Quantum roundations Lecture 11

March 12, 2018
Dr. Matthew Leifer leifer@chapman.edu HSC112

7) Abstract Tensor Systems

i. Vectors, Dual Vectors, Inner Products, and Tensor Products
ii. Abstract Index Notation
iii. Diagrammatic Notation
iv. More Interesting Tensor Products
v. The Space of Linear Operators
vi. Raising and Lowering Indices
vii. Transpose, Conjugate and Duals
viii. Trace and Partial Trace
ix. Vector-Operator Correspondence
x. Application: Quantum Teleportation

7) Abstract Tensor Systems

- The aim of this section is to introduce a way of dealing with systems with complicated tensor products using diagrams.
- This can be used to visualize or simplify various proofs in the next section.
- As an application, we will discuss quantum teleportation.
- For much more on this approach, see Bob Coecke and Aleks Kissenger, "Picturing Quantum Processes", Cambridge University Press (2017) in Supplemetal Reading.
7.iii) Abstract Index Notation
\bigcirc It is cumbersome to keep track of long strings of bras/kets

$$
\left.e \cdot g . \quad|j\rangle_{A} \otimes \mid h\right)_{B} \otimes|l\rangle_{C} \otimes \ldots
$$

- We can develop an abstract index notation similar to that used in differential geometry and $G R$.

$$
|\psi\rangle_{A}=\left.\sum_{j} \psi^{j}\right|_{j\rangle_{A}} \Rightarrow \psi^{j_{A}} \quad\langle\phi|=\sum_{j} \phi_{j} j_{A} \mid \Rightarrow \phi_{j_{A}}
$$

$\langle\phi \mid \psi\rangle_{A}=\phi_{j_{A}} \psi^{j_{A}} \leftarrow$ summation convention for repeated indices

- It is necessary to include the label A of the Hilbert space \mathcal{H}_{A} in the index j_{A} because Hilbert spaces may have different dimensions Only upper A indices can be contracted with lower A indices.

Abstract index Notation
O For a tensor product space $H_{A} \otimes \mathcal{H}_{B}$, we would have

$$
\begin{aligned}
& |\psi\rangle_{A B}=\sum_{j k} \psi^{j h}|j\rangle_{A} \otimes|h\rangle_{B} \Rightarrow \psi^{j A k_{B}} \\
& \Delta \delta \phi \mid=\sum_{j k} \phi_{j k}\left\langle_{A}\right| \otimes\left\langle_{B} h\right| \Rightarrow \phi_{j A B}
\end{aligned}
$$

\bigcirc The inner product is

$$
\langle\phi \mid \psi\rangle_{A B}=\phi_{j_{A} k_{B}} \psi^{j_{A} k_{B}}
$$

O However $\phi_{j_{A} h_{B}} \psi^{k_{A} j_{B}}$ is not a valid contraction

7.iiii) Diagrammatic Nofation

- Even abstract tensors get tedious after a while, so it is useful to develop a way of representing them with diagrams.
- A tensor is represented by a box.
- A vector index is represented by an upward directed line with Hilbert space label.
- A dual vector index is represented by a downward directed line with a Hilbert space label.
- Contraction (taking inner products) is represented by joining lines.

Examples

$$
\begin{aligned}
& |\psi\rangle_{A}=\sum_{j} \psi^{j}|j\rangle_{A} \Leftrightarrow \psi^{j A} \Longleftrightarrow \psi^{A} \\
& \langle\phi|=\sum_{j} \phi_{j A}\langle j| \Longleftrightarrow \phi_{j A} \Longleftrightarrow \frac{\phi}{1 A} \\
& \langle\phi \mid \psi\rangle_{A}
\end{aligned} \Longleftrightarrow \phi_{j A} \psi^{j_{A}} \Longleftrightarrow \frac{\phi}{1 A}
$$

Examples

$$
\begin{aligned}
& \left.|\psi\rangle_{A B}=\left.\sum_{j k} \psi^{j k}\right|_{j}\right\rangle_{A} \otimes|k\rangle_{B} \Leftrightarrow \psi^{j_{A} k_{B}} \Longleftrightarrow \\
& { }_{A B}\langle\phi|=\sum_{j h} \phi_{j k A j \mid \otimes}\langle h| \Leftrightarrow \phi_{j, k B B} \Leftrightarrow \phi_{T_{A} T_{B}} \\
& \langle\phi \mid \psi\rangle_{A B} \Leftrightarrow \phi_{j_{A} k_{B}} \psi^{j_{A} k_{B}} \Longleftrightarrow \frac{\phi}{\psi}
\end{aligned}
$$

Diagrammatic \mathbb{N} ofation

- Note: The shape of a box does not matter. Only the direction of the lines coming out of it matters, e.g.

