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 To find the eigenvectors, let’s switch to polar coordinates
𝑥 = 𝑟sin𝜃 𝑦 = 𝑟cos𝜃

since then 𝒏 = 𝑟.

 In these coordinates, we have

𝜌 =
1 + 𝑟cos𝜃 𝑟sin𝜃
𝑟sin𝜃 1 − 𝑟cos𝜃

 It is now straightforward to check that the two orthogonal unit vectors
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are the eigenvectors with 𝜌 𝑛 ± = 𝜆±|𝑛±⟩.



 If the state is pure then 𝒏 = 𝑥2 + 𝑦2 = 1, so 𝜆+ = 1 and 𝜆− = 0.  As 
a result, the density operator is

𝜌 = |𝑛+⟩⟨𝑛 + |

 This is just the projector onto the one-dimensional subspace 

spanned by 𝑛 + = cos
𝜃

2
0 + sin

𝜃

2
|1⟩.

 In quantum mechanics, we often use the vector |𝑛+⟩ to represent a 
pure state rather than the projector |𝑛+⟩⟨𝑛 + |.  This is just a matter of 
convenience.

 The space of pure states is a vector space, but you should not 

confuse 𝜌 =
1

2
𝜌1 +

1

2
𝜌2, interpretable as a mixture, with 𝜓 =

1

2
𝜓1 +

1

2
𝜓1 , which is called a superposition.





 Consider Ω = the unit ball,
𝑥
𝑦
𝑧

s.t. 𝑥2 + 𝑦2 + 𝑧2 ≤ 1.

 Lifting this to a cone gives 

𝛼

𝑥
𝑦
𝑧
1

s.t. 𝑥2 + 𝑦2 + 𝑧2 ≤ 1.

 This cone is self dual (similar to Hwk 1 proof for disc).

 If we also impose 𝒂 ⋅

𝑥
𝑦
𝑧
1

≤ 1 we get (Ω).



 Unfortunately, the space of 2 × 2 real symmetric matrices is only 3-dimensional, so we 
cannot use it here.  However, if we go to the 2 × 2 complex Hermitian matrices 𝑀† =
𝑀, then this has 4 dimensions.

𝑎 𝑐 + 𝑖𝑑
𝑐 − 𝑖𝑑 𝑏

 This is still a real vector space.  Real linear combinations of Hermitian matrices are still 
Hermitian.

 Since we know 𝑁,𝑀 = Tr(𝑁†𝑀) is an inner product, we can find an orthonormal 
basis. You can check that 

𝜎0

2
,
𝜎1

2
,
𝜎2

2
,
𝜎3

2
is such a basis, where

𝜎0 = 𝐼 =
1 0
0 1

, 𝜎1 =
0 1
1 0

, 𝜎2 =
0 −𝑖
𝑖 0

, 𝜎3=
1 0
0 −1

 This means that instead of writing our qubit vectors in ℝ3 as 

𝑎
𝑏
𝑐
𝑑

we can write then as 

2 × 2 matrices 
1

2
𝑎𝜎0 + 𝑏𝜎1 + 𝑐𝜎2 + 𝑑𝜎3 .



 Again, we usually choose a different normalization so that
𝑎
𝑏
𝑐
𝑑

→
1

2
𝑎𝜎0 + 𝑏𝜎1 + 𝑐𝜎2 + 𝑑𝜎3

 We choose to embed our state space Ω in the 𝜎1, 𝜎2, 𝜎3 subspace, so 
a normalized state is of the form

𝜌 =
1

2
𝐼 + 𝑥𝜎1 + 𝑦𝜎2 + 𝑧𝜎3 with    𝑥2 + 𝑦2 + 𝑧2 ≤ 1.

or 𝜌 =
1

2

1 + 𝑧 𝑥 − 𝑖𝑦
𝑥 + 𝑖𝑦 1 − 𝑧



 Again, let’s look at the eigenvalues and eigenvectors.  The 
characteristic equation is

1 + 𝑧 − 2𝜆 𝑥 − 𝑖𝑦
𝑥 + 𝑖𝑦 1 − 𝑧 − 2𝜆

= 0 or   4𝜆2 − 4𝜆 + 1 − 𝑥2 − 𝑦2 − 𝑧2 = 0

 As before, this has solutions

𝜆± =
1

2
1 ± 𝒏 =

1

2
(1 ± 𝑥2 + 𝑦2 + 𝑧2)

where   𝒏 =
𝑥
𝑦
𝑧

with   𝑥2 + 𝑦2 + 𝑧2 ≤ 1.

