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7.X) Appllcahon° Quantum Teleporlahon

® Suppose Alice (on Venus) has a qubit in an unknown state that she
wants to send to Bob (on Mars).

@ The problem is they have no communication channel through
which they can reliably send quantum systemes.

@ They only have an old fashioned telephone line, through which they
can send classical data.

® Can Alice send the state to Bob?¢



Quantum Teleportation

@ At first sight, it seems that she obviously can’t. As they only have a
classical channel, she would have to convert the quantum state
info classical information.

® As she does not know what the state is, she would have to measure
1.

® But there is no measurement that will reliably tell her what the
guantum state is (otherwise the no-cloning theorem would be
violated).

® At best, she could send what she learns from the measurement,
which would enable Bob to reconstruct a very unreliable
approximation of |P).



Entanglement to the Rescue Bols
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® IfTAJPce and Bob can do it if they pre-share two qubits in the entfangled
state

| @) prp = ﬁ(lO())A’B + |11>A'B)



Quantum Teleportation Protocol

1. Alice and Bob share two qub|’rs in the entangled state
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Alice performs a joint measurement of her system A4 in the

unknown state |¢), and A’ in the Bell basis
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outcomes, so 2 bits of communication.
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Alice communicates the ou’rcome to Bob. There are 4 possible

Depending on the outcome, Bob applies one of four unitary

operations to his qubit B. This transforms his system to |y)3.



Proving it Works the Old Fashioned Way

® Let |y) = al0) + b|1). The initial state of ’rhe three systems is

W)a @ |D*) 5 = (al0)y + b|1) ) ® f(IOOM 5+ 111)45)

— T(amoom p +al011) g + b|100) 45 + bI111) 415 )
=——(100) 47 + |11} 147) ® (al0)g + b|1)p)
+—=(100) 407 = 111) 44r) ® (al0)5 — b|1)p)
+—=(101) 447 + 110} 4,) ® (b|0) + al1)p)

(|01>AA’ |1O>AA’) & (b|0)p —all)p)
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Proving it Works the Old Fashioned Way

PY)a ® |PT) 45 = (|CD+)AA Q@ Upl)g + |27 ) 400 Q@ Uil
+|‘P+>AA’ Q@ Uz l)p + W) 40 ® UslYh)p)
where

1 0 1 0 0 1 0 1
UO:(O 1)’ Ul:(o —1)' Uz:(1 0)’ U3:(—1 0)

® Now the partial inner product with |®*) , ./ ISJUST Uolt,b)B which has norm

=, SO Alice will get this outcome with probobm’ry = If she does, Bob just has

’ro apply U‘L Ul (which is the identity in this cose so he does nothing) to
obtain ’rhe s’ro’re V) 5.
® The same is true for the other three outcomes, so, provided Bob knows the

oufcome of Alice's measurement, he can apply the appropriate unitary
to obtain |Y)g.



Proving it Works Using Diagrams

® Recall the Yanking axiom
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Proving it Works Using Diagrams

® Now |®dt) = %(lOO) + |11)) = 715 |6), so this axiom tells us that:
1 (f 4,\—‘ |
pto |6

e

® In other words, if you prepare |®*) 45 and get the outcome|d™) , s in
a meosuremen’r you'll get an identity channel from A to B, up ’ro a

factor of -

(@)
Ny —

® The foc’ror— s just a scalar in front of the output state. It's modulus
squared is ’rhe probability of this outcome happening, which i |s ~



Proving it Works Using Diagrams

@ What about the other 3 outcomes. Well, the four unitary matrices Uy, Uy, U
are orthogonal according to the Hilbert-Schmidt inner product
TF(UJTUk) = 25]1(

@ We can convert them into states using the vector-operator
correspondence:

@ This correspondence preserves inner products, so we will get an
orthogonal basis.

® Would you believe that these are just the four states in the Bell basis (up to
normalization)?



Proving it Works Using Diagrams

® SO0, let's see what happens when we measure in this basis. Last
lecture we proved:

o Hence: KA‘\D
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Proving it Works Using Diagrams

® So this shows that the total effect is fo perform the transformation
U; = U; to the system, which Bob can undo with (U]-*)Jr =U/.

® By the way, unitarity in diagrams is expressed as

@ So, if we include Bob s correction in the d gram, we ge’r
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Is Teleporiation Weird?

@ Consider the y-ontic view of quantum states. The unknown qubit
state |Y) = al0) + b|1) that Alice sends to Bob is specified by two
complex numbers, which can take a continuum of values.

@ It tfakes an infinite number of bits to specify these precisely, but if
you are a y-ontologist you believe that the onfic state contains all
this information, so this is really physically transmitted from Alice to
Bob.

® But Alice only sends two bits of information to Bob, so how did this
infinitfe amount of information get trransmitted.

® Some people have suggested that it goes backwards in time, as
suggested by taking the diagram N _ \ literally.



