Quantum Foundations Lecture 15

April 2, 2018
Dr. Matthew Leifer leifer@chapman.edu HSC112

Announcements

- Schmid College Academic Advising:
- Tuesday April 3, 4:30pm-6:30pm AF209A (Prof. Leifer)
- Wednesday April 4, 4:30pm-6:30pm Henley Hall Basement (Prof. Dressel)
- Adam Becker is returning to Chapman:
- Book event and signing at 1888 center: Monday April 16. RSVP required https://bit.ly/AdamBecker
- Assignments
- First Draft due on Blackboard April 11.
- Peer review until April 16.
- Discussion in class April 16.
- Final Version due May 2.
- Homework 3 due April 11.
- I like lunch invitations

Application: Minimum Error Discrimination

- Alice has a preparation device that prepares the system in either the state ρ or the state σ. She chooses each with 50/50 probability and sends the system to Bob.
- Bob makes a measurement on the system and has to guess whether ρ or σ was prepared.
- What is his maximum probability of success and what measurement should he make?

Classical Case

- Let's look at the classical case first. There is a variable that can take d possible values $j=1,2, \cdots, d$.
- Alice prepares the probability distributions \boldsymbol{p} or \boldsymbol{q} with 50/50 probability.
- Bob sees the value of j and has to guess whether \boldsymbol{p} or \boldsymbol{q} was prepared.
\odot Bob decides on a subset $E_{\boldsymbol{p}} \subseteq\{1,2, \cdots, d\}$. If $j \in E_{\boldsymbol{p}}$ he guesses \boldsymbol{p}. If it is in the complement $E_{\boldsymbol{q}}=\{1,2, \cdots, d\} \backslash E_{\boldsymbol{p}}$, he guesses \boldsymbol{q}.

Classical Case

- Therefore,

$$
\begin{gathered}
p_{\text {succ }} \leq \frac{1}{2}\left[1+\sum_{\left\{j \mid p_{j} \geq q_{j}\right\}}\left(p_{j}-q_{j}\right)\right] \\
=\frac{1}{2}\left[1+\frac{1}{2}\left(\sum_{\left\{j \mid p_{j} \geq q_{j}\right\}}\left(p_{j}-q_{j}\right)+\sum_{\left\{j \mid p_{j} \leq q_{j}\right\}}\left(q_{j}-p_{j}\right)\right)\right] \\
=\frac{1}{2}\left[\begin{array}{l}
\left.1+\frac{1}{2} \sum_{j=1}^{d}\left|p_{j}-q_{j}\right|\right] \\
=\frac{1}{2}\left[1+D_{c}(\boldsymbol{p}, \boldsymbol{q})\right]
\end{array} .\right.
\end{gathered}
$$

- Where $D_{c}(\boldsymbol{p}, \boldsymbol{q})=\frac{1}{2} \sum_{j=1}^{d}\left|p_{j}-q_{j}\right|$ is called the variational distance.

Quanfun cose

\odot Theorem (Helstrom, Holevo): The optimal success probability in the quantum case is given by

$$
p_{\text {succ }}=\frac{1}{2}\left[1+D_{q}(\rho, \sigma)\right]
$$

where

$$
D_{q}(\rho, \sigma)=\frac{1}{2} \operatorname{Tr}(|\rho-\sigma|)
$$

is known as the trace distance, and the matrix norm is given by

$$
|M|=\sqrt{M^{\dagger} M} .
$$

Quantunn case

- Lemma: If M is a Hermitian operator then

$$
\operatorname{Tr}(|M|)=\sum_{j}\left|\lambda_{j}\right|
$$

where λ_{j} are the eigenvalues of M.

- Proof: Let $M=\sum_{j} \lambda_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$ be the spectral decomposition of M and write

$$
M=\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}}\left|\lambda_{j}\right|\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|-\sum_{\left\{k \mid \lambda_{k}<0\right\}}\left|\lambda_{k}\right|\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|
$$

Then,

$$
|M|=\sqrt{M^{\dagger} M}=\sqrt{M^{2}} \text { because } M \text { is Hermitian. }
$$