 Again, we have a positive matrix 0 ≤ 𝜆± ≤ 1 with 𝜆+ + 𝜆1 = 1 or 
Tr 𝜌 = 1.



 To find the eigenvectors, we switch to spherical polar coordinates
𝑥 = 𝑟sin𝜃cos𝜙 𝑦 = 𝑟sin𝜃sin𝜙 𝑧 = 𝑟cos𝜃

so that 𝒏 = 𝑟.

 In these coordinates, we have

𝜌 =
1 + 𝑟cos𝜃 𝑟sin𝜃cos𝜙 − 𝑖𝑟sin𝜃sin𝜙

𝑟sin𝜃 + 𝑖𝑟sin𝜃sin𝜙 1 − 𝑟cos𝜃
= 1 + 𝑟cos𝜃 𝑟sin𝜃𝑒−𝑖𝜙

𝑟sin𝜃𝑒+𝑖𝜙 1 − 𝑟cos𝜃
 and you can check that the two orthogonal unit vectors
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are the eigenvectors with 𝜌 𝑛 ± = 𝜆±|𝑛±〉.



 If the state is pure then 𝒏 = 𝑥2 + 𝑦2 + 𝑧2 = 1, so 𝜆+ = 1
and 𝜆− = 0.  As a result, the density operator is

𝜌 = |𝑛+⟩⟨𝑛 + |

 This is just the projector onto the one-dimensional 

subspace spanned by 𝑛 + = cos
𝜃

2
0 + 𝑒𝑖𝜙sin

𝜃

2
|1⟩.





 You might have thought that, to get a general quantum state 
space, we have to use a hypersphere, but this is not correct.

 Instead, we generalize the complex vector space that our matrices 
act on to arbitrary dimensions.

 A (finite dimensional) quantum system is associated with the vector 
space ℂ𝑛.

 A state (density matrix) is a positive, Hermitian matrix 𝜌 that satisfies 

Tr 𝜌 = 1.

 A pure state is a projector 𝜌 = 𝜓 〈𝜓| onto the one-dimensional 
subspace spanned by a unit vector |𝜓〉, i.e. 𝜓 𝜓 = 1.

 We often just use the vector |𝜓⟩ to represent a pure state, but note that 𝑒𝑖𝜙|𝜓⟩
represents the same state.



 We now want to describe the effects and observables in quantum 
mechanics.  But first, a few useful bits of linear algebra.

 First, the most useful result in Dirac notation:

 Proposition: For any orthonormal basis {|j⟩}, 𝐼 = σ𝑗 |𝑗⟩⟨𝑗|.

 Proof: Any vector |𝜓⟩ can be written as 𝜓 = σ𝑗 𝑎𝑗|𝑗⟩



𝑗

|𝑗⟩⟨𝑗| 𝜓 =

𝑗

|𝑗⟩⟨𝑗|𝜓⟩ =

𝑗,𝑘

𝑎𝑘 𝑗 𝑗 𝑘

=

𝑗,𝑘

𝑎𝑘 𝑗 𝛿𝑗𝑘 =

𝑗

𝑎𝑗|𝑗⟩ = |𝜓⟩



 The trace of a matrix 𝑀, denoted Tr(𝑀) is

Tr 𝑀 = σ𝑗 𝑗 𝑀 𝑗 = σ𝑗𝑀𝑗𝑗.

 The trace and outer products:
Tr(|𝜙⟩⟨𝜓|) = 𝜓 𝜙

 Proof: 

Tr(|𝜙⟩⟨𝜓|) =

𝑗

𝑗 𝜙 ⟨𝜓|𝑗⟩ =

𝑗

𝜓 𝑗 𝑗 𝜙 = ⟨𝜓 𝐼 𝜙⟩ = ⟨𝜓|𝜙⟩

 Cyclic property of the trace:
Tr 𝐴𝐵𝐶⋯𝑌𝑍 = Tr(𝑍𝐴𝐵𝐶⋯𝑌)

 Proof: 