7.iv) More Interesting Tensor Products
$\bigcirc \mathcal{H}_{A}$ and H_{B}^{+}are both Hilbert spaces, so there is no reason why we can't form the tensor product $\mathcal{H}_{A} \otimes \mathcal{H}_{B}^{+}$
O This would be the vector space of objects of the form

$$
\sum_{j h} \psi_{h}^{j}|j\rangle_{A} \otimes\langle h| \Leftrightarrow \psi_{h_{B}}^{j a} \Leftrightarrow
$$

\bigcirc The dual space to $\mathcal{H}_{A} \otimes \mathcal{H}_{B}^{+}$is $\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}^{\dagger}\right)^{\dagger}=\mathcal{H}_{A}^{+} \otimes \mathcal{H}_{B}$

$$
\sum_{j k} \phi_{j}^{k}\left\langle_{A}\right| \otimes|k\rangle_{B} \Leftrightarrow \frac{\phi_{j A}^{k_{B}}}{1_{A}}=\frac{1^{B}}{\phi \square_{B}^{B}}
$$

O The inner product is given by $\phi_{j_{A}}^{k_{B}} \psi_{k_{B}}^{j_{A}} \Longleftrightarrow$

More Interesting Tensor Products
○ An object like $\sum_{j k} \psi_{k}^{j}|j\rangle_{A} \otimes\langle h|$ is neither a kit nor a bra.
\bigcirc However $\mathcal{H}_{A} \otimes \mathcal{H}_{B}^{\dagger}$ is still just a Hilbert space, like any other.
O Sometimes it will be useful to think of $\mathcal{H}_{A} \otimes \mathcal{H}_{B}^{+}$as a space of "kets" and its dual $\mathcal{H}_{A}^{+} \otimes \mathcal{H}_{B}$ as a space of "bras".
OWen doing so, 1 will use red brakets and red diagrams

$$
|\psi\rangle_{A B}=\sum_{j k} \psi_{k}^{j}|j\rangle_{\Lambda} \otimes\left\langle_{B} k\right|
$$

More interesting Tensor Products
O Clearly, we can iterate this construction and consider complicated tensor products egg. $H_{L}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}^{+} \otimes \mathcal{H}_{C}^{+} \otimes \mathcal{H}_{D} \otimes \mathcal{H}_{E}^{+}$

$$
\left.\sum_{j k \mid m n} \psi_{k l n}^{j m}|j\rangle_{A} \otimes_{B}\langle k| \otimes_{C}\langle ||\otimes| m\right\rangle_{D} \otimes_{E}\langle n| \Leftrightarrow \psi_{k_{B} l_{C} n_{E}}^{j_{A} n_{D}} \Leftrightarrow
$$

O It's dual space is $\mathscr{H}^{+}=\mathcal{H}_{A}^{+} \otimes \mathcal{H}_{B} \otimes \mathcal{H}_{C} \otimes \mathcal{H}_{D}^{+} \otimes \mathcal{H}_{E}$

$$
\sum_{j k(m n} \phi_{j m}^{k i n}\langle j| \otimes|k\rangle
$$

$$
\phi_{j_{A} M_{D}}^{k_{B} l_{C} n_{E}} \psi_{k_{B} l_{C} n_{E}}^{J_{A} m_{B}} \Longleftrightarrow
$$

Partial inner Products
O We can also define partial inner products where we only contract over some of the indicies
e.g. $\quad \psi_{k_{B}}^{j_{A}} l_{c} \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}^{+} \otimes \mathcal{H}_{C} \quad \phi_{L_{C} m_{0}}^{k_{B}} \in \mathcal{H}_{B} \otimes \mathcal{H}_{C}^{+} \otimes \mathcal{H}_{D}^{+}$

