Quantum Foundations Lecture 6

February 14, 2018 Dr. Matthew Leifer leifer@chapman.edu HSC112

Propenties of the Rebil Manix Representation

- To find the eigenvectors, let's switch to polar coordinates

$$
x=r \sin \theta \quad y=r \cos \theta
$$

since then $\|\boldsymbol{n}\|=r$.

- In these coordinates, we have

$$
\rho=\left(\begin{array}{cc}
1+r \cos \theta & r \sin \theta \\
r \sin \theta & 1-r \cos \theta
\end{array}\right)
$$

- It is now straightforward to check that the two orthogonal unit vectors

$$
|n+\rangle=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}=\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2}|1\rangle \text { and } \quad|n-\rangle=\binom{\sin \frac{\theta}{2}}{-\cos \frac{\theta}{2}}=\sin \frac{\theta}{2}|0\rangle-\cos \frac{\theta}{2}|1\rangle
$$

are the eigenvectors with $\rho|n \pm\rangle=\lambda_{ \pm}|n \pm\rangle$.

Pure Rebit States

\odot If the state is pure then $\|\boldsymbol{n}\|=\sqrt{x^{2}+y^{2}}=1$, so $\lambda_{+}=1$ and $\lambda_{-}=0$. As a result, the density operator is

$$
\rho=|n+\rangle\langle n+|
$$

- This is just the projector onto the one-dimensional subspace spanned by $|n+\rangle=\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2}|1\rangle$.
- In quantum mechanics, we often use the vector $|n+\rangle$ to represent a pure state rather than the projector $|n+\rangle\langle n+|$. This is just a matter of convenience.
- The space of pure states is a vector space, but you should not confuse $\rho=\frac{1}{2} \rho_{1}+\frac{1}{2} \rho_{2}$, interpretable as a mixture, with $|\psi\rangle=\frac{1}{\sqrt{2}}\left|\psi_{1}\right\rangle+$ $\frac{1}{\sqrt{2}}\left|\psi_{1}\right\rangle$, which is called a superposition.

Rebit stafe space

3.vil) Qubilis

- Consider $\Omega=$ the unit ball,
- Lifting this to a cone gives

$$
\alpha\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right) \text { s.t. } x^{2}+y^{2}+z^{2} \leq 1
$$

- This cone is self dual (similar to Hwk 1 proof for disc).
- If we also impose $\boldsymbol{a} \cdot\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right) \leq 1$ we get $\mathcal{E}(\Omega)$.

Qublits in Mahix Space

- Unfortunately, the space of 2×2 real symmetric matrices is only 3-dimensional, so we cannot use if here. However, if we go to the 2×2 complex Hermitian matrices $M^{\dagger}=$ M, then this has 4 dimensions.

$$
\left(\begin{array}{cc}
a & c+i d \\
c-i d & b
\end{array}\right)
$$

- This is still a real vector space. Real linear combinations of Hermitian matrices are still Hermitian.
- Since we know $(N, M)=\operatorname{Tr}\left(N_{0}^{\dagger} M\right)$ is an inner product, we can find an orthonormal basis. You can check that $\frac{0}{\sqrt{2}}, \frac{\sigma_{1}}{\sqrt{2}}, \frac{\sigma_{2}}{\sqrt{2}}, \frac{3}{\sqrt{2}}$ is such a basis, where

$$
\sigma_{0}=I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- This means that instead of writing our qubit vectors in \mathbb{R}^{3} as $\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)$ we can write then as 2×2 matrices $\frac{1}{\sqrt{2}}\left(a \sigma_{0}+b \sigma_{1}+c \sigma_{2}+d \sigma_{3}\right)$.

Qublits in Matrix Space

- Again, we usually choose a different normalization so that

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) \rightarrow \frac{1}{2}\left(a \sigma_{0}+b \sigma_{1}+c \sigma_{2}+d \sigma_{3}\right)
$$

\odot We choose to embed our state space Ω in the $\sigma_{1}, \sigma_{2}, \sigma_{3}$ subspace, so a normalized state is of the form

$$
\begin{gathered}
\rho=\frac{1}{2}\left(I+x \sigma_{1}+y \sigma_{2}+z \sigma_{3}\right) \quad \text { with } x^{2}+y^{2}+z^{2} \leq 1 . \\
\text { or } \rho=\frac{1}{2}\left(\begin{array}{cc}
1+z & x-i y \\
x+i y & 1-z
\end{array}\right)
\end{gathered}
$$

Qublits in Malrix Space

- Again, let's look at the eigenvalues and eigenvectors. The characteristic equation is

$$
\left|\begin{array}{cc}
1+z-2 \lambda & x-i y \\
x+i y & 1-z-2 \lambda
\end{array}\right|=0 \text { or } 4 \lambda^{2}-4 \lambda+1-x^{2}-y^{2}-z^{2}=0
$$

