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 We follow an approach to contextuality that is due to Rob Spekkens
– Phys. Rev. A 71, 052108 (2005).

 The basic philosophy is based on Leibniz Principle of the Identity of 
Indiscernables:
 No two distinct things exactly resemble each other.

 This principle is arguably very successful in physics:
 e.g. Principle of relativity, Einstein’s equivalence principle.

 The principle can also be thought of as a no fine tuning argument.
 e.g. suppose objects A and B have some distinct physical property, but there 

is absolutely no measurement we can do to tell A and B apart.  Then, our 
measurements must only reveal coarse-grained information that is fine-tuned 
in just such a way so as not to reveal the difference.

 Not all apparent fine tunings are evil, but they do require 
explanation.



 Define an equivalence relation on preparations in an 
operational theory:
𝑃~𝑄 ⟺ Prob 𝑘 𝑃,𝑀 = Prob(𝑘|𝑄,𝑀) for all measurement-

outcome pairs (𝑀, 𝑘).

 In particular, if 𝜌𝑃 = 𝜌𝑄 then 𝑃~𝑄.

 An ontological model is preparation noncontextual if, 

𝑃~𝑄 ⇒ Pr 𝜆 𝑃 = Pr(𝜆|𝑄).
 In words, whenever there is no observable distinction between 

two preparations, they are represented by the same epistemic 
state in the ontological model.

 A model that is not preparation noncontextual is called 
preparation contextual.



 If an operational theory contains preparations 𝑃 and 𝑄
then we can construct a mixed preparation 𝑝𝑃 + 1 − 𝑝 𝑄.
 Physically this means, toss a coin with 𝑝 heads = 𝑝, do 𝑃 if it lands 

heads or 𝑄 if it lands tails, then forget the coin toss outcome.

We will assume that the ontological model preserves 
mixtures:

Pr 𝜆 𝑝𝑃 + 1 − 𝑝 𝑄 = 𝑝Pr 𝜆 𝑃 + (1 − 𝑝)Pr(𝜆|𝑄)

 This is actually an instance of preparation 
noncontextuality applied to the joint coin-system system.  
Conditioning on the outcome of the coin yields a 
preparation equivalent to 𝑃 or 𝑄.









Define an equivalence relation on measurement -outcome 
pairs in an operational theory:
(M, k)~(𝑁, 𝑙) ⟺ Prob 𝑘 𝑃,𝑀 = Prob(𝑙|𝑃, 𝑁) for all preparations 𝑃.

In particular, if  𝐸𝑘
𝑀 = 𝐸𝑙

𝑁 then (M, k)~(𝑀, 𝑙).

An ontological model is  measurement noncontextual if, 

𝑀, 𝑘 ~ 𝑁, 𝑙 ⇒ Pr 𝑘 𝑀, 𝜆 = Pr(𝑙|𝑁, 𝜆).

In words, whenever there is no observable distinction between 

two measurement-outcome pairs, they are represented by the 
same response function in the ontological model.

A model that is not measurement  noncontextual is called 
measurement contextual.



 Measurement noncontextual models exist:
 e.g. Beltrametti-Bugajski: Pr 𝑘 𝑀, 𝜆 = Tr( 𝐸𝑘

𝑀 |𝜆〉〈𝜆|).

 A Kochen-Specker (KS) noncontextual model is:
 A model that only contains projective measurements.

 Measurement noncontextual.

 Outcome deterministic: Pr Π 𝜆 = 0 or 1 for all 𝜆.

 We will prove in a later lecture that:
KS contextual ⇒ maximally ψ−epistemic ⟹ preparation contextual

so KS contextuality is still worth proving.

 KS contextuality can only be proved in 𝑑 ≥ 3.

 By applying KS noncontextuality for projective measurements 
and measurement noncontextuality for POVMs, Spekkens
obtained a proof in 𝑑 = 2.  We will focus on traditional KS 
proofs.



 Due to the outcome determinism assumption, each 𝜆 determines a value 
function 𝑣𝜆 that assigns a value 0 or 1 to each projector.

𝑣𝜆 Π = Pr Π 𝜆

 Since probabilities must sum to 1, in each projective measurement {Π𝑘}, 
exactly one of the projectors must get value 1, the others getting value 0.

 Measurement noncontextuality then implies that the value assigned to Π𝑘
does not depend on which measurement it is a part of.

 In particular, this applies to an orthonormal basis.  For each basis {|𝜙𝑘⟩}, 
exactly one vector gets the value 1, the rest 0, and this value is the same 

for every basis that |𝜙𝑘⟩ appears in.

 In proving Kochen-Specker contextuality, we can focus on whether such 

a value function exists.



 A. Cabello, J. Estebaranz, G. Garcia-Alcaine, Phys. Lett. A 212:183 (1996).

 In 4-dimensional quantum mechanics, 
we can find 18 states with the (test 
space) structure depicted.

 Each test is an orthonormal basis.

