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Annhouncements

v, Emergency Phyzza: Monday 4/23 AF207.
v, Assignments: Final Version due May 2.
v, Homework 4 due April 25.



KS Contexiuvality in Test Spaces

v, The 18-ray proof is based on a test space. We can generalize this
approach to arbitrary test spaces.

v, Recall that a finite test space Ot consists of
v, A finite set @ of outcomes .
v A finite set + of tests.

v, Each test Qis a finite subset of ®, interpreted as the set of
outcomes for a measurement that can be performed on the
system.

v, Example: S p e ¢ k &riarmle
eg-l‘_’ixgﬁi‘ P A t

@)
N
=)
@)
N
S
@)
-




KS Contexiuvality in Test Spaces

v, A state on a test spaceis afunction 71 dw© Ttip such that
| 'O~ +h 1(Q p
v, Let H @t be the set of states on cI)FiON. For a finite test space this is a
polytope.
v. An unnormalized state on a test space is a function 1 go© Tip such that
| 'O~ th 1(Q p

v, Let H MR be the set of unnormalized states on o . For a finite test
space this is also a polytope.

v, The advantage is that not all test spaces have states, but they do all have
unnormalized states.

v Interpretation. We let our measurements sometimes fail, and not register
an outcome. The probability of this happening can depend on which test
we are measuring.



Example: Specker Triangle

v, We proved previously that the

only normalized state on a 1.00
Specker triangle is
. . “ P
1@Q 109 109 c

v, Unnormalized states just have to
satisfy the inequalities
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Example Klyachko

v, By a similar argumentto Specker ,
the only normalized state is

] - for 'Q Tiplt fott
v, FOr unnormalized states we have
[ L
| | 1 A P

v, From this, we can derive
| | | | |

which is saturated by the
normalized state.
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KS Contexiuvality in Test Spaces

v, A value function 04O Tip on a test space is a function such that,
for every test ON 1, 0(Q p for exactly one QN ‘Oand is 1totherwise.

v, A KSnoncontextual state on O is astate] that can be written as
] nou

where n 1B 1 p,and 0 is a value function.
v, Let 8 Wt be the set of KS noncontextual states on ot .
v, Clearly, 8 & is a polytope and 8(h) P H oht .

v, The existence of KS contextuality proofs shows the inclusion is strict
for some test spaces, e.g. 18 ray proof.



KS Contexiuvality in Test Spaces

v, An unnormalized value function OGO C TiP on a test space is a
function such that, for everytest ON t+,0(Q pforatmostone QN O
and is ttotherwise.

v, A unnormalized KSnoncontextual stateon o isastate] that
can be written as

1 no

where n 1B n p,and 0 is an unnormalized value function.
v, Let 8 @t be the set of KS noncontextual stateson h .
v, Clearly, 8 &ht isapolytopeand 8 ()P H ot .

v, The existence of Klyatchko style KS contextuality proofs shows the
Inclusion is strict for some test spaces.



Example: Specker Triangle

v, There are no nhormalized states as If

0(Q pthen
L(Q  V(Q m
butone of 0 "Q, 0 "Q has to be p.

v, The unnormalized states are the
polytope with extreme points

(i) W(pHTtT) N(rdpf h 1T

1.00

v, There are fewer KS noncontextual
states than general states. 1.000.00




Example Klyachko

v, There are no normalized KS
noncontextual states.

v~ The unnormalized states form a
polytope with extreme points

N N W 7

(phtriTdm) and cyclic permutations

N N 7

phpitdnt and cyclic permutations

N N 7

phtipit and cyclic permutations

v, Unnnormalized KSnoncontextual
states satisfy
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KS Contexiuvality in Test Spaces

v A frame function  "Qassigns a projector, "(0¢) | to every outcome
wN wsuch that, for every test ON th

v If6hoN O, @thent T
v, B w1 O
v, A quantum state on @t isastate ] that can be written as
T 0w 4Q 7

for some frame function and some density matrix

A4

v, Let F @t be the set of quantum states on wht .
v, F ot is a convex set, but not necessarily a polytope.

v, 8(ht) P F (o) P H &R and the inclusions are strict for some test
spaces.



C(X,%2) € 9(X,X)

v, Let K @t be the set of value functions on ot .

v, There are a finite number of them because wis finite.
v, Let O ) HE ) be an ordering of the value functions.
v, TOWN , we assign the prce}e%{)or

T E m
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v, For a classical state B n U, we assign the density matrix
N m E T
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Q(X,%) € S(X,X) is Sirict for some Test
Spaces

S ' <
v, Consider the Specker Triangle ‘HMQh CHQh "BQH "BQ (@’

v, WWe require projectors L ,l ,Ll such that v
L L L L L L Tt

v, Butthen « h h are mutually orthogonal, so
l l l 0O
v, But this contradicts the requirement that
| | O

so there are no frame functions, and hence no quantum states, on
the Specker triangle.

v, Conclusion: There are theories that are more Kochen -Specker
contextual than quantum theory.