- As before, this has solutions

$$
\lambda_{ \pm}=\frac{1}{2}(1 \pm\|\boldsymbol{n}\|)=\frac{1}{2}\left(1 \pm \sqrt{x^{2}+y^{2}+z^{2}}\right)
$$

where $\boldsymbol{n}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ with $x^{2}+y^{2}+z^{2} \leq 1$.
\odot Again, we have a positive matrix $0 \leq \lambda_{ \pm} \leq 1$ with $\lambda_{+}+\lambda_{1}=1$ or $\operatorname{Tr}(\rho)=1$.

Qublits in Matrix Space

- To find the eigenvectors, we switch to spherical polar coordinates

$$
x=r \sin \theta \cos \phi \quad y=r \sin \theta \sin \phi \quad z=r \cos \theta
$$

so that $\|\boldsymbol{n}\|=r$.

- In these coordinates, we have

$$
\rho=\left(\begin{array}{cc}
1+r \cos \theta & r \sin \theta \cos \phi-i r \sin \theta \sin \phi \\
r \sin \theta+i r \sin \theta \sin \phi & 1-r \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
1+r \cos \theta & r \sin \theta e^{-i \phi} \\
r \sin \theta e^{+i \phi} & 1-r \cos \theta
\end{array}\right)
$$

- and you can check that the two orthogonal unit vectors
$|n+\rangle=\binom{\cos \frac{\theta}{2}}{e^{i \phi} \sin \frac{\theta}{2}}=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle$ and $|n-\rangle=\binom{\sin \frac{\theta}{2}}{-\cos \frac{\theta}{2}}=\sin \frac{\theta}{2}|0\rangle-e^{i \phi} \cos \frac{\theta}{2}|1\rangle$
are the eigenvectors with $\rho|n \pm\rangle=\lambda_{ \pm}|n \pm\rangle$.

Pure Qubit States

\odot If the state is pure then $\|\boldsymbol{n}\|=\sqrt{x^{2}+y^{2}+z^{2}}=1$, so $\lambda_{+}=1$ and $\lambda_{-}=0$. As a result, the density operator is

$$
\rho=|n+\rangle\langle n+|
$$

\odot This is just the projector onto the one-dimensional subspace spanned by $|n+\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle$.

Qubiil States

3.vili) Quantum Theory as a GPT

- You might have thought that, to get a general quantum state space, we have to use a hypersphere, but this is not correct.
- Instead, we generalize the complex vector space that our matrices act on to arbitrary dimensions.
- A (finite dimensional) quantum system is associated with the vector space \mathbb{C}^{n}.
- A state (density matrix) is a positive, Hermitian matrix ρ that satisfies

$$
\operatorname{Tr}(\rho)=1
$$

\odot A pure state is a projector $\rho=|\psi\rangle\langle\psi|$ onto the one-dimensional subspace spanned by a unit vector $|\psi\rangle$, i.e. $\langle\psi \mid \psi\rangle=1$.
© We often just use the vector $|\psi\rangle$ to represent a pure state, but note that $e^{i \phi}|\psi\rangle$ represents the same state.

A Bit More Linear Algebra

- We now want to describe the effects and observables in quantum mechanics. But first, a few useful bits of linear algebra.
- First, the most useful result in Dirac notation:
\odot Proposition: For any orthonormal basis $\{|j\rangle\}, \quad I=\sum_{j}|j\rangle\langle j|$.
\odot Proof: Any vector $|\psi\rangle$ can be written as $|\psi\rangle=\sum_{j} a_{j}|j\rangle$

$$
\begin{gathered}
\left(\sum_{j}|j\rangle\langle j|\right)|\psi\rangle=\sum_{j}|j\rangle\langle j \mid \psi\rangle=\sum_{j, k} a_{k}|j\rangle\langle j \mid k\rangle \\
=\sum_{j, k} a_{k}|j\rangle \delta_{j k}=\sum_{j} a_{j}|j\rangle=|\psi\rangle
\end{gathered}
$$

Properties of the Trace

- The trace of a matrix M, denoted $\operatorname{Tr}(M)$ is

$$
\operatorname{Tr}(M)=\sum_{j}\langle j| M|j\rangle=\sum_{j} M_{j j} .
$$

- The trace and outer products:

$$
\operatorname{Tr}(|\phi\rangle\langle\psi|)=\langle\psi \mid \phi\rangle
$$

- Proof:

$$
\operatorname{Tr}(|\phi\rangle\langle\psi|)=\sum_{j}\langle j \mid \phi\rangle\langle\psi \mid j\rangle=\sum_{j}\langle\psi \mid j\rangle\langle j \mid \phi\rangle=\langle\psi| I|\phi\rangle=\langle\psi \mid \phi\rangle
$$

