Quantum Foundations Lecture 20

April 18, 2018
Dr. Matthew Leifer
leifer@chapman.edu
HSC112

Announcements

- Emergency Phyzza: Monday 4/23 AF207.
- Assignments: Final Version due May 2.
- Homework 4 due April 25.

- The 18-ray proof is based on a test space. We can generalize this approach to arbitrary test spaces.
- \bullet Recall that a finite test space (X,Σ) consists of
 - A finite set X of outcomes.
 - \odot A finite set Σ of tests.
 - Each test E is a finite subset of X, interpreted as the set of outcomes for a measurement that can be performed on the system.
- Example: Specker's Triangle ({e, f, g}, {{e, f}, {f, g}, {g, e}})

• A state on a test space is a function $\omega: X \to [0,1]$ such that

$$\forall E \in \Sigma, \qquad \sum_{e \in E} \omega(e) = 1$$

- Let $S(X,\Sigma)$ be the set of states on (X,E). For a finite test space this is a polytope.
- An unnormalized state on a test space is a function $\omega: X \to [0,1]$ such that

$$\forall E \in \Sigma, \qquad \sum_{e \in E} \omega(e) \le 1$$

- Let $S_u(X,\Sigma)$ be the set of unnormalized states on (X,Σ) . For a finite test space this is also a polytope.
- The advantage is that not all test spaces have states, but they do all have unnormalized states.
- Interpretation. We let our measurements sometimes fail, and not register an outcome. The probability of this happening can depend on which test we are measuring.

Example: Specker Triangle

 We proved previously that the only normalized state on a Specker triangle is

$$\omega(e) = \omega(f) = \omega(g) = \frac{1}{2}$$

 Unnormalized states just have to satisfy the inequalities

$$\omega(e) \ge 0$$
, $\omega(f) \ge 0$, $\omega(g) \ge 0$

$$\omega(e) + \omega(f) \le 1$$

$$\omega(f) + \omega(g) \le 1$$

$$\omega(g) + \omega(e) \le 1$$

Example Klyachko

 By a similar argument to Specker, the only normalized state is

$$\omega_j = \frac{1}{2}$$
 for $j = 0,1,2,3,4$

For unnormalized states we have

$$\omega_j \ge 0$$
 $\omega_j + \omega_{j+1} \pmod{5} \le 1$

From this, we can derive

$$\omega_0 + \omega_1 + \omega_2 + \omega_3 + \omega_4 \le \frac{5}{2}$$

which is saturated by the normalized state.

- A value function $v: X \to \{0,1\}$ on a test space is a function such that, for every test $E \in \Sigma$, v(e) = 1 for exactly one $e \in E$ and is 0 otherwise.
- \circ A KS noncontextual state on (X,Σ) is a state ω that can be written as

$$\omega = \sum_{j} p_{j} v_{j}$$

where $p_i \ge 0$, $\sum_i p_i = 1$, and v_i is a value function.

- \circ Let $\mathcal{C}(X,\Sigma)$ be the set of KS noncontextual states on (X,Σ) .
- Clearly, C(X, Σ) is a polytope and C(X, Σ) ⊆ S(X, Σ).
- The existence of KS contextuality proofs shows the inclusion is strict for some test spaces, e.g. 18 ray proof.

- An unnormalized value function $v: X \to \{0,1\}$ on a test space is a function such that, for every test $E \in \Sigma$, v(e) = 1 for at most one $e \in E$ and is 0 otherwise.
- \odot A unnormalized KS noncontextual state on (X,Σ) is a state ω that can be written as

$$\omega = \sum_{j} p_{j} v_{j}$$

where $p_j \ge 0$, $\sum_i p_j = 1$, and v_j is an unnormalized value function.

- Let $C_u(X,\Sigma)$ be the set of KS noncontextual states on (X,Σ) .
- Clearly, $C_u(X,\Sigma)$ is a polytope and $C_u(X,\Sigma) \subseteq S_u(X,\Sigma)$.
- The existence of Klyatchko style KS contextuality proofs shows the inclusion is strict for some test spaces.

Example: Specker Triangle

• There are no normalized states as if v(e) = 1 then

$$v(f) = v(g) = 0$$

but one of v(f), v(g) has to be 1.

 The unnormalized states are the polytope with extreme points

 There are fewer KS noncontextual states than general states.