$|M|=\sqrt{M^{2}}$
$=\sqrt{\left(\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}}\left|\lambda_{j}\right|\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|-\sum_{\left\{k \mid \lambda_{k}<0\right\}}\left|\lambda_{k}\right|\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|\right)\left(\sum_{\left\{l \mid \lambda_{l} \geq 0\right\}}\left|\lambda_{l}\right|\left|\phi_{l}\right\rangle\left\langle\phi_{l}\right|-\sum_{\left\{m \mid \lambda_{m}<0\right\}}\left|\lambda_{m}\right|\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|\right)}$
$=\sqrt{\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}} \sum_{\left\{l \mid \lambda_{l} \geq 0\right\}}\left|\lambda_{j}\right|\left|\lambda_{l}\right|\left|\phi_{j}\right\rangle\left\langle\phi_{j} \mid \phi_{l}\right\rangle\left\langle\phi_{l}\right|+\sum_{\left\{k \mid \lambda_{k}<0\right\}} \sum_{\left\{m \mid \lambda_{m}<0\right\}}\left|\lambda_{k}\right|\left|\lambda_{m}\right|\left|\phi_{k}\right\rangle\left\langle\phi_{k} \mid \phi_{m}\right\rangle\left\langle\phi_{m}\right|, ~}$

- Note: cross terms are zero because the subspaces with $\lambda_{j} \geq 0$ and $\lambda_{j}<0$ are orthogonal.

$$
\begin{gathered}
|M|=\sqrt{\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}}} \sum_{\left\{\mid \backslash \lambda_{l} \geq 0\right\}}\left|\lambda_{j}\right|\left|\lambda_{l}\right| \delta_{j l}\left|\phi_{j}\right\rangle\left\langle\phi_{l}\right|+\sum_{\left\{k \mid \lambda_{k}<0\right\}} \sum_{\left\{m \mid \lambda_{m}<0\right\}}\left|\lambda_{k}\right|\left|\lambda_{m}\right| \delta_{k m}\left|\phi_{k}\right\rangle\left\langle\phi_{m}\right| \\
=\sqrt{\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}}\left|\lambda_{j}\right|^{2}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|+\sum_{\left\{k \mid \lambda_{k}<0\right\}}\left|\lambda_{k}\right|^{2}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|} \\
=\sqrt{\sum_{j}\left|\lambda_{j}\right|^{2}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|}=\sum_{j}\left|\lambda_{j}\right|\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|
\end{gathered}
$$

- And hence $\operatorname{Tr}(|M|)=\sum_{j}\left|\lambda_{j}\right|$.

Quantunn cose

- Now consider Bob's strategy. He has to choose a two-outcome POVM: $E_{\rho}, E_{\sigma}=I-E_{\rho}$, such that if he gets the outcome E_{ρ} he will guess ρ and if he gets the outcome E_{σ} he will guess σ.
- His success probability is

$$
\begin{gathered}
p_{\text {succ }}=\operatorname{Prob}(\rho \text { is prepared }) \operatorname{Prob}\left(E_{\rho} \mid \rho\right)+\operatorname{Prob}(\sigma \text { is prepared }) \operatorname{Prob}\left(E_{\sigma} \mid \sigma\right) \\
=\frac{1}{2}\left[\operatorname{Tr}\left(E_{\rho} \rho\right)+\operatorname{Tr}\left(E_{\sigma} \sigma\right)\right] \\
=\frac{1}{2}\left[\operatorname{Tr}\left(E_{\rho} \rho\right)+\operatorname{Tr}\left(\left(I-E_{\rho}\right) \sigma\right)\right] \\
=\frac{1}{2}\left[\operatorname{Tr}(\sigma)+\operatorname{Tr}\left(E_{\rho}(\rho-\sigma)\right)\right] \\
=\frac{1}{2}\left[1+\operatorname{Tr}\left(E_{\rho}(\rho-\sigma)\right)\right]
\end{gathered}
$$

Quaniun cose

- Now let $\rho-\sigma=\sum_{j} \lambda_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$ be the spectral decomposition of $\rho-\sigma$.

$$
\begin{aligned}
& \operatorname{Tr}\left(E_{\rho}(\rho-\sigma)\right)=\operatorname{Tr}\left(E_{\rho}\left(\sum_{j} \lambda_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|\right)\right) \\
& =\sum_{j} \lambda_{j} \operatorname{Tr}\left(E_{\rho}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|\right)=\sum_{j} \lambda_{j}\left\langle\phi_{j}\right| E_{\rho}\left|\phi_{j}\right\rangle
\end{aligned}
$$