- Cyclic property of the trace:

$$
\operatorname{Tr}(A B C \cdots Y Z)=\operatorname{Tr}(Z A B C \cdots Y)
$$

- Proof:

$$
\begin{aligned}
& \operatorname{Tr}(A B C \cdots Y Z)=\sum_{j}\langle j| A B C \cdots Y Z|j\rangle=\sum_{j, k}\langle j| A B C \cdots Y|k\rangle\langle k| Z|j\rangle \\
& =\sum_{j, k}\langle k| Z|j\rangle\langle j| A B C \cdots Y|k\rangle=\sum_{k}\langle k| Z A B C \cdots Y|k\rangle=\operatorname{Tr}(Z A B C \cdots Y)
\end{aligned}
$$

Quanfum Effects

- Firstly, since our normalized states ρ do not include the zero matrix, we can form the state cone by just dropping the normalization constraint $\operatorname{Tr}(\rho)=1$. Therefore, the state cone just consists of all positive Hermitian matrices.
- Since the inner product is $(N, M)=\operatorname{Tr}\left(N^{\dagger} M\right)$, we know that an element of the dual cone f can be written as $f(\rho)=\operatorname{Tr}(E \rho)$ for some $n \times n$ matrix E, such that

$$
\operatorname{Tr}(E \rho) \geq 0 \text { for all positive matrices } \rho \text {. }
$$

- We will show that the state cone is self dual, so E just has to be a positive matrix.

Quantum Effiects

\odot Proposition: The cone of positive Hermitian matrices is self-dual.
\odot Proof: The extreme points of the state space are $\rho=|\psi\rangle\langle\psi|$, where $|\psi\rangle$ is a unit vector (pure state).
$\odot \operatorname{Tr}(E \rho) \geq 0$ is guaranteed for all other matrices in the cone provided it is true on these points, i.e.

$$
\operatorname{Tr}(E|\psi\rangle\langle\psi|)=\langle\psi| E|\psi\rangle \geq 0,
$$

but this is just the definition of a positive matrix.

Quanfum Effects

- To be a valid effect, we also need $f(\rho) \leq 1$ for all normalized states, or equivalently $f \leqslant u$, where u is the unit effect.
$\odot u$ is defined by $u(\rho)=1$ for all normalized states. Since

$$
\operatorname{Tr}(I \rho)=\operatorname{Tr}(\rho)=1
$$

u is represented by the identity matrix I.

- If we introduce the partial order on matrices $E \preccurlyeq F$ if $F-E$ is a positive operator, then a quantum effect is represented by a matrix E such that $0 \leqslant E \leqslant I$, where 0 is the matrix of all zeroes.
- The probability rule in quantum mechanics is therefore

$$
\operatorname{Prob}(E \mid \rho)=\operatorname{Tr}(E \rho)
$$

\odot This is called the (generalized) Born rule.

- Note that, if $\rho=|\psi\rangle\langle\psi|$ is a pure state then

$$
\operatorname{Prob}(E \mid \rho)=\operatorname{Tr}(E|\psi\rangle\langle\psi|)=\langle\psi| E|\psi\rangle
$$

Quanfum Observables (POVMs)

\odot An observable is a set of effects $\left\{f_{j}\right\}$ such that $\sum_{j} f_{j}=u$.

- Therefore, in quantum mechanics it is a set of positive operators $\left\{E_{j}\right\}$ such that

$$
\sum_{j} E_{j}=I .
$$

- This is called a Positive Operator Valued Measure (POVM). The operators E_{j} are often called POVM elements instead of effects.
- We then have

$$
\operatorname{Prob}(j \mid \rho)=\operatorname{Tr}\left(E_{j} \rho\right)
$$

Example: The Trine POVM

- Consider the operators
$\left\{E_{0}, E_{1}, E_{2}\right\}$, where

$$
E_{j}=\frac{2}{3}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|
$$

- Then, it is straightforward to show that

$$
\sum_{j=0}^{2} E_{j}=I .
$$

Projector Valued Measures (PVMs)

- A special class of POVMs (and the only kind of measurement usually considered in undergraduate QM) is where each POVM element P_{j} is a projector. This is called a Projector Valued Measure (PVM).
- A PVM is also sometimes called a sharp observable.
- In order for $\sum_{j} P_{j}=I$ to hold, the projectors have to be orthogonal $P_{j} P_{k}=0$, i.e. they project onto orthogonal subspaces.
- To see why, suppose P_{1} and P_{2} are not orthogonal and let $|\psi\rangle$ be a vector that lies in the intersection of the subspaces they project onto so that $P_{1}|\psi\rangle=|\psi\rangle$ and $P_{2}|\psi\rangle$. Then,

$$
\left(P_{1}+P_{2}\right)|\psi\rangle=2|\psi\rangle
$$

so $\sum_{j} P_{j} \neq I$ because $I|\psi\rangle=I$.