Example Klyachko

- There are no normalized KS noncontextual states.
- The unnormalized states form a polytope with extreme points (0,0,0,0,0)
 - (1,0,0,0,0) and cyclic permutations (1,0,1,0,0) and cyclic permutations (1,0,0,1,0) and cyclic permutations
- Unnnormalized KS noncontextual states satisfy

$$\omega_0 + \omega_1 + \omega_2 + \omega_3 + \omega_4 \le 2$$

- A frame function f assigns a projector, $f(x) = \Pi_x$ to every outcome $x \in X$ such that, for every test $E \in \Sigma$,
 - If $x, y \in E$, $x \neq y$, then $\Pi_x \Pi_y = 0$
 - $\odot \sum_{x \in E} \Pi_x = I$
- A quantum state on (X, Σ) is a state ω that can be written as $ω(x) = \text{Tr}(\Pi_x \rho)$

for some frame function and some density matrix ρ .

- Let $Q(X,\Sigma)$ be the set of quantum states on (X,Σ) .
- \circ $\mathcal{Q}(X,\Sigma)$ is a convex set, but not necessarily a polytope.
- $C(X,\Sigma) \subseteq Q(X,\Sigma) \subseteq S(X,\Sigma)$ and the inclusions are strict for some test spaces.

$C(X,\Sigma)\subseteq Q(X,\Sigma)$

- Let $\mathcal{V}(X,\Sigma)$ be the set of value functions on (X,Σ) .
- There are a finite number of them because X is finite.
- Let (v_1, v_2, \dots, v_N) be an ordering of the value functions.

To
$$x \in X$$
, we assign the projector
$$\Pi_{x} = \begin{pmatrix} v_{1}(x) & 0 & \cdots & 0 \\ 0 & v_{2}(x) & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & v_{N}(x) \end{pmatrix}$$

• For a classical state $\omega = \sum_{j} p_{j} v_{j}$, we assign the density matrix

$$\rho = \begin{pmatrix} p_1 & 0 & \cdots & 0 \\ 0 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & p_N \end{pmatrix}$$

$Q(X,\Sigma) \subseteq S(X,\Sigma)$ is Strict for some Test Spaces

- \circ Consider the Specker Triangle $(\{e, f, g\}, \{\{e, f\}, \{f, g\}, \{g, e\}\})$
- We require projectors Π_e , Π_f , Π_g such that

$$\Pi_e \Pi_f = \Pi_e \Pi_g = \Pi_f \Pi_g = 0$$

$$\Pi_e + \Pi_f + \Pi_g \le I$$

But this contradicts the requirement that

$$\Pi_e + \Pi_f = I$$

so there are no frame functions, and hence no quantum states, on the Specker triangle.

 Conclusion: There are theories that are more Kochen-Specker contextual than quantum theory.

- An unnormalized frame function f assigns a projector Π_x to every outcome $x \in X$ such that, for every test $E \in \Sigma$,
 - \bullet If $x, y \in E$, $x \neq y$, then $\Pi_x \Pi_y = 0$
 - \bullet $\sum_{x \in E} \Pi_x \le I$ (i.e. basis can be incomplete)
- \odot An unnormalized quantum state on (X,Σ) is a state ω that can be written as

$$\omega(x) = \text{Tr}(\Pi_x \rho)$$

for some density matrix ρ .

- Let $Q_u(X,\Sigma)$ be the set of quantum states on (X,Σ) .
- $\circ \mathcal{Q}_u(X,\Sigma)$ is a convex set, but not necessarily a polytope.
- $C_u(X,\Sigma) \subseteq Q_u(X,\Sigma) \subseteq S_u(X,\Sigma)$ and the inclusions are strict for some test spaces.

The General Picture

• We can find inequalities satisfied by \mathcal{C} or \mathcal{C}_u . These are noncontextuality inequalities.

e.g. for Klyatchko $\sum_{j=0}^4 \omega_j \leq 2$

- \circ States in $\mathcal Q$ or $\mathcal Q_u$ may violate these inequalities.
- We can also find inequalities satisfied by \mathcal{Q} or \mathcal{Q}_u .

$$\sum_{j=0}^{4} \omega_j \le \sqrt{5}$$

 \circ States in $\mathcal S$ or $\mathcal S_u$ may violate both sets of inequalities, but satisfy other inequalities

$$\sum_{j=0}^{4} \omega_j \leq \frac{5}{2}$$

3.vi) Ψ-Ontology

- We now wish to investigate whether the (pure) quantum state has to be part of the ontology as it is in Beltrametti-Bugajski, the Bell model and de Broglie-Bohm theory.
- Our objective is to determine whether the kind of ψ -epistemic explanations that occur in the Spekkens toy theory can work in quantum theory.
- I will use naughty notation $Pr(\lambda|\psi)$ for epistemic states:
 - We can only prove preparation contextuality for mixed states anyway.
 - What we will prove applies to any method of preparing $|\psi\rangle$, so it is best to avoid cluttering notation.

