the Kochen -Specker model is ‪-epistemic.

¼ For d>2, it was proved by Lewis et. al. (Phys. Rev. Lett. 109:150404 (2012)) and 
Aaronson et. al. ( Phys. Rev. A 88:032111 (2013)).



¼Given that ‪-epistemic models exist, is that the end of the 
story?  No.

¼We can try to prove something weaker than ‪-ontology, that still 
makes ‪-epistemic explanations implausible:

ᵼnon maximal ‪-epistemicity

¼We can add additional assumptions to the ontological models 
framework to prove ‪-ontology:

ᵼPusey-Barrett -Rudolph (PBR) theorem



¼ Consider the ‪-epistemic explanation of the indistinguishability of quantum states:

¼ This explanation is rendered implausible if a suitable measure of the overlap of 
the probability distributions is small compared to a suitable measure of the 
overlap/indistinguishability of the quantum states.



¼ We need to be comparing measures of quantum and probability overlap that 
have a comparable operational meaning.

¼ We already have the epistemic overlap measure:

ὒ ‪ȟ‰ Ὠ‗ÍÉÎ 0Ò‗‪ȟ0Òʇȿה

¼ This measure has the following interpretation:
¼ If the system is prepared in state ȿ‪Ớor state ȿ‰Ớwith 50/50 probability and you donõt know which, 

then if you knew the exact ontic state ‗your optimal probability of guessing correctly is

ὴ ς ὒ ‪ȟ‰

¼ The comparable quantum overlap measure is:

ὒ ‪ȟ‰ ρ ρ ‰‪
¼ If the system is prepared in state ȿ‪Ớor state ȿ‰Ớwith 50/50 probability and you donõt know which, 

then if you want to guess based on the outcome of a quantum measurement, your optimal 
probability of guessing correctly is

ὴ ς ὒ ‪ȟ‰



¼ An ontological model is maximally ‪-epistemic if, for every pair of 
pure states ȿ‪Ớand ȿ‰Ớ, 

ὒ ‪ȟ‰ ὒ ‪ȟ‰ .

¼ The indistinguishability of nonorthogonal states is entirely accounted for by the 
indistinguishability of the epistemic states.

¼ Spekkensõ toy theory and the Kochen -Specker model are maximally 
‪-epistemic.

¼ But such models can be ruled out for Ὠ σusing noncontextuality
inequalities.




