Quantum Foundations Lecture 15

April 2, 2018
Dr. Matthew Leifer
leifer@chapman.edu

HSC112

Announcements

- Schmid College Academic Advising:
 - Tuesday April 3, 4:30pm-6:30pm AF209A (Prof. Leifer)
 - Wednesday April 4, 4:30pm-6:30pm Henley Hall Basement (Prof. Dressel)
- Adam Becker is returning to Chapman:
 - Book event and signing at 1888 center: Monday April 16. RSVP required https://bit.ly/AdamBecker
- Assignments
 - First Draft due on Blackboard April 11.
 - Peer review until April 16.
 - Discussion in class April 16.
 - Final Version due May 2.
- Homework 3 due April 11.
- I like lunch invitations

Application: Minimum Error Discrimination

- Alice has a preparation device that prepares the system in either the state ρ or the state σ . She chooses each with 50/50 probability and sends the system to Bob.
- \bullet Bob makes a measurement on the system and has to guess whether ρ or σ was prepared.
- What is his maximum probability of success and what measurement should he make?

Classical Case

- Let's look at the classical case first. There is a variable that can take d possible values $j=1,2,\cdots,d$.
- \odot Alice prepares the probability distributions p or q with 50/50 probability.
- Bob decides on a subset $E_p \subseteq \{1,2,\cdots,d\}$. If $j \in E_p$ he guesses p. If it is in the complement $E_q = \{1,2,\cdots,d\} \setminus E_p$, he guesses q.

Classical Case

• Therefore,

$$p_{\text{succ}} \leq \frac{1}{2} \left[1 + \sum_{\{j \mid p_j \geq q_j\}} (p_j - q_j) \right]$$

$$= \frac{1}{2} \left[1 + \frac{1}{2} \left(\sum_{\{j \mid p_j \geq q_j\}} (p_j - q_j) + \sum_{\{j \mid p_j < q_j\}} (q_j - p_j) \right) \right]$$

$$= \frac{1}{2} \left[1 + \frac{1}{2} \sum_{j=1}^{d} |p_j - q_j| \right]$$

$$= \frac{1}{2} [1 + D_c(\mathbf{p}, \mathbf{q})]$$

• Where $D_c(\mathbf{p}, \mathbf{q}) = \frac{1}{2} \sum_{j=1}^{d} |p_j - q_j|$ is called the variational distance.

 Theorem (Helstrom, Holevo): The optimal success probability in the quantum case is given by

$$p_{\text{succ}} = \frac{1}{2} \left[1 + D_q(\rho, \sigma) \right]$$

where

$$D_q(\rho, \sigma) = \frac{1}{2} \text{Tr}(|\rho - \sigma|)$$

is known as the trace distance, and the matrix norm is given by

$$|M| = \sqrt{M^{\dagger}M}$$
.

Lemma: If M is a Hermitian operator then

$$\operatorname{Tr}(|M|) = \sum_{j} |\lambda_{j}|$$

where λ_i are the eigenvalues of M.

• Proof: Let $M = \sum_j \lambda_j |\phi_j\rangle\langle\phi_j|$ be the spectral decomposition of M and write

$$M = \sum_{\{j \mid \lambda_j \ge 0\}} |\lambda_j| |\phi_j\rangle \langle \phi_j| - \sum_{\{k \mid \lambda_k < 0\}} |\lambda_k| |\phi_k\rangle \langle \phi_k|$$

Then,

 $|M| = \sqrt{M^{\dagger}M} = \sqrt{M^2}$ because M is Hermitian.

$$= \sqrt{\left(\sum_{\{j|\lambda_j \geq 0\}} |\lambda_j| |\phi_j\rangle \langle \phi_j| - \sum_{\{k|\lambda_k < 0\}} |\lambda_k| |\phi_k\rangle \langle \phi_k| \right) \left(\sum_{\{l|\lambda_l \geq 0\}} |\lambda_l| |\phi_l\rangle \langle \phi_l| - \sum_{\{m|\lambda_m < 0\}} |\lambda_m| |\phi_m\rangle \langle \phi_m| \right)}$$

$$= \sqrt{\sum_{\{j|\lambda_j \geq 0\}} \sum_{\{l|\lambda_l \geq 0\}} |\lambda_j| |\lambda_l| |\phi_j\rangle \langle \phi_j| \phi_l\rangle \langle \phi_l| + \sum_{\{k|\lambda_k < 0\}} \sum_{\{m|\lambda_m < 0\}} |\lambda_k| |\lambda_m| |\phi_k\rangle \langle \phi_k| \phi_m\rangle \langle \phi_m| }$$

• Note: cross terms are zero because the subspaces with $\lambda_j \geq 0$ and $\lambda_j < 0$ are orthogonal.