KS Contexiuvality in Test Spaces

v An unnormalized frame function ~ "Qassigns a projector L to every
outcome N wsuch that, for every test ON th

v, If aftod 'O, @ ) then L T
v, B w1 ‘dl.e. basis can be incomplete)

v, An unnormalized quantum  state on ht is a state ] that can be
written as

T w0 4Q 7
for some density matrix ”
v, Let F @t be the set of quantum states on Wt
v, F Ot is a convex set, but not necessarily a polytope.

% 8 (W) PF ()P H o andthe inclusions are strict for some
test spaces.



The General Picture

v~ We can find inequalities satisfiled by 8 or
8 . These are noncontextuality

S inequalities.
e.g. for Klyatchko B 7 C
v, Statesin F or F  may violate these
C Inequalities.
v, We can also find inequalities satisfied by
F orF .
1 v

v, States in Hor H may violate both sets of

Inequalities, but satisfy other inequalities
U
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3.vi) $-Ontology

v, We now wish to investigate whether the (pure) quantum state has
to be part of the ontology as itis in Beltrametti -Bugajski, the Bell
model and de Broglie -Bohm theory.

v, Our objective is to determine whether the kind of U -epistemic
explanations that occur in the Spekkens toy theory can work in
guantum theory.

v, | will use naughty notation 0 Qg for epistemic states:

v, \We can only prove preparation contextuality for mixed states anyway.

v, What we will prove appliesto  any method of preparing $ Q'so it is best to
avoid cluttering notation.



Definitions

v, For two quantum states || ) and $6€ywe define their
epistemic overlap In an ontological model as:

0 (" M6 Q_I ET _p®o O

Pr(&\ﬁu) Pr()‘\¢)
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Epistemic Overlap and Discrimination

v, The optimal probability of correctly guessing whether $ aor § awas
prepared if you know _is
N -p O(C ey where OCH - 0DQI) 0 QI%SA

v, Theorem: O ( B9 p O [ Mo

v, The operational interpretation of 0 [ %o is that, if you know _, the optimal
probability of correctly whether $ aor $ awas prepared if you know  _is

1 - ¢ 0 ( M



Proof of Theorem

v, If we define

¥ _DQIN) 0QI% and = D QN 0Ql%

then
ocfy (06 ) o6 % oG W o& [))
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Definitions

v, ¢ Oand $%Oare ontologically distinct  in an ontological model if 0 (%61 ) Tt

APt-(>‘h,t/) Pr(51¢) A %) pe(ag)
WA TN,
Or:oloa"COllj A\'&lﬂ‘/\(k >\ Oﬂl70|03|6u\[3 mc.st/\cb

v, An ontological model is called [ -ontic if every pair of pure states in the model is
ontologically distinct. Otherwise, it is called [ -epistemic .
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P-epistemic models exist

v [ -epistemic models exist in all finite Hilbert space dimensions.
v, For d=2, the Kochen -Specker modelis [ -epistemic.

Pr()w) y)) > (Al (/,)

v, For d>2, it was proved by Lewis et. al. (Phys. Rev. Lett. 109:150404 (2012)) and
Aaronson et. al. ( Phys. Rev. A 88:032111 (2013)).



What next for yp-ontology?

v, Glven that [ -epistemic models exist, Is that the end of the
story? No.

v, We can try to prove something weaker than [ -ontology, that still
makes [ -epistemic explanations implausible:

t non maximal [ -epistemicity

v, We can add additional assumptions to the ontological models
framework to prove [ -ontology:

t Pusey-Barrett -Rudolph (PBR) theorem



Maximally -epistemic models

v, Consider the [ -epistemic explanation of the indistinguishability of quantum states:

Pe(Nv) WD P> ard 16D Cannat be PUFQ(’H‘\'S J‘g("’b hed

Eeco.u)se/ SOMQL;M es Hne ontic shate (.S exach the
Same rcjodo\less o{— whetha™ (¢ 2 or |¢) was Prepatﬁ-
D)

v, This explanation is rendered implausible if a suitable measure of the overlap of
the probability distributions is small compared to a suitable measure of the
overlap/indistinguishability of the quantum states.

e Pe(MF) 0 (> ¢) bk VLBIWYNE s large
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Maximally -epistemic models

Ya

Ya

Ya

Ya

We need to be comparing measures of quantum and probability overlap that
have a comparable operational meaning.

We already have the epistemic overlap measure:

0 ( ey

v If the system is prepared in state

then if you knew the exact ontic state

N

Q_I ET _p®o O

This measure has the following interpretation:
g Obrstate %Owi t h 50/ 50

probability

__your optimal probability of guessing correctly is

-G

0 ( 9

The comparable quantum overlap measure is:
0 ( He

g Obrstate Owi t h 50/ 50 i
then if you want to guess based on the outcome of a quantum measurement, your optimal

v If the system is prepared in state

probability of guessing correctly is

N
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Maximally -epistemic models

v An ontological model iIs  maximally [ -epistemic If, for every pair of
pure states § Cand 96&

0T Meg O T Mho.

v, The indistinguishability of nonorthogonal states is entirely accounted for by the
indistinguishability of the epistemic states.

v, Spekkensd t oy t h e o Koghera-8Bpkckdér medel are maximally
[ -epistemic.

v, But such models can be ruled out for 'Q o using noncontextuality
Inequalities.






