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 Schmid College Academic Advising:
 Tuesday April 3, 4:30pm-6:30pm AF209A (Prof. Leifer)

 Wednesday April 4, 4:30pm-6:30pm Henley Hall Basement (Prof. Dressel)

 Adam Becker is returning to Chapman:
 Book event and signing at 1888 center: Monday April 16.  RSVP required 

https://bit.ly/AdamBecker

 Assignments 
 First Draft due on Blackboard April 11.  

 Peer review until April 16.  

 Discussion in class April 16.

 Final Version due May 2.

 Homework 3 due April 11.

 I like lunch invitations

https://bit.ly/AdamBecker


 Alice has a preparation device that prepares the system in either 
the state 𝜌 or the state 𝜎.  She chooses each with 50/50 probability 
and sends the system to Bob.

 Bob makes a measurement on the system and has to guess 
whether 𝜌 or 𝜎 was prepared.

 What is his maximum probability of success and what measurement 
should he make?



 Let’s look at the classical case first.  There is a variable that can take 
𝑑 possible values 𝑗 = 1,2,⋯ , 𝑑.

 Alice prepares the probability distributions 𝒑 or 𝒒 with 50/50
probability.

 Bob sees the value of 𝑗 and has to guess whether 𝒑 or 𝒒 was 
prepared.

 Bob decides on a subset 𝐸𝒑 ⊆ {1,2,⋯ , 𝑑}.  If 𝑗 ∈ 𝐸𝒑 he guesses 𝒑.  If it is 
in the complement 𝐸𝒒 = 1,2,⋯ , 𝑑 \𝐸𝒑, he guesses 𝒒.



 Therefore,
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𝑝𝑗 − 𝑞𝑗

=
1

2
1 + 𝐷𝑐(𝒑, 𝒒)

 Where 𝐷𝑐 𝒑, 𝒒 =
1

2
σ𝑗=1
𝑑 𝑝𝑗 − 𝑞𝑗 is called the variational distance.



 Theorem (Helstrom, Holevo): The optimal success probability in the 
quantum case is given by

𝑝succ =
1

2
1 + 𝐷𝑞(𝜌, 𝜎)

where

𝐷𝑞 𝜌, 𝜎 =
1

2
Tr 𝜌 − 𝜎

is known as the trace distance, and the matrix norm is given by

𝑀 = 𝑀†𝑀.



 Lemma: If 𝑀 is a Hermitian operator then

Tr 𝑀 =

𝑗

|𝜆𝑗|

where 𝜆𝑗 are the eigenvalues of 𝑀.

 Proof: Let 𝑀 = σ𝑗 𝜆𝑗|𝜙𝑗⟩⟨𝜙𝑗| be the spectral decomposition of 𝑀 and 
write

𝑀 = 

{𝑗|𝜆𝑗≥0}

𝜆𝑗 |𝜙𝑗⟩⟨𝜙𝑗| − 

{𝑘|𝜆𝑘<0}

𝜆𝑘 |𝜙𝑘⟩⟨𝜙𝑘|

Then,

𝑀 = 𝑀†𝑀 = 𝑀2 because 𝑀 is Hermitian.



𝑀 = 𝑀2

= 

{𝑗|𝜆𝑗≥0}

𝜆𝑗 |𝜙𝑗⟩⟨𝜙𝑗| − 

{𝑘|𝜆𝑘<0}

𝜆𝑘 |𝜙𝑘⟩⟨𝜙𝑘| 

{𝑙|𝜆𝑙≥0}

𝜆𝑙 |𝜙𝑙⟩⟨𝜙𝑙| − 

{𝑚|𝜆𝑚<0}

𝜆𝑚 |𝜙𝑚⟩⟨𝜙𝑚|

= 

{𝑗|𝜆𝑗≥0}



{𝑙|𝜆𝑙≥0}

𝜆𝑗 𝜆𝑙 𝜙𝑗 𝜙𝑗 𝜙𝑙⟩⟨𝜙𝑙| + 

{𝑘|𝜆𝑘<0}



{𝑚|𝜆𝑚<0}

𝜆𝑘 𝜆𝑚 𝜙𝑘 𝜙𝑘 𝜙𝑚⟩⟨𝜙𝑚|

 Note: cross terms are zero because the subspaces with 𝜆𝑗 ≥ 0 and 𝜆𝑗 < 0 are 
orthogonal.