Tr 𝐴𝐵𝐶⋯𝑌𝑍 =

𝑗

⟨𝑗 𝐴𝐵𝐶⋯𝑌𝑍 𝑗⟩ =

𝑗,𝑘

⟨𝑗 𝐴𝐵𝐶⋯𝑌|𝑘⟩⟨𝑘|𝑍 𝑗⟩

=

𝑗,𝑘

𝑘 𝑍 𝑗 𝑗 𝐴𝐵𝐶⋯𝑌 𝑘 = 

𝑘

𝑘 𝑍𝐴𝐵𝐶⋯𝑌 𝑘 = Tr(𝑍𝐴𝐵𝐶⋯𝑌)



 Firstly, since our normalized states 𝜌 do not include the zero matrix, 
we can form the state cone by just dropping the normalization 
constraint Tr 𝜌 = 1.  Therefore, the state cone just consists of all 
positive Hermitian matrices.

 Since the inner product is 𝑁,𝑀 = Tr(𝑁†𝑀), we know that an 
element of the dual cone 𝑓 can be written as 𝑓 𝜌 = Tr(𝐸𝜌) for 
some 𝑛 × 𝑛 matrix 𝐸, such that

Tr 𝐸𝜌 ≥ 0 for all positive matrices 𝜌.

 We will show that the state cone is self dual, so 𝐸 just has to be a 
positive matrix.



 Proposition: The cone of positive Hermitian matrices is self-dual.

 Proof: The extreme points of the state space are 𝜌 = |𝜓⟩⟨𝜓|, where 
|𝜓⟩ is a unit vector (pure state).

 Tr 𝐸𝜌 ≥ 0 is guaranteed for all other matrices in the cone provided 
it is true on these points, i.e.

Tr 𝐸 𝜓 〈𝜓|) = ⟨𝜓 𝐸 𝜓⟩ ≥ 0,

but this is just the definition of a positive matrix.



 To be a valid effect, we also need 𝑓 𝜌 ≤ 1 for all normalized states, or 
equivalently 𝑓 ≼ 𝑢, where 𝑢 is the unit effect.

 𝑢 is defined by 𝑢 𝜌 = 1 for all normalized states.  Since

Tr 𝐼𝜌 = Tr 𝜌 = 1,

𝑢 is represented by the identity matrix 𝐼.

 If we introduce the partial order on matrices 𝐸 ≼ 𝐹 if 𝐹 − 𝐸 is a positive 
operator, then a quantum effect is represented by a matrix 𝐸 such that 
0 ≼ 𝐸 ≼ 𝐼, where 0 is the matrix of all zeroes.

 The probability rule in quantum mechanics is therefore
Prob 𝐸 𝜌 = Tr(𝐸𝜌)

 This is called the (generalized) Born rule.

 Note that, if 𝜌 = |𝜓⟩⟨𝜓| is a pure state then

Prob 𝐸 𝜌 = Tr(𝐸|𝜓⟩⟨𝜓|) = ⟨𝜓 𝐸 𝜓⟩



 An observable is a set of effects {𝑓𝑗} such that σ𝑗 𝑓𝑗 = 𝑢.

 Therefore, in quantum mechanics it is a set of positive operators {𝐸𝑗}
such that 

σ𝑗 𝐸𝑗 = 𝐼.

 This is called a Positive Operator Valued Measure (POVM).  The 
operators 𝐸𝑗 are often called POVM elements instead of effects.

 We then have
Prob 𝑗 𝜌 = Tr(𝐸𝑗𝜌)



 Consider the operators 
{𝐸0, 𝐸1, 𝐸2}, where

𝐸𝑗 =
2

3
|𝜓𝑗⟩⟨𝜓𝑗|

 Then, it is straightforward 
to show that

σ𝑗=0
2 𝐸𝑗 = 𝐼.



 A special class of POVMs (and the only kind of measurement usually 
considered in undergraduate QM) is where each POVM element 𝑃𝑗
is a projector.  This is called a Projector Valued Measure (PVM).

 A PVM is also sometimes called a sharp observable.

 In order for σ𝑗 𝑃𝑗 = 𝐼 to hold, the projectors have to be orthogonal 
𝑃𝑗𝑃𝑘 = 0, i.e. they project onto orthogonal subspaces.

