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 Suppose Alice (on Venus) has a qubit in an unknown state that she 
wants to send to Bob (on Mars).

 The problem is they have no communication channel through 
which they can reliably send quantum systems.

 They only have an old fashioned telephone line, through which they 
can send classical data.

 Can Alice send the state to Bob?

𝜓 𝐴



 At first sight, it seems that she obviously can’t.  As they only have a 
classical channel, she would have to convert the quantum state 
into classical information.

 As she does not know what the state is, she would have to measure 
it.

 But there is no measurement that will reliably tell her what the 
quantum state is (otherwise the no-cloning theorem would be 
violated).

 At best, she could send what she learns from the measurement, 
which would enable Bob to reconstruct a very unreliable 
approximation of |𝜓⟩.



 If Alice and Bob can do it if they pre-share two qubits in the entangled 
state

Φ+
𝐴′𝐵 =

1

2
00 𝐴′𝐵 + 11 𝐴′𝐵



1. Alice and Bob share two qubits in the entangled state

Φ+
𝐴′𝐵 =

1

2
00 𝐴′𝐵 + 11 𝐴′𝐵

2. Alice performs a joint measurement of her system 𝐴 in the 
unknown state 𝜓 𝐴 and 𝐴′ in the Bell basis

Φ±
𝐴𝐴′

=
1

2
00 𝐴𝐴′ ± 11 𝐴𝐴′

Ψ±
𝐴𝐴′

=
1

2
01 𝐴𝐴′ ± 10 𝐴𝐴′

3. Alice communicates the outcome to Bob.  There are 4 possible 
outcomes, so 2 bits of communication.

4. Depending on the outcome, Bob applies one of four unitary 
operations to his qubit 𝐵.  This transforms his system to 𝜓 𝐵.



 Let 𝜓 = 𝑎 0 + 𝑏|1⟩.  The initial state of the three systems is

𝜓 𝐴 ⊗ Φ+
𝐴′𝐵 = 𝑎 0 𝐴 + 𝑏 1 𝐴 ⊗

1

2
00 𝐴′𝐵 + 11 𝐴′𝐵

=
1

2
𝑎 000 𝐴𝐴′𝐵 + 𝑎 011 𝐴𝐴′𝐵 + 𝑏 100 𝐴𝐴′𝐵 + 𝑏 111 𝐴𝐴′𝐵

=
1

2 2
00 𝐴𝐴′ + 11 𝐴𝐴′ ⊗ 𝑎 0 𝐵 + 𝑏 1 𝐵

+
1

2 2
00 𝐴𝐴′ − 11 𝐴𝐴′ ⊗ 𝑎 0 𝐵 − 𝑏 1 𝐵

+
1

2 2
01 𝐴𝐴′ + 10 𝐴𝐴′ ⊗ 𝑏 0 𝐵 + 𝑎 1 𝐵

+
1

2 2
01 𝐴𝐴′ − 10 𝐴𝐴′ ⊗ 𝑏 0 𝐵 − 𝑎 1 𝐵



𝜓 𝐴 ⊗ Φ+
𝐴′𝐵 =

1

2
( Φ+

𝐴𝐴′ ⊗𝑈0 𝜓 𝐵 + Φ−
𝐴𝐴′ ⊗𝑈1 𝜓 𝐵

+ Ψ+
𝐴𝐴′ ⊗𝑈2 𝜓 𝐵 + Ψ−

𝐴𝐴′ ⊗𝑈3 𝜓 𝐵)

where

𝑈0 =
1 0
0 1

, 𝑈1 =
1 0
0 −1

, 𝑈2 =
0 1
1 0

, 𝑈3 =
0 1
−1 0

 Now, the partial inner product with Φ+
𝐴𝐴′ is just 

1

2
𝑈0 𝜓 𝐵, which has norm 

1

4
, so Alice will get this outcome with probability 

1

4
.  If she does, Bob just has 

to apply 𝑈0
† = 𝑈0

𝑇 (which is the identity in this case so he does nothing) to 
obtain the state 𝜓 𝐵.

 The same is true for the other three outcomes, so, provided Bob knows the 
outcome of Alice’s measurement, he can apply the appropriate unitary 
to obtain 𝜓 𝐵.



 Recall the Yanking axiom



 Now Φ+ =
1

2
00 + |11⟩ =

1

2
|𝛿⟩, so this axiom tells us that:

 In other words, if you prepare Φ+
𝐴𝐵 and get the outcome Φ+

𝐴𝐴′ in 
a measurement, you’ll get an identity channel from 𝐴 to 𝐵, up to a 
factor of 

1

2
.

 The factor 
1

2
is just a scalar in front of the output state.  It’s modulus 

squared is the probability of this outcome happening, which is 
1

4
.