7.v) The Space of Linear Operators

O Now let's consider the space of linear operators from H_{A} to \mathcal{H}_{B} denoted $\mathcal{L}\left(\mathcal{H}_{A} \rightarrow \mathcal{H}_{B}\right) \quad\left[\right.$ just $\mathcal{L}\left(\mathcal{H}_{A}\right)$ it $\left.\mathcal{H}_{A}=\mathcal{H}_{B}\right]$
O In Dirac notation, we know that an operator can be written in terms of its matrix elements

$$
\left.\left.M=\left.\sum_{j h} M_{h}^{j}\right|_{j}\right\rangle_{B}\left\langle_{A} h\right| \text { where } M_{h}^{j}=\widehat{B}_{\beta}|M| h\right\rangle_{A}
$$

O But this looks just like an object in $\mathcal{H}_{B} \otimes \mathcal{H}_{A}^{\dagger}$

$$
\sum_{j k} M_{k}^{j}|j\rangle_{B} \otimes \lambda_{A} k \Leftrightarrow M_{h_{A}}^{j_{B}} \Leftrightarrow \frac{B}{M_{A}}
$$

The Space of Linear Operators

- If we treat M as an element of $\mathcal{H}_{B} \otimes \mathcal{H}_{A}^{\dagger}$ then the action of M on a vector $|\psi\rangle_{A} \in X_{A}$ is just partial inner product

$$
\begin{aligned}
& M=\sum_{j n} M_{n}^{j}|j\rangle_{B} \otimes\left\langle_{A} H\right| \quad|\psi\rangle_{A}=\sum_{l} \psi^{l}|l\rangle_{A} \\
& \left.M|\psi\rangle_{A}=\left.\sum_{j k} M_{h}^{j} \psi^{k}\right|_{j}\right\rangle_{B} \quad \text { or } \quad M_{n_{B}}^{j_{A}} \psi^{k_{B}}
\end{aligned}
$$

The Space of Linear Operators
\bigcirc In general, the space of linew operators from \mathcal{H}_{A} to \mathcal{H}_{B} is (isomorphic to)

$$
\mathcal{H}_{B} \otimes \mathcal{H}_{A}^{+} \equiv \mathcal{L}\left(\mathcal{H}_{A} \rightarrow \mathcal{H}_{B}\right)
$$

$$
\text { output space } \hat{\mathrm{h}}^{\text {dual }} \text { of input space }
$$

O Everything can be done with tensor products and partial inner products!
\bigcirc Note, the space $\mathcal{H}_{B} \otimes \mathcal{H}_{A}^{+} \equiv \mathcal{L}\left(\mathcal{H}_{A} \rightarrow \mathcal{H}_{B}\right)$ is just what we introduced the red bets and diagrams for

$$
|\psi\rangle_{A B} \in \mathcal{H}_{B} \otimes \mathcal{H}_{A}^{+}
$$

$$
\frac{\frac{1 B}{\psi}}{T_{A}}=\frac{\mid A B}{\psi}
$$

If $\mathcal{H}_{A}=\mathcal{H}_{B}, 1$ will abbreviate $|\psi\rangle_{A} \in \mathcal{H}_{A} \otimes \mathcal{H}_{A}^{+}$

Duperafors
O The dual of an operator is a linew functional from operators to scalars (a "duperator")
$O\left(\mathcal{H}_{B} \otimes \mathcal{H}_{A}^{+}\right)^{+}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}^{+} \quad$ so $\quad \mathcal{L}\left(\mathcal{H}_{A} \rightarrow \mathcal{H}_{B}\right)^{+}=\mathcal{L}\left(\mathcal{H}_{B} \rightarrow \mathcal{H}_{A}\right)$
ie. The duperators from A to B are the operators from B to A Operator from A to B :

$$
\begin{aligned}
& \text { rotor from } A \text { to } B: \\
& |\psi\rangle_{A B}=\left.\sum_{j k} \psi_{j}^{k}\right|_{j\rangle_{A} \otimes} \leqslant k \mid
\end{aligned} \quad \psi_{j A}^{k_{B}} \Leftrightarrow \frac{\left.\right|_{A}}{I_{A}} \Leftrightarrow \psi
$$