Definitions

• For two quantum states $|\psi\rangle$ and $|\phi\rangle$, we define their epistemic overlap in an ontological model as:

$$L_e(\psi, \phi) = \int_{\Lambda} d\lambda \, \min[\Pr(\lambda|\psi), \Pr(\lambda|\phi)]$$

Epistemic Overlap and Discrimination

• The optimal probability of correctly guessing whether $|\psi\rangle$ or $|\psi\rangle$ was prepared if you know λ is

$$p_{\text{succ}} = \frac{1}{2}(1 + D_c(\psi, \phi))$$
 where $D_c(\psi, \phi) = \frac{1}{2} \int_{\Lambda} |\Pr(\lambda|\psi) - \Pr(\lambda|\phi)| d\lambda$

- Theorem: $L_e(\psi, \phi) = 1 D_c(\psi, \phi)$
- The operational interpretation of $L_e(\psi,\phi)$ is that, if you know λ , the optimal probability of correctly whether $|\psi\rangle$ or $|\psi\rangle$ was prepared if you know λ is

$$p_{\text{succ}} = \frac{1}{2} \left(2 - L_e(\psi, \phi) \right)$$

Proof of Theorem

If we define

$$\begin{split} \Lambda_{\psi>\phi} &= \{\lambda|\Pr(\lambda|\psi) > \Pr(\lambda|\phi)\} \quad \text{and} \quad \Lambda_{\psi\leq\phi} = \{\lambda|\Pr(\lambda|\psi) \leq \Pr(\lambda|\phi)\} \\ \text{then} \\ D_c(\psi,\phi) &= \frac{1}{2} \Big(\Pr(\Lambda_{\psi>\phi}|\psi) - \Pr(\Lambda_{\psi>\phi}|\phi) + \Pr(\Lambda_{\psi\leq\phi}|\phi) - \Pr(\Lambda_{\psi\leq\phi}|\psi) \Big) \\ &= \frac{1}{2} \Big(\Big[1 - \Pr(\Lambda_{\psi\leq\phi}|\psi) \Big] - \Pr(\Lambda_{\psi>\phi}|\phi) + \Big[1 - \Pr(\Lambda_{\psi>\phi}|\phi) \Big] - \Pr(\Lambda_{\psi\leq\phi}|\psi) \Big) \\ &= 1 - \Pr(\Lambda_{\psi\leq\phi}|\psi) - \Pr(\Lambda_{\psi>\phi}|\phi) \\ &= 1 - \int_{\Lambda} d\lambda \ \min[\Pr(\lambda|\psi), \Pr(\lambda|\phi)] \\ &= 1 - L_e(\psi,\phi) \end{split}$$

Definitions

• $|\psi\rangle$ and $|\phi\rangle$ are ontologically distinct in an ontological model if $L_e(\phi,\psi)=0$.

• An ontological model is called ψ -ontic if every pair of pure states in the model is ontologically distinct. Otherwise, it is called ψ -epistemic.

ψ -epistemic models exist

- \circ ψ -epistemic models exist in all finite Hilbert space dimensions.
 - \circ For d=2, the Kochen-Specker model is ψ -epistemic.

 For d>2, it was proved by Lewis et. al. (Phys. Rev. Lett. 109:150404 (2012)) and Aaronson et. al. (Phys. Rev. A 88:032111 (2013)).

What next for ψ -ontology?

- \odot Given that ψ -epistemic models exist, is that the end of the story? No.
 - \odot We can try to prove something weaker than ψ -ontology, that still makes ψ -epistemic explanations implausible:

 \Rightarrow non maximal ψ -epistemicity

- We can add additional assumptions to the ontological models framework to prove ψ -ontology:
 - ⇒ Pusey-Barrett-Rudolph (PBR) theorem

Maximally ψ -epistemic models

 \circ Consider the ψ -epistemic explanation of the indistinguishability of quantum states:

14) and 10) cannot be perfectly distinguished because sometimes the ontic state is exactly the same regardless of whether 14> or 10> was prepared.

 This explanation is rendered implausible if a suitable measure of the overlap of the probability distributions is small compared to a suitable measure of the overlap/indistinguishability of the quantum states.

but $|\langle \phi | \psi \rangle|^2$ is large \Rightarrow this explanation plays almost no role.