 To see why, suppose 𝑃1 and 𝑃2 are not orthogonal and let |𝜓⟩ be a 
vector that lies in the intersection of the subspaces they project 
onto so that 𝑃1 𝜓 = |𝜓⟩ and 𝑃2|𝜓⟩.  Then,

𝑃1 + 𝑃2 𝜓 = 2|𝜓⟩,

so σ𝑗 𝑃𝑗 ≠ 𝐼 because 𝐼 𝜓 = 𝐼.



 In undergraduate QM, what is called an “observable” is usually a 
Hermitian matrix 𝑀 (𝑀† = 𝑀).  Let’s see how this is connected to PVMs.

 Any Hermitian operator can be written in its spectral decomposition

𝑀 = σ𝑗 𝜆𝑗𝑃𝑗,

where the 𝜆𝑗’s are the eigenvalues of 𝑀 and the 𝑃𝑗’s are the projectors 
onto the corresponding eigenspaces.  These are orthogonal and σ𝑗 𝑃𝑗 = 1, 
so they define a PVM.

 We can think of the eigenvalues as giving values to the outcomes of the 
measurement, e.g. 𝜆𝑗 might be the position of a particle.

 Then, QM specifies the probability rule PVM with Prob 𝜆𝑗 𝜌 = Tr(𝑃𝑗𝜌), 
which is just the probability rule for the PVM {𝑃𝑗}.

 If we are not interested in the values of the outcomes, just their 
probabilities, we can dispense with Hermitian observables and just use 
PVMs.



 Consider the matrix

𝜎1 =
0 1
1 0

.

 This has spectral decomposition

𝜎1 = |+⟩⟨+| − |−⟩⟨−|,

where ± =
1

2
(|0⟩ ± |1⟩)

 So it corresponds to the PVM {|+⟩⟨+|, |−⟩⟨−|}.\

 The |+⟩⟨+| outcome has value +1 and The |−⟩⟨−| outcome has 
value −1.



 If the projectors in a PVM are all one-dimensional 𝑃𝑗 = |𝜙𝑗⟩⟨𝜙𝑗|, then 
{|𝜙𝑗⟩} is an orthonormal basis.  In this case, we can write the 
probabilities as

Pr 𝜙𝑗 𝜌 = Tr(|𝜙𝑗⟩⟨𝜙𝑗|𝜌) = ⟨𝜙𝑗 𝜌 𝜙𝑗⟩.

 If 𝜌 = |𝜓⟩⟨𝜓| is also a pure state then this can be written as

Pr 𝜙𝑗 𝜓 = 𝜙𝑗 𝜓 𝜓 𝜙𝑗 = 𝜙𝑗 𝜓
2
,

which is what is normally called the Born rule in undergrad QM.

 The example on the previous slide was an orthonormal basis 
measurement.



 Theorem: (Gleason’s Theorem) Consider the test space where the 
outcomes are projectors 𝜓 𝜓 onto unit vectors in ℂ𝑛 and the tests 
are orthonormal basis measurements.  If 𝑛 ≥ 3 then a state 𝜔 on this 
test space corresponds to a density matrix 𝜌, i.e. 𝜌 is positive and 
Tr 𝜌 = 1, with

𝜔(|𝜓⟩⟨𝜓|) = ⟨𝜓 𝜌 𝜓⟩.

A. M. Gleason, "Measures on the closed subspaces of a Hilbert space“, Indiana University 
Mathematics Journal, 6: 885–893 (1957)

 Note: There must be a test space for rebits and qubits, but it is not 
this “standard” quantum test space.  It must include some POVMs 
that are not PVMs.



 This section was meant to persuade you that quantum theory can be 
understood as a generalization of probability theory, situated within a 
well-motivated framework for such generalizations (GPTs).

 As such, it is a Church of the Smaller Hilbert Space approach to setting up 
quantum theory.

 This raises the question of why this GPT and not some other?  Why does 
nature use the orthonormal bases of ℂ𝑛 as its test space?
 Much work has been done on axiomatic reconstructions of quantum theory 

within this approach in recent years.  See D’Ariano et. al. on supplemental 
reading list for a particularly nice example.

 In traditional undergrad. quantum theory, the analogy between quantum 
pure states and physical waves is used to build the theory.  This is a Church 
of the Larger Hilbert Space approach.

 I think that which of these approaches you take more seriously biases you 
towards certain types of interpretation of quantum theory, and explains a 
lot of the talking past one another that happens in debates on 
interpretation.