Classical Teleportation

® On the yY-epistemic view of quantum states (i.e. guantum states are
something more like classical probability distributions) it is not so
weird.

® A classical probability distribution (1 3 p) for a bit is also specified by

a confinuous parameter, which takes an infinite number of bits to
specity.

® But Alice can transmit it fo Bob by sending just one bit to Bob, i.e.
just send the bit itself.



Classical Teleportation

@ In fact, there is a protocol that looks a lot like teleportation:

1. Alice and Bob share two bits that are perfectly correlated. With
probability % they are both 0 and with probobili’ry% they are
both 1.

2. Alice has another bit with an unknown probability distribution
that she wants to send 1o bob.

3. Alice checks whether her two bits are the same or different.
Each possibility will happen with probability %

4. If they are the same, Bob does nothing. If they are different,

Bob flips his bit. Bob's bit now has the same probability
distribution as Alice’s original bit.



Classical Teleportation

@ This classical teleportation protocol has another name: the one-
time-pad or Vernam cipher. Itis a way for Alice to transmit
iInformation to Bob securely if they share correlated random bits.

® Since the bit Alice sends to Bob is uniformly random, it conveys no
information about the bit Alice is trying to send to an eavesdropper
who does not chare Alice and Bob's correlated bits.

® The same is true of quantum teleportation. An eavesdropper learns
nothing about the quantum state Alice is sending to Bob.

® In any case, on the y-epistemic view, if the onfic state of a qubit
contains only two-bits of information and the rest of the parameters
of the quantum state only express knowledge about those bits then
there would be no mystery.

@ Unfortunately, there are many obstacles to this idea, as we shall see
later in the course.



8) The Generalized Formalism

AKA Everything | taught you in PHYS451 is wrong
.. The Two Churches of Quantum Theory

i. The Hilbert Space of Hermitian Matrices

i. Density Operators

v. Completely Positive Maps

v. Positive Operator Valued Measures

vi. Quantum Instruments

vi. The Lindblad Equation



The Generalized Formalism

@ In undergraduate quantum mechanics, we normally assume:

@ The system does not interact with its environment unless it is being measured.
® Measurements are of the most ideal kind possible.

@ We have perfect knowledge of what our experimental devices are doing.

® These assumptions are never frue in practice. When they do not
hold, we have to generalize the formalism.

® We have already seen part of this in the GPT section: density

matrices and POVMs. We will review them again, but there is much
more.

@ Supplementary reading for this section:

® Leiko (I-ngi]nzcisacri and Mario Ziman, “The Mathematical Language of Quantum Theory”, Cambridge University
ress

® Benjamin Schumacher and Michael Westmoreland, “Quantum Processes, Systems, and Information”,
Cambridge University Press (2010)

® Ilz\)/\ichc?zecl)gg)elsen and Isaac Chuang, “Quantum Computation and Quantum Information”, Cambridge University
ress



3.[) The Two Churches of Quanium Theory

® The Church of The Larger Hilbert Space:

® Quantum theory is a dynamical theory, akin to a classical field theory,
blu’r wﬁrhlch vlvdelr er object called the wavefunction in place of a
classical field.

@ Allis to be derived from a quantum state (of the universe in principle)
evolving unitarily according to the Schrodinger equation.

@ Today, we will allow projective measurements as well, but see lecture
on Everett/many-worlds for how to derive them.

® The Church of The Smaller Hilbert Space:

@ Something strange has happened to our physical variables: they have
become nhoncommutative.

® Quantum theory is the only consistent probability theory for such
variables.

@ In this section, we will give both churches views on each
consfruction.



3.il) The Hilbert Space of Hermitian
Mairices

O /'\5 }\' 'S A H.“oe/l' S‘oace. ”L(MA->HG) Musl’ ’AMQ W\u\l!’»y()lQ, (5('”\0!\0(‘/"\&‘ LJQSQS.
O The 5,'”“"1“"'1 basis Fhel we hove lbeen wniing s JML ‘J\LZ&: IJ?G ®A<\A\

| T RS ( ok
¢t = (5% o) T(10ge £m1) = CGILd <miny, - T
O C\ec.rl\\), L(/M.A_Dﬂg) L\c»s dirmension CJAYA‘&
(&
O Qb thoce wre stho bases | ey consider f(Ha) wibh Haz € cnd b

O'o"b) G-\JO‘> G’Z:O-") ()'"'lzlO

v
I

Then S == 0 s on orthonormal basiy o T"(SJSL\BZ &;,h

O JZz
be weitlen as M= 32 Z "5 05

with My = - (‘YQI‘;\))

O (onsequetly eusy 22 opeckor (o



The Space of Hermifian Mairices
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Hermitiaon Bases
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Hermition Mairices are Self-Dual
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The Space of Commutative Malrices
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3.iif) Density Operators
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The View from the Larger Church )
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The View From The Larger Church
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