Duporator from A to B :

$$
{ }_{A B}\langle\phi|=\sum_{j h} \phi_{k}^{j}\langle j| \Theta|k\rangle_{B} \Leftrightarrow \phi_{k B}^{j A} \Leftrightarrow \phi_{B}^{\mid A} \Leftrightarrow \phi_{A B}
$$

Inner Products of Operators
O Using the general correspondence between vectors and duals, we have

$$
\begin{aligned}
& |\psi\rangle_{A B}=\sum_{j h} \psi_{j}^{k}|j\rangle_{A} \otimes{ }_{B} k \left\lvert\, \Leftrightarrow \psi_{j_{A}}^{k_{B}} \Leftrightarrow \frac{\psi_{A}}{T_{A}} \Leftrightarrow \psi^{1 B}\right. \\
& \langle\psi|=\sum_{j h} \psi_{k A}^{\dagger j}\langle j| \otimes|k\rangle_{B} \Leftrightarrow \psi_{k_{B}}^{j_{A}} \Leftrightarrow \frac{\psi^{+}}{l_{B}} \Leftrightarrow \frac{\psi^{+}}{\left.\right|_{A B}}
\end{aligned}
$$ © The inner product is then:

$$
\langle\phi \mid \psi\rangle_{A B}=\operatorname{Tr}\left(\phi^{+} \psi\right)=\phi_{k_{B}}^{+j_{A}} \psi_{j_{A}}^{k_{B}} \Leftrightarrow \phi^{+} \psi^{l_{B}} \Leftrightarrow
$$

OThis is called the "Hilbert-Schmidt" inner product, and you proved it is an inner product in Hah 1.
7.vi) Raising and Lowering Indices
Θ Consider the vector $\left.|\delta\rangle_{A A}=\sum_{j}|j\rangle_{A} \otimes|j\rangle_{A}=\left.\sum_{j h} \delta^{j k}\right|_{j}\right\rangle_{A} \otimes|k\rangle_{A}$ where $\delta^{j h}=\left\{\begin{array}{l}1, j=h \\ 0, j \neq h\end{array} \quad\right.$ This lives in $\mathcal{H}_{A} \otimes \mathcal{H}_{A}$

- Abstract index notation: $\delta^{j_{A} k_{A}}$

ODingramatic notation:

O partial inner product with this twas a bra into a Ret

$$
\delta^{j_{A} k_{A}} \psi_{k A}=\psi^{j_{A}}
$$

Raising and Lowering Indices

- Similarly the dual vector $A_{A}\langle\delta|=\sum_{j}\langle j| \otimes_{A} j \mid=\sum_{j k} \delta_{j k}\left\langle K_{A}\right| \otimes_{A}\langle k|$ twins hats into bras
O Abstract notation $\delta_{j_{A} k_{A}}$
O Diagramatic notation

$$
\delta_{j_{A} h_{A}} \psi^{k_{A}}=\psi_{j_{A}}
$$

O The identity operator is $\left.I_{A}=\sum_{j}|j\rangle_{A}^{\otimes_{A}}\langle j|=\left.\sum_{j k} \delta_{k}^{j}\right|_{j}\right\rangle_{A} \otimes \Delta_{A}\langle k|$
O In abstract index notation, this is just $\delta_{k_{A}}^{j_{n}}$
O And as a diagram it is just a vertical piece of wire

$$
\frac{I^{A}}{l_{A}}=\left.\right|^{A}
$$

The Yanking Axioms
\bigcirc The various δ tensors satisfy the fallowing properties

$$
\delta^{j k_{A}} \delta_{k_{A} M_{A}}=\delta_{m_{A}}^{j j_{A}}=\delta_{m_{A} k_{A}} \delta^{k_{A} j_{A}}
$$

The yanking axioms allow as to prove lots of things using just diagrams.
$\bigcirc=$

Just expresses the tact that order of indices is unimportant in abstract index notation.
7.viil) Transpose, Conjugate, Duals, and Trace
O The transpose is defined as

$$
\psi_{j_{A}}^{T k_{B} l_{c}}=\psi_{j_{A}}^{k_{B} l_{c}}=\delta_{j_{A} m_{A}} \delta^{k_{B} n_{B}} \delta^{l_{C} r_{C}} \psi_{n_{B} l_{c}}^{m_{A}}
$$

A Bit of Diogramnnatic Trickery
O We can make more intuitive diagrams if we introduce a bit of asymmetry to our boxes.