$$|M| = \sqrt{\sum_{\{j|\lambda_j \ge 0\}} \sum_{\{l|\lambda_l \ge 0\}} |\lambda_j| |\lambda_l |\delta_{jl}| \phi_j \rangle \langle \phi_l|} + \sum_{\{k|\lambda_k < 0\}} \sum_{\{m|\lambda_m < 0\}} |\lambda_k| |\lambda_m |\delta_{km}| \phi_k \rangle \langle \phi_m|$$

$$= \sqrt{\sum_{\{j|\lambda_j \ge 0\}} |\lambda_j|^2 |\phi_j \rangle \langle \phi_j|} + \sum_{\{k|\lambda_k < 0\}} |\lambda_k|^2 |\phi_k \rangle \langle \phi_k|$$

$$= \sqrt{\sum_{j} |\lambda_j|^2 |\phi_j \rangle \langle \phi_j|} = \sum_{j} |\lambda_j| |\phi_j \rangle \langle \phi_j|$$

• And hence $\operatorname{Tr}(|M|) = \sum_{j} |\lambda_{j}|$.

- Now consider Bob's strategy. He has to choose a two-outcome POVM: E_{ρ} , $E_{\sigma} = I E_{\rho}$, such that if he gets the outcome E_{ρ} he will guess ρ and if he gets the outcome E_{σ} he will guess σ .
- His success probability is

 $p_{\text{SUCC}} = \text{Prob}(\rho \text{ is prepared}) \text{Prob}(E_{\rho}|\rho) + \text{Prob}(\sigma \text{ is prepared}) \text{Prob}(E_{\sigma}|\sigma)$

$$= \frac{1}{2} \left[\text{Tr}(E_{\rho}\rho) + \text{Tr}(E_{\sigma}\sigma) \right]$$

$$= \frac{1}{2} \left[\text{Tr}(E_{\rho}\rho) + \text{Tr}\left((I - E_{\rho})\sigma\right) \right]$$

$$= \frac{1}{2} \left[\text{Tr}(\sigma) + \text{Tr}(E_{\rho}(\rho - \sigma)) \right]$$

$$= \frac{1}{2} \left[1 + \text{Tr}(E_{\rho}(\rho - \sigma)) \right]$$

• Now let $\rho - \sigma = \sum_{j} \lambda_{j} |\phi_{j}\rangle\langle\phi_{j}|$ be the spectral decomposition of $\rho - \sigma$.

$$\operatorname{Tr}(E_{\rho}(\rho - \sigma)) = \operatorname{Tr}\left(E_{\rho}\left(\sum_{j} \lambda_{j} |\phi_{j}\rangle\langle\phi_{j}|\right)\right)$$
$$= \sum_{j} \lambda_{j} \operatorname{Tr}(E_{\rho}|\phi_{j}\rangle\langle\phi_{j}|) = \sum_{j} \lambda_{j}\langle\phi_{j}|E_{\rho}|\phi_{j}\rangle$$

• Now, $0 \le \langle \phi_j | E_\rho | \phi_j \rangle \le 1$, so this is clearly maximized if we can choose $\langle \phi_j | E_\rho | \phi_j \rangle = 1$ for $\lambda_j \ge 0$ and $\langle \phi_j | E_\rho | \phi_j \rangle = 0$ for $\lambda_j < 0$. This can be achieved if we choose

$$E_{\rho} = P_{+} = \sum_{\{j \mid \lambda_{j} \geq 0\}} |\phi_{j}\rangle\langle\phi_{j}|$$

So we have

$$\operatorname{Tr}(E_{\rho}(\rho - \sigma)) \leq \operatorname{Tr}(P_{+}(\rho - \sigma))$$

$$= \sum_{j} \lambda_{j} \langle \phi_{j} | P_{+} | \phi_{j} \rangle$$

$$= \sum_{j} \sum_{\{k | \lambda_{k} \geq 0\}} \lambda_{j} \langle \phi_{j} | \phi_{k} \rangle \langle \phi_{k} | \phi_{j} \rangle = \sum_{\{j | \lambda_{j} \geq 0\}} |\lambda_{j}|$$

- However, ρ and σ are both density matrices, so $\operatorname{Tr}(\rho \sigma) = \operatorname{Tr}(\rho) \operatorname{Tr}(\sigma) = 1 1 = 0$
- Therefore $\sum_{j} \lambda_j = \sum_{\{j \mid \lambda_j \geq 0\}} |\lambda_j| \sum_{\{j \mid \lambda_j < 0\}} |\lambda_j| = 0$ or $\sum_{\{j \mid \lambda_i \geq 0\}} |\lambda_j| = \sum_{\{j \mid \lambda_i < 0\}} |\lambda_j|$

