Quantum Foundations Lecture 14

March 28, 2018
Dr. Matthew Leifer
leifer@chapman.edu
HSC112

Announcements

- Schmid College Academic Advising:
 - Tuesday April 3, 4:30pm-6:30pm AF209A (Prof. Leifer)
 - Wednesday April 4, 4:30pm-6:30pm Henley Hall Basement (Prof. Dressel)
- Adam Becker is returning to Chapman:
 - Book event and signing at 1888 center: Monday April 16. RSVP required https://bit.ly/AdamBecker
- Assignments
 - First Draft due on Blackboard April 11.
 - Peer review until April 16.
 - Discussion in class April 16.
 - Final Version due May 2.
- Homework 3 due April 11.
- I like lunch invitations

Review of Last Lecture

The View from the Smaller Space

Trace Preservation

Trace Preservation

Positivity vs. Complete Positivity

Positivity vs. Complete Positivity

Complete Positivity

Complete Positivity

Complete Positivity

Summary

Examples of Qubit CPT Maps

8.v) Postivie Operator Valued Measures (POVMs)

The View from the Larger Church

The View from the Larger Church

Summary

Example

Application: Minimum Error Discrimination

- Alice has a preparation device that prepares the system in either the state ρ or the state σ . She chooses each with 50/50 probability and sends the system to Bob.
- \bullet Bob makes a measurement on the system and has to guess whether ρ or σ was prepared.
- What is his maximum probability of success and what measurement should he make?

- Let's look at the classical case first. There is a variable that can take d possible values $j=1,2,\cdots,d$.
- \odot Alice prepares the probability distributions p or q with 50/50 probability.
- Bob decides on a subset $E_p \subseteq \{1,2,\cdots,d\}$. If $j \in E_p$ he guesses p. If it is in the complement $E_q = \{1,2,\cdots,d\} \setminus E_p$, he guesses q.

- What is his probability of success:
 - $p_{\text{SUCC}} = \text{Prob}(\boldsymbol{p} \text{ is prepared}) \text{Prob}(E_{\boldsymbol{p}}|\boldsymbol{p}) + \text{Prob}(\boldsymbol{q} \text{ is prepared}) \text{Prob}(E_{\boldsymbol{q}}|\boldsymbol{q})$ $= \frac{1}{2} \left[\sum_{j \in E_n} p_j + \sum_{j \in E_n} q_j \right]$
- ullet However, $\sum_{j \in E_{m{q}}} q_j = 1 \sum_{k \in E_{m{p}}} q_j$ and so

$$p_{\text{succ}} = \frac{1}{2} \left[1 + \sum_{j \in E_p} (p_j - q_j) \right]$$

Therefore,

$$p_{\text{succ}} \le \frac{1}{2} \left[1 + \sum_{\{j \mid p_j \ge q_j\}} (p_j - q_j) \right]$$

which can be achieved if Bob guesses \boldsymbol{p} whenever $p_j \geq q_j$ and \boldsymbol{q} otherwise.

We can rewrite this in a simpler way by noting that

$$\textstyle \sum_{\{j \mid p_j \geq q_j\}} p_j + \sum_{\{j \mid p_j < q_j\}} p_j = 1 \quad \text{and} \quad \sum_{\{j \mid p_j \geq q_j\}} q_j + \sum_{\{j \mid p_j < q_j\}} q_j = 1$$

Subtracting these and rearranging gives

$$\sum_{\{j|p_j \ge q_j\}} (p_j - q_j) = \sum_{\{j|p_j < q_j\}} (q_j - p_j)$$

• Therefore,

$$p_{\text{succ}} \leq \frac{1}{2} \left[1 + \sum_{\{j \mid p_j \geq q_j\}} (p_j - q_j) \right]$$

$$= \frac{1}{2} \left[1 + \frac{1}{2} \left(\sum_{\{j \mid p_j \geq q_j\}} (p_j - q_j) + \sum_{\{j \mid p_j < q_j\}} (q_j - p_j) \right) \right]$$

$$= \frac{1}{2} \left[1 + \frac{1}{2} \sum_{j=1}^{d} |p_j - q_j| \right]$$

$$= \frac{1}{2} [1 + D_c(\mathbf{p}, \mathbf{q})]$$

• Where $D_c(\boldsymbol{p},\boldsymbol{q}) = \frac{1}{2}\sum_{j=1}^d \left| p_j - q_j \right|$ is called the variational distance.

Quantum Case

 Theorem (Helstrom, Holevo): The optimal success probability in the quantum case is given by

$$p_{\text{succ}} = \frac{1}{2} \left[1 + D_q(\rho, \sigma) \right]$$

where

$$D_q(\rho, \sigma) = \frac{1}{2} \text{Tr}(|\rho - \sigma|)$$

is known as the trace distance, and the matrix norm is given by

$$|M| = \sqrt{M^{\dagger}M}$$
.