𝑀 = 

{𝑗|𝜆𝑗≥0}



{𝑙|𝜆𝑙≥0}

𝜆𝑗 𝜆𝑙 𝛿𝑗𝑙 𝜙𝑗 ⟨𝜙𝑙| + 

{𝑘|𝜆𝑘<0}



{𝑚|𝜆𝑚<0}

𝜆𝑘 𝜆𝑚 𝛿𝑘𝑚 𝜙𝑘 ⟨𝜙𝑚|

= 

{𝑗|𝜆𝑗≥0}
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2
𝜙𝑗 𝜙𝑗 + 
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2 𝜙𝑘 𝜙𝑘

= 

𝑗
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2
𝜙𝑗 𝜙𝑗 =

𝑗

𝜆𝑗 𝜙𝑗 𝜙𝑗

 And hence Tr 𝑀 = σ𝑗 |𝜆𝑗| .



 Now consider Bob’s strategy.  He has to choose a two-outcome 
POVM: 𝐸𝜌, 𝐸𝜎 = 𝐼 − 𝐸𝜌, such that if he gets the outcome 𝐸𝜌 he will 
guess 𝜌 and if he gets the outcome 𝐸𝜎 he will guess 𝜎.

 His success probability is

𝑝succ = Prob 𝜌 is prepared Prob(𝐸𝜌|𝜌) + Prob 𝜎 is prepared Prob(𝐸𝜎|𝜎)

=
1

2
Tr 𝐸𝜌𝜌 + Tr(𝐸𝜎𝜎)

=
1

2
Tr 𝐸𝜌𝜌 + Tr 𝐼 − 𝐸𝜌 𝜎

=
1

2
Tr 𝜎 + Tr 𝐸𝜌(𝜌 − 𝜎)

=
1

2
1 + Tr 𝐸𝜌(𝜌 − 𝜎)



 Now let 𝜌 − 𝜎 = σ𝑗 𝜆𝑗 𝜙𝑗 𝜙𝑗 be the spectral decomposition of 𝜌 − 𝜎.

Tr 𝐸𝜌(𝜌 − 𝜎) = Tr 𝐸𝜌 

𝑗

𝜆𝑗 𝜙𝑗 𝜙𝑗

=

𝑗

𝜆𝑗Tr 𝐸𝜌|𝜙𝑗⟩⟨𝜙𝑗| =

𝑗

𝜆𝑗⟨𝜙𝑗|𝐸𝜌|𝜙𝑗⟩

 Now, 0 ≤ 𝜙𝑗 𝐸𝜌 𝜙𝑗 ≤ 1, so this is clearly maximized if we can choose 
𝜙𝑗 𝐸𝜌 𝜙𝑗 = 1 for 𝜆𝑗 ≥ 0 and 𝜙𝑗 𝐸𝜌 𝜙𝑗 = 0 for 𝜆𝑗 < 0.  This can be 

achieved if we choose

𝐸𝜌 = 𝑃+ = σ{𝑗|𝜆𝑗≥0}
|𝜙𝑗⟩⟨𝜙𝑗|



 So we have
Tr 𝐸𝜌(𝜌 − 𝜎) ≤ Tr 𝑃+(𝜌 − 𝜎)

=

𝑗

𝜆𝑗⟨𝜙𝑗|𝑃+|𝜙𝑗⟩

=

𝑗



{𝑘|𝜆𝑘≥0}

𝜆𝑗⟨𝜙𝑗|𝜙𝑘⟩⟨𝜙𝑘|𝜙𝑗⟩ = 

{𝑗|𝜆𝑗≥0}

|𝜆𝑗|

 However, 𝜌 and 𝜎 are both density matrices, so
Tr 𝜌 − 𝜎 = Tr 𝜌 − Tr 𝜎 = 1 − 1 = 0