Hence,

$$\sum_{\{j|\lambda_j\geq 0\}} |\lambda_j| = \frac{1}{2} \left(\sum_{\{j|\lambda_j\geq 0\}} |\lambda_j| + \sum_{\{j|\lambda_j< 0\}} |\lambda_j| \right)$$
$$= \frac{1}{2} \sum_{j} |\lambda_j|$$

• Now, if we apply the lemma, this gives
$$\sum_{\{j|\lambda_j\geq 0\}}|\lambda_j|=\frac{1}{2}\mathrm{Tr}(|\rho-\sigma|)=D_q(\rho,\sigma)$$

Putting it all together gives

$$p_{\text{succ}} \le \frac{1}{2} (1 + D_q(\rho, \sigma))$$

with equality achieved if Bob chooses $E_{\rho} = P_{+}$, i.e. the projector onto the positive eigenspace of $\rho - \sigma$.

Special Cases

 \circ Note that if ρ and σ are diagonal in the same basis

$$\rho = \sum_{j} p_{j} |j\rangle\langle j|$$
 and $\sigma = \sum_{j} q_{j} |j\rangle\langle j|$

then the eigenvalues of $\rho-\sigma$ are p_j-q_j and we get

$$D_q(\rho,\sigma) = \frac{1}{2} \sum_j |p_j - q_j| = D_c(\boldsymbol{p},\boldsymbol{q})$$

recovering the classical result.

• If $\rho = |\psi\rangle\langle\psi|$ and $\sigma = |\phi\rangle\langle\phi|$ are both pure states then (you will prove on Hwk. 4)

$$D_q(\rho, \sigma) = \sqrt{1 - |\langle \phi | \psi \rangle|^2}$$

• Therefore, pure states are perfectly distinguishable iff $\langle \phi | \psi \rangle = 0$.

8.vi) The Lindblad Equation

O A density operator evolves under unitary dynamics according to p -> Uput Olf the unitary is generated by a fixed Hamiltonian $U(t)=e^{-iH(t-to)}$ then p(t) = e-iH(t-to) p(to) eiH(t-to) $p(t+\Delta t)-p(t)=[I-iH\Delta t]p(t)[I+iH\Delta t]-p(t)$ to 1st order $= -i\Delta t \left(H\rho(t) - \rho(t) H \right)$ = - : Ut [H, P(t)]

Continuous Time Dynamics

O But we know that finite time dynamics need not be unitary. We can have a completely positive, trace preserving map.

$$\rho \rightarrow \mathcal{E}(\rho) = \mathcal{E}_{i} M^{(i)} \rho M^{(i)\dagger}$$

- O What is the corresponding continuous-time dynamics?
- O You might have thought that we can just parameterize \mathcal{E} by t and assume that $\mathcal{E}_{t+\Delta t} = \mathcal{E}_{\Delta t} \circ \mathcal{E}_{t}$ i.e. $P(t_0+t+\Delta t) = \mathcal{E}_{\Delta t} \left(\mathcal{E}_{t}(P(t_0))\right)$
- 1) This would give Et the structure of a continuous semi-group.
- O But there is a problem with this from the point of view of the larger church.

The View from the Larger Church

- O Recall that, in order to derive CPT maps, we assumed that the system was initially uncorrelated from its environment.
- O Thus, it we wont $\mathcal{E}_{20t} = \mathcal{E}_{0t} \circ \mathcal{E}_{0t}$ with $\mathcal{E}_{0t} \in CPT$, we need the system to be uncorrelated with its environment after every Δt timestep.
- O If the system is interacting with the environment under a fixed Hamiltonian Hise then this won't be true in general

The View from the Larger Church

O So we will have to assume that the interaction with the environment is approximately like this

- The system behaves as it it is interacting with a new uncorrelated environment at every time step.
- O This is called the weak coupling limit.
- O E.g. suppose the environment is a l-hermal bath

timescale for rethermalization < timescale on which of the bath correlated with

environment.

Deriving the Lindblad Equation

O Est will have the usual operator sun form

$$\rho(t+\Delta t) = \mathcal{E}_{\Delta t}(\rho(t)) = \sum_{j=0}^{N} M^{(j)} \rho(t) M^{(j)}^{\dagger} \simeq \rho(t) + O(\Delta t)$$

- O We want to expand each term up to order Dt.
- O We can, without loss of generality, put all of the O(1) term in a single Kraus operator

queral decomposition of an operator into two Hermitian operators

O In order for $M^{(i)} p M^{(i)} t$ to contribute for j = 1, 2, ..., N we need $M^{(i)} = L^{(i)} \sqrt{\Delta t} + O(\Delta t)$