- Now, $0 \leq\left\langle\phi_{j}\right| E_{\rho}\left|\phi_{j}\right\rangle \leq 1$, so this is clearly maximized if we can choose $\left\langle\phi_{j}\right| E_{\rho}\left|\phi_{j}\right\rangle=1$ for $\lambda_{j} \geq 0$ and $\left\langle\phi_{j}\right| E_{\rho}\left|\phi_{j}\right\rangle=0$ for $\lambda_{j}<0$. This can be achieved if we choose

$$
E_{\rho}=P_{+}=\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|
$$

Quantum cose

- So we have

$$
\begin{gathered}
\operatorname{Tr}\left(E_{\rho}(\rho-\sigma)\right) \leq \operatorname{Tr}\left(P_{+}(\rho-\sigma)\right) \\
=\sum_{j} \lambda_{j}\left\langle\phi_{j}\right| P_{+}\left|\phi_{j}\right\rangle \\
=\sum_{j} \sum_{\left\{k \mid \lambda_{k} \geq 0\right\}} \lambda_{j}\left\langle\phi_{j} \mid \phi_{k}\right\rangle\left\langle\phi_{k} \mid \phi_{j}\right\rangle=\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}}\left|\lambda_{j}\right|
\end{gathered}
$$

- However, ρ and σ are both density matrices, so

$$
\operatorname{Tr}(\rho-\sigma)=\operatorname{Tr}(\rho)-\operatorname{Tr}(\sigma)=1-1=0
$$

\odot Therefore $\sum_{j} \lambda_{j}=\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}}\left|\lambda_{j}\right|-\sum_{\left\{j \mid \lambda_{j}<0\right\}}\left|\lambda_{j}\right|=0$ or

$$
\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}}\left|\lambda_{j}\right|=\sum_{\left\{j \mid \lambda_{j}<0\right\}}\left|\lambda_{j}\right|
$$

Quantunn case

- Hence,

$$
\begin{gathered}
\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}}\left|\lambda_{j}\right|=\frac{1}{2}\left(\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}}\left|\lambda_{j}\right|+\sum_{\left\{j \mid \lambda_{j}<0\right\}}\left|\lambda_{j}\right|\right) \\
=\frac{1}{2} \sum_{j}\left|\lambda_{j}\right|
\end{gathered}
$$

- Now, if we apply the lemma, this gives

$$
\sum_{\left\{j \mid \lambda_{j} \geq 0\right\}}\left|\lambda_{j}\right|=\frac{1}{2} \operatorname{Tr}(|\rho-\sigma|)=D_{q}(\rho, \sigma)
$$

- Putting it all together gives

$$
p_{\text {succ }} \leq \frac{1}{2}\left(1+D_{q}(\rho, \sigma)\right)
$$

with equality achieved if Bob chooses $E_{\rho}=P_{+}$, i.e. the projector onto the positive eigenspace of $\rho-\sigma$.

Specioll Coses

- Note that if ρ and σ are diagonal in the same basis

$$
\rho=\sum_{j} p_{j}|j\rangle\langle j| \quad \text { and } \quad \sigma=\sum_{j} q_{j}|j\rangle\langle j|
$$

then the eigenvalues of $\rho-\sigma$ are $p_{j}-q_{j}$ and we get

$$
D_{q}(\rho, \sigma)=\frac{1}{2} \sum_{j}\left|p_{j}-q_{j}\right|=D_{c}(\boldsymbol{p}, \boldsymbol{q})
$$

recovering the classical result.

- If $\rho=|\psi\rangle\langle\psi|$ and $\sigma=|\phi\rangle\langle\phi|$ are both pure states then (you will prove on Hwk. 4)

$$
D_{q}(\rho, \sigma)=\sqrt{1-|\langle\phi \mid \psi\rangle|^{2}}
$$

\odot Therefore, pure states are perfectly distinguishable iff $\langle\phi \mid \psi\rangle=0$.
8.vil) The Lindblad Equation
\bigcirc A density operator evolves under unitary dynamics according to

$$
\rho \rightarrow U p U^{t}
$$

() If the unitary is generated by a fixed Hamiltonim $U(t)=e^{-i H\left(t-t_{0}\right)}$ then

$$
\begin{aligned}
& \rho(t)=e^{-i H\left(t-t_{0}\right)} \rho\left(t_{0}\right) e^{i H\left(t-t_{0}\right)} \\
& \rho(t+\Delta t)-\rho(t)=[I-i H \Delta t] \rho(t)[I+i H \Delta t]-\rho(t) \quad t_{0} \text { pst order } \\
&=-i \Delta t(H \rho(t)-\rho(t) H) \\
&=-i \Delta t[H, \rho(t)]
\end{aligned}
$$

$\Rightarrow \frac{d p}{d t}=-i[H, p]$ This is culled the von-Neuman equation.