Maximally ψ -epistemic models

- We need to be comparing measures of quantum and probability overlap that have a comparable operational meaning.
- We already have the epistemic overlap measure:

$$L_e(\psi, \phi) = \int_{\Lambda} d\lambda \min[\Pr(\lambda|\psi), \Pr(\lambda|\phi)]$$

- This measure has the following interpretation:
 - o If the system is prepared in state $|\psi\rangle$ or state $|\phi\rangle$ with 50/50 probability and you don't know which, then if you knew the exact ontic state λ your optimal probability of guessing correctly is

$$p = \frac{1}{2}(2 - L_e(\psi, \phi))$$

The comparable quantum overlap measure is:

$$L_q(\psi,\phi) = 1 - \sqrt{1 - |\langle \phi | \psi \rangle|^2}$$

o If the system is prepared in state $|\psi\rangle$ or state $|\phi\rangle$ with 50/50 probability and you don't know which, then if you want to guess based on the outcome of a quantum measurement, your optimal probability of guessing correctly is

$$p = \frac{1}{2}(2 - L_q(\psi, \phi))$$

Maximally ψ -epistemic models

• An ontological model is maximally ψ -epistemic if, for every pair of pure states $|\psi\rangle$ and $|\phi\rangle$,

$$L_e(\psi,\phi) = L_q(\psi,\phi).$$

- The indistinguishability of nonorthogonal states is entirely accounted for by the indistinguishability of the epistemic states.
- \circ Spekkens' toy theory and the Kochen-Specker model are maximally ψ -epistemic.
- But such models can be ruled out for $d \ge 3$ using noncontextuality inequalities.

Ruling out Maximally \psi-epistemic models

- O First note that $Le(\Psi, \phi) = \int_{\Lambda} d\lambda \min\{P_{\Gamma}(\lambda|\Psi), P_{\Gamma}(\lambda|\phi)\} \leq \int_{\Lambda \phi} d\lambda P_{\Gamma}(\lambda|\Psi)$ where $\Lambda_{\phi} = \{\lambda \in \Lambda \mid P_{\Gamma}(\lambda|\phi) > 0\}$
- O We already showed that $\Lambda_{\beta} \subseteq \Gamma_{\beta}^{M}$ for any measurement M that has $10^{1/2}$ as an Outcome.

$$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left$$

Ruling out Maximally \psi-epistemic models

- O Now if we consider a set of states {10,7} then we will have
 - $\sum_{j} L_{e}(\psi, \phi_{j}) \leq \sum_{j} Pr(\Gamma_{\phi_{j}}|\psi) \leftarrow This is precisely what is bounded by a noncontextuality inequality$
- O We can then compute $\sum L_q(\Psi, \phi_s)$ for the optimal states in the contextuality inequality. If $\sum P_r(\Gamma_{\phi_s}|\Psi) < \sum L_q(\Psi, \phi_s)$ then maximally Ψ -epistemic models are ruled out.
- O It is better to compare the averages

$$\langle L_{e} \rangle = \frac{1}{\pi} \sum_{j=1}^{n} L_{e}(\Psi, \phi_{j})$$
 $\langle L_{q} \rangle = \frac{1}{\pi} \sum_{j=1}^{n} L_{q}(\Psi, \phi_{j})$

If (Ly) is large while (Le) is small, the y-epistemic explanation of indistinguishability is in trouble.

Results from Various Contextuality Inequalities

	Dimension	No. states	$\langle L_e angle$	$\langle L_q angle$
Barrett et. al.	Prime power $d \ge 4$	d^2	$1/d^2$	$1 - \sqrt{1 - 1/d}$
Leifer	$d \ge 3$	2^{d-1}	$1/2^{d-1}$	$1\sqrt{1-1/d}$
Branciard	$d \ge 4$	$n \ge 2$	1/n	$1 - \sqrt{1 - \frac{1}{4}n^{-1/(d-2)}}$
Amaral et. al.	$d \ge n_j$	$n_j \ge ?$	$n_j^{\delta-1}$	$1-\sqrt{\frac{1}{2}-\epsilon}$

- J. Barrrett et. al., Phys. Rev. Lett. 112, 250403 (2014)
- M. Leifer, Phys. Rev. Lett. 112, 160404 (2014)
- C. Branciard, Phys. Rev. Lett. 113, 020409 (2014)
- B. Amaral et. al., Phys. Rev. A 92, 062125 (2015)

Optimizing for $\langle L_q \rangle - \langle L_e \rangle$

	Optimal Dimension	Optimal No. states	Optimal $\langle L_q angle - \langle L_e angle$
Barrett et. al.	4	16	0.0715
Leifer	7	64	0.0586
Branciard	4	$n o \infty$	0.134
Amaral et. al.	$d o \infty$	$n_j o \infty$	0.293

Is non maximal ψ -epistemicity significant?

- In any ontological model, there are two ways of explaining the indistinguishability of quantum states:
 - The epistemic states overlap.
 - \circ Quantum measurements only reveal coarse-grained information about λ .
- \odot It is not clear why the second explanation should not play some role in a ψ -epistemic theory.
- Therefore, I would say that we want to get $\langle L_q \rangle \langle L_e \rangle$ as close to 1 as possible in order to convincingly rule out ψ -epistemic models.