O Then we can represent transpose by 180° rotation

Fun With Diagrams
O Now let's actually prove something with diagrams

O Proof: Using the Yanking axioms

Conjugate
O The conjugate of a tensor is just the tensor you obtain by taking the complex conjugate of all of its components

$$
\begin{gathered}
\sum_{j k l} \psi_{k \mid}^{j}|j\rangle_{A} \otimes{\underset{B}{ }}^{k} \mid \otimes\langle l| \longleftrightarrow \sum_{j h l}^{*}\left(\psi_{h l}^{j}\right)^{*}|j\rangle_{A} \otimes_{B}\langle k| \otimes<l l \\
\left(\psi^{*}\right)_{k_{B} l c}^{j_{A}}=\left(\psi_{k_{B} l c}^{j_{A}}\right)^{*}
\end{gathered}
$$

© In a diagram we represent it by reflecting in a vertical axis

Dual//Adjoint
O The dual or adjoint is defined as taking the complex conjugate, Followed by the transpose, or vice versa.

$$
\begin{aligned}
& \left.\sum_{j k l} \psi_{k l}^{j}|j\rangle_{A} \otimes_{B}|k| \otimes<l\left|\longleftrightarrow \sum_{j k l} \psi_{j}^{* k l}\langle j| \otimes\right| k\right\rangle_{B} \otimes|l\rangle_{c} \\
& \left(\psi^{\dagger}\right)_{j_{A}}^{k_{B} l_{c}}=\delta_{j_{A} m_{A}} \delta^{k_{B}^{n_{B}}} \delta^{l_{c} r_{c}}\left(\psi^{*}\right)_{n_{B} r_{c}}^{m_{A}}
\end{aligned}
$$

OFor obvious reasons, in diagrams it is represented by a reflection in the horizontal axis

Summary

7.vilii) Trace and Parifill Trace

O The trace of an operator $\sum_{j k} \psi_{k}^{j}|j\rangle_{A} \otimes\langle k|$ is defined as

$$
\sum_{j} \psi_{j}^{j}
$$

O in abstract index notation $\psi_{j_{A}}^{j_{A}}=\delta_{j_{A} m_{A}} \psi_{k_{A}}^{m_{A}} \delta^{j_{A} k_{A}}=\delta_{m_{A} k_{A}} \psi_{j_{A}}^{m_{A}} \delta^{j_{A} k_{A}}$ In red diagrams, we will use

POTMTO] TrOMP
O We can obviously contract any indices that have the same system label. This is called a partial trace in quantum theory

$$
\begin{aligned}
\text { e.g. } & \operatorname{Tr}_{A}\left(\sum_{j k \mid m} \psi_{k m}^{j l}|j\rangle_{A} \otimes_{A}\langle k| \otimes|l\rangle_{B} \otimes\langle m|\right) \\
= & \sum_{j l m} \psi_{j m}^{j l}|l\rangle_{B} \otimes{ }_{B}\langle m|
\end{aligned}
$$

Vector Operator Correspondence
O Raising and lowering indices induces a correspondence between operators in $\mathcal{L}\left(\mathcal{H}_{A} \rightarrow \mathcal{H}_{B}\right)=\mathcal{H}_{A}^{+} \otimes \mathcal{H}_{B}$ and vectors in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

$$
\begin{gathered}
\left.\sum_{j k} \psi_{j}^{k}|k\rangle_{B} \otimes{ }_{A}\langle j| \longleftrightarrow \sum_{j k} \psi^{j k}\left|j \nu_{A} \otimes\right| k\right\rangle_{B} \\
\psi^{j a_{A B}}=\delta^{j_{A} m_{A}} \psi_{m_{A}}^{k_{B}} \quad \psi_{j_{B}}^{k_{B}}=\delta_{j_{A} m_{A}} \psi^{j_{A} j_{B}}
\end{gathered}
$$

Getting Rid of Awkward Boxes
O For vectors in mixed tensor products of bra and Ket spaces eg. $\mathcal{L}_{A} \otimes \mathcal{L}_{B}^{+}$, we had to use awtewardly shaped boxes to express the inner product as a diagram
O Using transposes and conjugates, we can now get rid of the awkward boxes