COnTINUOUS TINA DYMOMDICS
\bigcirc But we know that finite time dynamics need not be withy. We can have a completely positive, trace preserving map.

$$
\rho \rightarrow \varepsilon(\rho)=\sum_{j} M^{(j)} \rho M^{(j) t}
$$

O What is the corresponding continuous-time dynamics?
O You might have thought that we can just parameterize \mathcal{E} by t and assume that $\varepsilon_{t+\Delta t}=\varepsilon_{\Delta t} \circ \varepsilon_{t}$ ie. $\rho\left(t_{0}+t+\Delta t\right)=\varepsilon_{\Delta t}\left(\varepsilon_{t}\left(\rho\left(t_{0}\right)\right)\right)$
() This would give \mathcal{E}_{t} the structure of a continuous semi-group.

O But there is a problem with this from the point of view of the larger church.

The View from the Larger Church
© Recall that, in order to derive CPT maps, we assumed that the system was initially uncorrelated from its environment.
0 Thus, it we want $\mathcal{E}_{2 \Delta t}=\mathcal{E}_{\Delta t} \circ \mathcal{E}_{\Delta t}$ with $\mathcal{E}_{\Delta t} C P T$, we need the system to be uncorrelated with its environment after every Δt timestep.
0 If the system is interacting with the environment under a fixed Hamiltonian HSE then this wont be true in general

Expect a correlated state at this stage already.

The View from the Larger Church
O So we will have to assume that the interaction with the environment is approximately like this

- The system behoves as it it is interacting with a new uncorrelated environment at every time step.
\mathcal{O} This is culled the weak coupling limit.
O E.g. Suppose the environment is a thermal bath
timescale for rethermalization \ll timescale on which of the bath system gets significantly correlated with environment.

Deriving the Lindblad Equation
O E Et will have the usual operator sum form

$$
\rho(t+\Delta t)=\varepsilon_{\Delta t}(\rho(t))=\sum_{j=0}^{N} M^{(j)} \rho(t) M^{(j)^{t}} \simeq \rho(t)+O(\Delta t)
$$

O) We want to expand each term up to order Δt.
O We can, without loss of generality, put all of the $O(1)$ term in a single trans operator

$$
M^{(0)}=I+(\underbrace{L^{(0)}-i H 1}) \Delta t+O\left(\Delta t^{2}\right)
$$

\uparrow general decomposition of an operator into two Hermitian operators
O In order for $M^{(j)} \rho M^{(j) t}$ to contribute for $j=1,2, \ldots, N$ we reed

$$
M^{(j)}=L^{(j)} \sqrt{\Delta t}+O(\Delta t)
$$

(-) Plugging these terms into $\rho(t+\Delta t)=\mathcal{E}_{\Delta t}(\rho(t))$ gives

$$
\begin{aligned}
& \rho(t+\Delta t)-\rho(t)=\left[\left(L^{(0)}-i H\right) \rho(t)+\rho(t)\left(L^{(0)}+i H\right)+\sum_{j=1}^{N} L^{(j)} \rho(t) L^{(j) t}\right] \Delta t \\
& =[\underbrace{-i[H, \rho]}_{\text {unit-wy }}+\underbrace{\left\{L^{(0)} \rho \rho(t)\right\}}_{\text {anticommutator }}+\sum_{j=1}^{N} L^{(j)} \rho(t) L^{(j) t}] \Delta t \\
& \text { port } \\
& L^{(0)} \rho(t)+\rho(t) L^{(0)} \\
& \therefore \frac{d p}{d t}=-i[t 1, p]+\left\{L^{(0)}, p(t)\right\}+\sum_{j=1}^{N} L^{(j)} \rho(t) L^{(j) t}
\end{aligned}
$$