 Therefore σ𝑗 𝜆𝑗 = σ{𝑗|𝜆𝑗≥0}
|𝜆𝑗| − σ{𝑗|𝜆𝑗<0}

|𝜆𝑗| = 0 or 



{𝑗|𝜆𝑗≥0}

|𝜆𝑗| = 

{𝑗|𝜆𝑗<0}

|𝜆𝑗|



 Hence,



{𝑗|𝜆𝑗≥0}

|𝜆𝑗| =
1

2


{𝑗|𝜆𝑗≥0}

|𝜆𝑗| + 

{𝑗|𝜆𝑗<0}

|𝜆𝑗|

=
1

2


𝑗

|𝜆𝑗|

 Now, if we apply the lemma, this gives 



{𝑗|𝜆𝑗≥0}

|𝜆𝑗| =
1

2
Tr 𝜌 − 𝜎 = 𝐷𝑞(𝜌, 𝜎)

 Putting it all together gives

𝑝succ ≤
1

2
1 + 𝐷𝑞(𝜌, 𝜎)

with equality achieved if Bob chooses 𝐸𝜌 = 𝑃+, i.e. the projector onto the 
positive eigenspace of 𝜌 − 𝜎.



 Note that if 𝜌 and 𝜎 are diagonal in the same basis

𝜌 = σ𝑗 𝑝𝑗|𝑗⟩⟨𝑗| and    𝜎 = σ𝑗 𝑞𝑗|𝑗⟩⟨𝑗|

then the eigenvalues of 𝜌 − 𝜎 are 𝑝𝑗 − 𝑞𝑗 and we get

𝐷𝑞 𝜌, 𝜎 =
1

2


𝑗

𝑝𝑗 − 𝑞𝑗 = 𝐷𝑐(𝒑, 𝒒)

recovering the classical result.

 If 𝜌 = |𝜓⟩⟨𝜓| and 𝜎 = |𝜙⟩⟨𝜙| are both pure states then (you will prove 
on Hwk. 4)

𝐷𝑞 𝜌, 𝜎 = 1 − 𝜙 𝜓 2

 Therefore, pure states are perfectly distinguishable iff 𝜙 𝜓 = 0.



















 The aim of this section is to investigate the possibility of constructing 
a realist theory (known as an ontological model) that can 
reproduce the predictions of quantum theory.

 We start with a simple toy-model that reproduces many of the 
apparently puzzling phenomena we have studied so far: The 
Spekkens’ toy theory.  

 These phenomena are naturally explained if there is a restriction on 
the amount of information we can have about the ontic state (an 
“epistemic restriction” or “epistriction”) and the quantum state is 
epistemic.

 After this we will present the general definition of an ontological 
model and prove a number of no-go theorems that imply that a 
realist theory underlying quantum theory cannot be like this.



 Good references for this section include:
 David Jennings and Matthew Leifer, “No Return to Classical Reality”, 

Contemporary Physics, vol. 57, iss. 1, pp. 60-82 (2015) 
https://doi.org/10.1080/00107514.2015.1063233 preprint: 
https://arxiv.org/abs/1501.03202

 Robert W. Spekkens, “Quasi-Quantization: Classical Statistical Theories with an 
Epistemic Restriction”, in “Quantum Theory: Informational Foundations and 
Foils”, Giulio Chiribella and Robert W. Spekkens (eds.), pp. 83-135, Springer 
(2015) preprint: https://arxiv.org/abs/1409.5041

 Robert W. Spekkens, “Contextuality for preparations, transformations, and 
unsharp measurements”, Physical Review A, vol. 71 052108 (2005). Preprint: 
https://arxiv.org/abs/quant-ph/0406166

 J. S. Bell, “Speakable and Unspeakable in Quantum Mechanics”, 2nd edition, 
Cambridge University Press (2004). 

 Matthew Leifer, “Is the Quantum State Real? An Extended Review of ψ-
ontology Theorems”, Quanta, vol. 3, no. 1, pp. 67-155 (2014). 
http://dx.doi.org/10.12743/quanta.v3i1.22

https://doi.org/10.1080/00107514.2015.1063233
https://arxiv.org/abs/1501.03202
https://arxiv.org/abs/1409.5041
https://arxiv.org/abs/quant-ph/0406166
http://dx.doi.org/10.12743/quanta.v3i1.22


9. Ontological Models

i. Epistricted Theories

ii. Definitions

iii. Examples

iv. Excess Baggage

v. Contextuality

vi. Ψ-ontology

vii. Bell’s Theorem

viii. The Colbeck-Renner Theorem