"Observables" In Quanfum Mechanics

- In undergraduate QM, what is called an "observable" is usually a Hermitian matrix $M\left(M^{\dagger}=M\right)$. Let's see how this is connected to PVMs.
- Any Hermitian operator can be written in its spectral decomposition

$$
M=\sum_{j} \lambda_{j} P_{j},
$$

where the λ_{j} 's are the eigenvalues of M and the P_{j} 's are the projectors onto the corresponding eigenspaces. These are orfhogonal and $\sum_{j} P_{j}=1$, so they define a PVM.

- We can think of the eigenvalues as giving values to the outcomes of the measurement, e.g. λ_{j} might be the position of a particle.
- Then, QM specifies the probability rule PVM with $\operatorname{Prob}\left(\lambda_{j} \mid \rho\right)=\operatorname{Tr}\left(P_{j} \rho\right)$, which is just the probability rule for the $\operatorname{PVM}\left\{P_{j}\right\}$.
- If we are not interested in the values of the outcomes, just their probabilities, we can dispense with Hermitian observables and just use PVMs.

Example

- Consider the matrix

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- This has spectral decomposition

$$
\begin{gathered}
\sigma_{1}=|+\rangle\langle+|-|-\rangle\langle-| \\
\text { where }| \pm\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)
\end{gathered}
$$

- So it corresponds to the PVM $\{|+\rangle\langle+|,|-\rangle\langle-|\} . \$
- The $|+\rangle\langle+|$ outcome has value +1 and The $|-\rangle\langle-|$ outcome has value -1 .

Orthonormal Basis Measurements

- If the projectors in a PVM are all one-dimensional $P_{j}=\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$, then $\left\{\left|\phi_{j}\right\rangle\right\}$ is an orthonormal basis. In this case, we can write the probabilities as

$$
\operatorname{Pr}\left(\phi_{j} \mid \rho\right)=\operatorname{Tr}\left(\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| \rho\right)=\left\langle\phi_{j}\right| \rho\left|\phi_{j}\right\rangle .
$$

- If $\rho=|\psi\rangle\langle\psi|$ is also a pure state then this can be written as

$$
\operatorname{Pr}\left(\phi_{j} \mid \psi\right)=\left\langle\phi_{j} \mid \psi\right\rangle\left\langle\psi \mid \phi_{j}\right\rangle=\left|\left\langle\phi_{j} \mid \psi\right\rangle\right|^{2},
$$

which is what is normally called the Born rule in undergrad QM.

- The example on the previous slide was an orthonormal basis measurement.

The Quantum Test Space

\odot Theorem: (Gleason's Theorem) Consider the test space where the outcomes are projectors $|\psi\rangle\langle\psi|$ onto unit vectors in \mathbb{C}^{n} and the tests are orthonormal basis measurements. If $n \geq 3$ then a state ω on this test space corresponds to a density matrix ρ, i.e. ρ is positive and $\operatorname{Tr}(\rho)=1$, with

$$
\omega(|\psi\rangle\langle\psi|)=\langle\psi| \rho|\psi\rangle .
$$

A. M. Gleason, "Measures on the closed subspaces of a Hilbert space", Indiana University Mathematics Journal, 6: 885-893 (1957)

- Note: There must be a test space for rebits and qubits, but it is not this "standard" quantum test space. It must include some POVMs that are not PVMs.

Conclusion

- This section was meant to persuade you that quantum theory can be understood as a generalization of probability theory, situated within a well-motivated framework for such generalizations (GPTs).
- As such, it is a Church of the Smaller Hilbert Space approach to setting up quantum theory.
- This raises the question of why this GPT and not some other? Why does nature use the orthonormal bases of \mathbb{C}^{n} as its test space?
- Much work has been done on axiomatic reconstructions of quantum theory within this approach in recent years. See D'Ariano et. al. on supplemental reading list for a particularly nice example.
- In traditional undergrad. quantum theory, the analogy between quantum pure states and physical waves is used to build the theory. This is a Church of the Larger Hilbert Space approach.
- I think that which of these approaches you take more seriously biases you towards certain types of interpretation of quantum theory, and explains a lot of the talking past one another that happens in debates on interpretation.