Deriving the Lindblad Equation
O We still have to impose the trace preserving condition

$$
\begin{aligned}
& \sum_{j} M^{(j) t} M^{(j)}=I \\
M^{(0) t} M^{(0)}= & {\left[I+\left(L^{(0)}+i H\right) \Delta t\right]\left[I+\left(L^{(0)}-i H\right) \Delta t\right] } \\
= & \left.I+\left(L^{(0)}+i \not\right)+L^{(0)}-j \nless 1\right) \Delta t+O\left(\Delta t^{2}\right) \\
= & I+2 L^{(0)} \Delta t+O\left(\Delta t^{2}\right) \\
\sum_{=: 1}^{N} M^{(j) t} M^{(j)}= & \left.\left(\sum_{j=1}^{N} L^{(j) t} L^{(j)}\right) \Delta t+O\left(\Delta t^{2}\right)\right\} \Rightarrow L^{(0)}=-\frac{1}{2} \sum_{j=1}^{N} L^{(j) t} L^{(j)} \\
& \frac{d \rho}{d t}=-i[H, \rho]+\sum_{j=1}^{N}\left(L^{(j)} \rho L^{(j) t}-\frac{1}{2}\left\{L^{(j) t} L^{(j)}, \rho\right\}\right)
\end{aligned}
$$

O Consider a quit with Hamiltonian $H=O$ and a single Lindblad operator

$$
L=\gamma \sigma_{3}
$$

OTher we get $\frac{d \rho}{d t}=\gamma^{2}\left(\sigma_{3} \rho \sigma_{3}-\rho\right)$
O In terms of components $\left(\begin{array}{ll}\dot{\rho}_{00} & \dot{\rho}_{01} \\ \dot{\rho}_{00} & \dot{\rho}_{11}\end{array}\right)=\left(\begin{array}{cc}0 & -2 \gamma^{2} \rho_{01} \\ -2 \gamma^{2} \rho_{10} & 0\end{array}\right)$
So we get the solution:

$$
\rho(t)=\left(\begin{array}{cc}
\rho_{00}(0) & \rho_{01}(0) e^{-2 \gamma^{2} t} \\
\rho_{10}(0) e^{-2 \gamma^{2} t} & \rho_{11}(0)
\end{array}\right)
$$

The off-diagonal elements decay exponentially System decoheres in the $|0\rangle, 11\rangle$ basis.

9) Onfologicall Models

- The aim of this section is to investigate the possibility of constructing a realist theory (known as an ontological model) that can reproduce the predictions of quantum theory.
- We start with a simple toy-model that reproduces many of the apparently puzzling phenomena we have studied so far: The Spekkens' toy theory.
- These phenomena are naturally explained if there is a restriction on the amount of information we can have about the ontic state (an "epistemic restriction" or "epistriction") and the quantum state is epistemic.
- After this we will present the general definition of an ontological model and prove a number of no-go theorems that imply that a realist theory underlying quantum theory cannot be like this.

9) Onfologicall Models

- Good references for this section include:
- David Jennings and Matthew Leifer, "No Return to Classical Reality", Contemporary Physics, vol. 57, iss. 1, pp. 60-82 (2015) https://doi.org/10.1080/00107514.2015.1063233 preprint: https://arxiv.org/abs/1501.03202
- Robert W. Spekkens, "Quasi-Quantization: Classical Statistical Theories with an Epistemic Restriction", in "Quantum Theory: Informational Foundations and Foils"', Giulio Chiribella and Robert W. Spekkens (eds.), pp. 83-135, Springer (2015) preprint: https://arxiv.org/abs/1409.5041
- Robert W. Spekkens, "Contextuality for preparations, transformations, and unsharp measurements", Physical Review A, vol. 710052108 (2005). Preprint: https://arxiv.org/abs/quant-ph/0406166
- J. S. Bell, "Speakable and Unspeakable in Quantum Mechanics", 2nd edition, Cambridge University Press (2004).
- Matthew Leifer, "Is the Quantum State Real? An Extended Review of ψ ontology Theorems", Quanta, vol. 3, no. 1, pp. 67-155 (2014). http://dx.doi.org/10.12743/quanta.v3il.22

9) Onfologicall Models

9. Ontological Models
i. Epistricted Theories
ii. Definitions
ii. Examples
iv. Excess Baggage
v. Contextuality
vi. Ψ-ontology
vii. Bell's Theorem
viii. The Colbeck-Renner Theorem