 What about the other 3 outcomes.  Well, the four unitary matrices 𝑈0, 𝑈1, 𝑈3
are orthogonal according to the Hilbert-Schmidt inner product

Tr 𝑈𝑗
𝑇𝑈𝑘 = 2𝛿𝑗𝑘

 We can convert them into states using the vector-operator 
correspondence:

 This correspondence preserves inner products, so we will get an 
orthogonal basis.

 Would you believe that these are just the four states in the Bell basis (up to 
normalization)?



 So, let’s see what happens when we measure in this basis.  Last 
lecture we proved:

 Hence:



 So this shows that the total effect is to perform the transformation 

𝑈𝑗
∗ = 𝑈𝑗 to the system, which Bob can undo with 𝑈𝑗

∗ †
= 𝑈𝑗

𝑇.

 By the way, unitarity in diagrams is expressed as  

 So, if we include Bob’s correction in the diagram, we get:



 Consider the 𝜓-ontic view of quantum states.  The unknown qubit 
state 𝜓 = 𝑎 0 + 𝑏|1⟩ that Alice sends to Bob is specified by two 
complex numbers, which can take a continuum of values.

 It takes an infinite number of bits to specify these precisely, but if 
you are a 𝜓-ontologist you believe that the ontic state contains all 
this information, so this is really physically transmitted from Alice to 
Bob.

 But Alice only sends two bits of information to Bob, so how did this 
infinite amount of information get transmitted.

 Some people have suggested that it goes backwards in time, as 
suggested by taking the diagram                          literally.



 On the 𝜓-epistemic view of quantum states (i.e. quantum states are 
something more like classical probability distributions) it is not so 
weird.

 A classical probability distribution 
𝑝

1 − 𝑝 for a bit is also specified by 

a continuous parameter, which takes an infinite number of bits to 
specify.

 But Alice can transmit it to Bob by sending just one bit to Bob, i.e. 
just send the bit itself.



 In fact, there is a protocol that looks a lot like teleportation:

1. Alice and Bob share two bits that are perfectly correlated.  With 

probability 
1

2
they are both 0 and with probability 

1

2
they are 

both 1.

2. Alice has another bit with an unknown probability distribution 
that she wants to send to bob.

3. Alice checks whether her two bits are the same or different.  

Each possibility will happen with probability 
1

2
.

4. If they are the same, Bob does nothing.  If they are different, 
Bob flips his bit.  Bob’s bit now has the same probability 
distribution as Alice’s original bit.



 This classical teleportation protocol has another name: the one-
time-pad or Vernam cipher.  It is a way for Alice to transmit 
information to Bob securely if they share correlated random bits.

 Since the bit Alice sends to Bob is uniformly random, it conveys no 
information about the bit Alice is trying to send to an eavesdropper 
who does not chare Alice and Bob’s correlated bits.

 The same is true of quantum teleportation.  An eavesdropper learns 
nothing about the quantum state Alice is sending to Bob.

 In any case, on the 𝜓-epistemic view, if the ontic state of a qubit 
contains only two-bits of information and the rest of the parameters 
of the quantum state only express knowledge about those bits then 
there would be no mystery.

 Unfortunately, there are many obstacles to this idea, as we shall see 
later in the course.



AKA Everything I taught you in PHYS451 is wrong

i. The Two Churches of Quantum Theory

ii. The Hilbert Space of Hermitian Matrices

iii. Density Operators

iv. Completely Positive Maps

v. Positive Operator Valued Measures

vi. Quantum Instruments

vii. The Lindblad Equation



 In undergraduate quantum mechanics, we normally assume:
 The system does not interact with its environment unless it is being measured.

 Measurements are of the most ideal kind possible.

 We have perfect knowledge of what our experimental devices are doing.

 These assumptions are never true in practice.  When they do not 
hold, we have to generalize the formalism.

 We have already seen part of this in the GPT section: density 
matrices and POVMs.  We will review them again, but there is much 
more.

 Supplementary reading for this section:
 Teiko Heinosaari and Mario Ziman, “The Mathematical Language of Quantum Theory”, Cambridge University 

Press (2012)

 Benjamin Schumacher and Michael Westmoreland, “Quantum Processes, Systems, and Information”, 
Cambridge University Press (2010) 

 Michael Nielsen and Isaac Chuang, “Quantum Computation and Quantum Information”, Cambridge University 
Press (2000)



 The Church of The Larger Hilbert Space:
 Quantum theory is a dynamical theory, akin to a classical field theory, 

but with a weirder object called the wavefunction in place of a 
classical field.

 All is to be derived from a quantum state (of the universe in principle) 
evolving unitarily according to the Schrödinger equation.

 Today, we will allow projective measurements as well, but see lecture 
on Everett/many-worlds for how to derive them.

 The Church of The Smaller Hilbert Space:
 Something strange has happened to our physical variables: they have 

become noncommutative.

 Quantum theory is the only consistent probability theory for such 
variables.

 In this section, we will give both churches views on each 
construction.


