Deriving the Lindblad Equation

O Plugging these terms into
$$p(t+\Delta t) = \mathcal{E}_{\Delta t}(\rho(t))$$
 gives
$$\rho(t+\Delta t) - \rho(t) = \left[\left(L^{(0)} - i H \right) \rho(t) + \rho(t) \left(L^{(0)} + i H \right) + \sum_{j=1}^{N} L^{(j)} \rho(t) L^{(j) \dagger} \right] \Delta t$$

$$= \left[-i \left[H, \rho \right] + \left\{ L^{(0)}, \rho(t) \right\} + \sum_{j=1}^{N} L^{(j)} \rho(t) L^{(j) \dagger} \right] \Delta t$$

$$= \int_{\alpha n} \left[L^{(0)} \rho(t) + \rho(t) L^{(0)} \right]$$

$$= \int_{\alpha n} \left[L^{(0)} \rho(t) + \rho(t) L^{(0)} \right]$$

$$= \int_{\alpha n} \left[L^{(0)} \rho(t) + \rho(t) L^{(0)} \right]$$

$$= \int_{\alpha n} \left[L^{(0)} \rho(t) + \rho(t) L^{(0)} \right]$$

$$= \int_{\alpha n} \left[L^{(0)} \rho(t) + \rho(t) L^{(0)} \right]$$

Deriving the Lindblad Equation

O We still have to impose the trace preserving condition $\sum M^{(\zeta)} M^{(\zeta)} = T$ $M^{(0)} + M^{(0)} = [I + (L^{(0)} + iH) \Delta t] [I + (L^{(0)} - iH) \Delta t]$ = I + (L(0) + i) + L(0) - i)) At + O(At2) $= I + 2 L^{(0)} \Delta t + O(\Delta t^{2})$ $= \int_{0}^{\infty} L^{(3)} L^{(3$ $\frac{d\rho}{dt} = -i\left[H,\rho\right] + \sum_{i=1}^{N}\left(L^{(i)}\rho L^{(i)\dagger} - \frac{1}{2} \xi L^{(i)\dagger}L^{(i)},\rho\right]$

Example: Decoherence

O Consider a qubit with Hamiltonian H=0 and a single Lindblad operator

L=803

O Then we get
$$\frac{d\rho}{dt} = 8^2 (\sigma_3 \rho \sigma_3 - \rho)$$

© In terms of components
$$(\dot{p}_{00}, \dot{p}_{01}) = (0, -28^2 p_{01})$$

So we get the solution:

$$\rho(t) = \begin{pmatrix} \rho_{00}(0) & \rho_{01}(0)e^{-2x^{2}t} \\ \rho_{10}(0)e^{-2x^{2}t} & \rho_{11}(0) \end{pmatrix}$$

The off-diagonal elements
decay exponentially

System decoheres in the
102,112 basis.

9) Ontological Models

- The aim of this section is to investigate the possibility of constructing a realist theory (known as an ontological model) that can reproduce the predictions of quantum theory.
- We start with a simple toy-model that reproduces many of the apparently puzzling phenomena we have studied so far: The Spekkens' toy theory.
- These phenomena are naturally explained if there is a restriction on the amount of information we can have about the ontic state (an "epistemic restriction" or "epistriction") and the quantum state is epistemic.
- After this we will present the general definition of an ontological model and prove a number of no-go theorems that imply that a realist theory underlying quantum theory cannot be like this.

9) Ontological Models

- Good references for this section include:
 - David Jennings and Matthew Leifer, "No Return to Classical Reality", Contemporary Physics, vol. 57, iss. 1, pp. 60-82 (2015) https://doi.org/10.1080/00107514.2015.1063233 preprint: https://arxiv.org/abs/1501.03202
 - Robert W. Spekkens, "Quasi-Quantization: Classical Statistical Theories with an Epistemic Restriction", in "Quantum Theory: Informational Foundations and Foils", Giulio Chiribella and Robert W. Spekkens (eds.), pp. 83-135, Springer (2015) preprint: https://arxiv.org/abs/1409.5041
 - Robert W. Spekkens, "Contextuality for preparations, transformations, and unsharp measurements", Physical Review A, vol. 71 052108 (2005). Preprint: https://arxiv.org/abs/quant-ph/0406166
 - J. S. Bell, "Speakable and Unspeakable in Quantum Mechanics", 2nd edition, Cambridge University Press (2004).
 - Matthew Leifer, "Is the Quantum State Real? An Extended Review of ψontology Theorems", Quanta, vol. 3, no. 1, pp. 67-155 (2014). http://dx.doi.org/10.12743/quanta.v3i1.22

9) Ontological Models

Ontological Models

- Epistricted Theories
- ii. Definitions
- iii. Examples
- iv. Excess Baggage
- v. Contextuality
- vi. Ψ-ontology
- vii. Bell's Theorem
- viii. The Colbeck-Renner Theorem