𝜙1 (1,0,0,0) 𝜙10 (0,1,0, −1)

𝜙2 (0,1,0,0) 𝜙11 (1,0,1,0)

𝜙3 (0,0,1,1) 𝜙12 (1,1, −1,1)

𝜙4 (0,0,1, −1) 𝜙13 (−1,1,1,1)

𝜙5 (1, −1,0,0) 𝜙14 (1,1,1 − 1)

𝜙6 (1,1, −1,−1) 𝜙15 (1,0,0,1)

𝜙7 (1,1,1,1) 𝜙16 (0,1, −1,0)

𝜙8 (1, −1,1, −1) 𝜙17 (0,1,1,0)

𝜙9 (1,0, −1,0) 𝜙18 (0,0,0,1)
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𝜙1 𝜙4 𝜙7 𝜙10 𝜙13 𝜙16 𝜙2 𝜙3 𝜙6

𝜙2 𝜙5 𝜙8 𝜙11 𝜙14 𝜙17 𝜙9 𝜙5 𝜙8

𝜙3 𝜙6 𝜙9 𝜙12 𝜙15 𝜙18 𝜙11 𝜙12 𝜙15

𝜙4 𝜙7 𝜙10 𝜙13 𝜙16 𝜙1 𝜙18 𝜙14 𝜙17

There are nine bases, and in each one, one of the • 𝜙𝑗
′𝑠 has to 

receive the value 1, the rest 0.  So there will be 9 rays assigned the 

value 1 in total.
However, each • 𝜙𝑗 appears exactly two times in the table, so 

whichever of them are assigned the value 1, there will always be an 

even number of 1’s in total.  Contradiction!



 We can also think of the value functions as assigning definite values 
to observables (self-adjoint operators) via

𝑣 𝑀 =

𝑗

𝑚𝑗 𝑣(Π𝑗)

 Now, if two observables 𝑀 and 𝑁 commute then they have a joint 
eigendecomposition.

𝑀 =

𝑗

𝑚𝑗Π𝑗 𝑁 =

𝑗

𝑛𝑗 Π𝑗

 And we will have:

𝑀𝑁 =

𝑗

𝑚𝑗𝑛𝑗 Π𝑗 𝑀+𝑁 =

𝑗

𝑚𝑗 + 𝑛𝑗 Π𝑗



 Since, in all of these decompositions, the same projector will get the 
value 1, whenever 𝑀,𝑁 = 0, the value functions will obey

𝑣 𝑀𝑁 = 𝑣 𝑀 𝑣 𝑁 𝑣 𝑀 +𝑁 = 𝑣 𝑀 + 𝑣(𝑁)

 If we define functions of operators by power series, this implies that 
whenever 𝑀1, 𝑀2, … all mutually commute then

𝑣 𝑓 𝑀1, 𝑀2, … = 𝑓 𝑣 𝑀1 , 𝑣 𝑀2 , …

 So another way of defining KS noncontextuality is: there exists a 
value function that assigns eigenvalues to observables that obeys 
𝑣 𝑓 𝑀1, 𝑀2, … = 𝑓 𝑣 𝑀1 , 𝑣 𝑀2 , … for mutually commuting 
observables.



𝜎1 ⊗𝜎1 𝜎1 ⊗ 𝐼 𝐼 ⊗ 𝜎1

𝜎3 ⊗𝜎3 𝐼 ⊗ 𝜎3 𝜎3 ⊗ 𝐼

𝜎2 ⊗𝜎2 𝜎1 ⊗𝜎3 𝜎3 ⊗𝜎1



 People sometimes want to detect contextuality using inequalities like we do for 
nonlocality in Bell’s theorem.

 Example: 18 ray proof. 



















 The 18-ray proof is based on a test space.  We can generalize this 
approach to arbitrary test spaces.

 Recall that a finite test space (𝑋, Σ) consists of

 A finite set 𝑋 of outcomes.

 A finite set Σ of tests.

 Each test 𝐸 is a finite subset of 𝑋, interpreted as the set of 
outcomes for a measurement that can be performed on the 
system.

 Example: Specker’s Triangle  

({𝑒, 𝑓, 𝑔}, {{𝑒, 𝑓}, {𝑓, 𝑔}, {𝑔, 𝑒}})



 A state on a test space is a function 𝜔:𝑋 → [0,1] such that

∀𝐸 ∈ Σ, 

𝑒∈E

𝜔 𝑒 = 1

 Let (𝑋, Σ) be the set of states on (𝑋, 𝐸).  For a finite test space this is a 
polytope.

 An unnormalized state on a test space is a function 𝜔:𝑋 → [0,1] such that

∀𝐸 ∈ Σ, 

𝑒∈E

𝜔 𝑒 ≤ 1

 Let 𝑢(𝑋, Σ) be the set of unnormalized states on (𝑋, Σ).  For a finite test 
space this is also a polytope.

 The advantage is that not all test spaces have states, but they do all have 
unnormalized states.

 Interpretation.  We let our measurements sometimes fail, and not register 
an outcome.  The probability of this happening can depend on which test 
we are measuring.



 We proved previously that the 
only normalized state on a 
Specker triangle is 

𝜔 𝑒 = 𝜔 𝑓 = 𝜔 𝑔 =
1

2
 Unnormalized states just have to 

satisfy the inequalities

𝜔 𝑒 ≥ 0, 𝜔 𝑓 ≥ 0, 𝜔 𝑔 ≥ 0

𝜔 𝑒 + 𝜔 𝑓 ≤ 1
𝜔 𝑓 + 𝜔 𝑔 ≤ 1
𝜔 𝑔 + 𝜔 𝑒 ≤ 1



 By a similar argument to Specker, 
the only normalized state is

𝜔𝑗 =
1

2
for 𝑗 = 0,1,2,3,4

 For unnormalized states we have
𝜔𝑗 ≥ 0

𝜔𝑗 +𝜔𝑗+1 (mod 5) ≤ 1

 From this, we can derive

𝜔0 +𝜔1 +𝜔2 +𝜔3 + 𝜔4 ≤
5

2
which is saturated by the 

normalized state.


