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 To find the eigenvectors, let’s switch to polar coordinates
𝑥 = 𝑟sin𝜃 𝑦 = 𝑟cos𝜃

since then 𝒏 = 𝑟.

 In these coordinates, we have

𝜌 =
1 + 𝑟cos𝜃 𝑟sin𝜃
𝑟sin𝜃 1 − 𝑟cos𝜃

 It is now straightforward to check that the two orthogonal unit vectors

𝑛 + =
cos

𝜃

2
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𝜃

2

= cos
𝜃

2
0 + sin

𝜃

2
|1⟩ and   𝑛 − =

sin
𝜃

2

−cos
𝜃

2

= sin
𝜃

2
0 − cos

𝜃

2
|1⟩

are the eigenvectors with 𝜌 𝑛 ± = 𝜆±|𝑛±⟩.



 If the state is pure then 𝒏 = 𝑥2 + 𝑦2 = 1, so 𝜆+ = 1 and 𝜆− = 0.  As 
a result, the density operator is

𝜌 = |𝑛+⟩⟨𝑛 + |

 This is just the projector onto the one-dimensional subspace 

spanned by 𝑛 + = cos
𝜃

2
0 + sin

𝜃

2
|1⟩.

 In quantum mechanics, we often use the vector |𝑛+⟩ to represent a 
pure state rather than the projector |𝑛+⟩⟨𝑛 + |.  This is just a matter of 
convenience.

 The space of pure states is a vector space, but you should not 

confuse 𝜌 =
1

2
𝜌1 +

1

2
𝜌2, interpretable as a mixture, with 𝜓 =

1

2
𝜓1 +

1

2
𝜓1 , which is called a superposition.





 Consider Ω = the unit ball,
𝑥
𝑦
𝑧

s.t. 𝑥2 + 𝑦2 + 𝑧2 ≤ 1.

 Lifting this to a cone gives 

𝛼

𝑥
𝑦
𝑧
1

s.t. 𝑥2 + 𝑦2 + 𝑧2 ≤ 1.

 This cone is self dual (similar to Hwk 1 proof for disc).

 If we also impose 𝒂 ⋅

𝑥
𝑦
𝑧
1

≤ 1 we get (Ω).



 Unfortunately, the space of 2 × 2 real symmetric matrices is only 3-dimensional, so we 
cannot use it here.  However, if we go to the 2 × 2 complex Hermitian matrices 𝑀† =
𝑀, then this has 4 dimensions.

𝑎 𝑐 + 𝑖𝑑
𝑐 − 𝑖𝑑 𝑏

 This is still a real vector space.  Real linear combinations of Hermitian matrices are still 
Hermitian.

 Since we know 𝑁,𝑀 = Tr(𝑁†𝑀) is an inner product, we can find an orthonormal 
basis. You can check that 

𝜎0

2
,
𝜎1

2
,
𝜎2

2
,
𝜎3

2
is such a basis, where

𝜎0 = 𝐼 =
1 0
0 1

, 𝜎1 =
0 1
1 0

, 𝜎2 =
0 −𝑖
𝑖 0

, 𝜎3=
1 0
0 −1

 This means that instead of writing our qubit vectors in ℝ3 as 

𝑎
𝑏
𝑐
𝑑

we can write then as 

2 × 2 matrices 
1

2
𝑎𝜎0 + 𝑏𝜎1 + 𝑐𝜎2 + 𝑑𝜎3 .



 Again, we usually choose a different normalization so that
𝑎
𝑏
𝑐
𝑑

→
1

2
𝑎𝜎0 + 𝑏𝜎1 + 𝑐𝜎2 + 𝑑𝜎3

 We choose to embed our state space Ω in the 𝜎1, 𝜎2, 𝜎3 subspace, so 
a normalized state is of the form

𝜌 =
1

2
𝐼 + 𝑥𝜎1 + 𝑦𝜎2 + 𝑧𝜎3 with    𝑥2 + 𝑦2 + 𝑧2 ≤ 1.

or 𝜌 =
1

2

1 + 𝑧 𝑥 − 𝑖𝑦
𝑥 + 𝑖𝑦 1 − 𝑧



 Again, let’s look at the eigenvalues and eigenvectors.  The 
characteristic equation is

1 + 𝑧 − 2𝜆 𝑥 − 𝑖𝑦
𝑥 + 𝑖𝑦 1 − 𝑧 − 2𝜆

= 0 or   4𝜆2 − 4𝜆 + 1 − 𝑥2 − 𝑦2 − 𝑧2 = 0

 As before, this has solutions

𝜆± =
1

2
1 ± 𝒏 =

1

2
(1 ± 𝑥2 + 𝑦2 + 𝑧2)

where   𝒏 =
𝑥
𝑦
𝑧

with   𝑥2 + 𝑦2 + 𝑧2 ≤ 1.

 Again, we have a positive matrix 0 ≤ 𝜆± ≤ 1 with 𝜆+ + 𝜆1 = 1 or 
Tr 𝜌 = 1.



 To find the eigenvectors, we switch to spherical polar coordinates
𝑥 = 𝑟sin𝜃cos𝜙 𝑦 = 𝑟sin𝜃sin𝜙 𝑧 = 𝑟cos𝜃

so that 𝒏 = 𝑟.

 In these coordinates, we have

𝜌 =
1 + 𝑟cos𝜃 𝑟sin𝜃cos𝜙 − 𝑖𝑟sin𝜃sin𝜙

𝑟sin𝜃 + 𝑖𝑟sin𝜃sin𝜙 1 − 𝑟cos𝜃
= 1 + 𝑟cos𝜃 𝑟sin𝜃𝑒−𝑖𝜙

𝑟sin𝜃𝑒+𝑖𝜙 1 − 𝑟cos𝜃
 and you can check that the two orthogonal unit vectors
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are the eigenvectors with 𝜌 𝑛 ± = 𝜆±|𝑛±〉.



 If the state is pure then 𝒏 = 𝑥2 + 𝑦2 + 𝑧2 = 1, so 𝜆+ = 1
and 𝜆− = 0.  As a result, the density operator is

𝜌 = |𝑛+⟩⟨𝑛 + |

 This is just the projector onto the one-dimensional 

subspace spanned by 𝑛 + = cos
𝜃

2
0 + 𝑒𝑖𝜙sin

𝜃

2
|1⟩.





 You might have thought that, to get a general quantum state 
space, we have to use a hypersphere, but this is not correct.

 Instead, we generalize the complex vector space that our matrices 
act on to arbitrary dimensions.

 A (finite dimensional) quantum system is associated with the vector 
space ℂ𝑛.

 A state (density matrix) is a positive, Hermitian matrix 𝜌 that satisfies 

Tr 𝜌 = 1.

 A pure state is a projector 𝜌 = 𝜓 〈𝜓| onto the one-dimensional 
subspace spanned by a unit vector |𝜓〉, i.e. 𝜓 𝜓 = 1.

 We often just use the vector |𝜓⟩ to represent a pure state, but note that 𝑒𝑖𝜙|𝜓⟩
represents the same state.



 We now want to describe the effects and observables in quantum 
mechanics.  But first, a few useful bits of linear algebra.

 First, the most useful result in Dirac notation:

 Proposition: For any orthonormal basis {|j⟩}, 𝐼 = σ𝑗 |𝑗⟩⟨𝑗|.

 Proof: Any vector |𝜓⟩ can be written as 𝜓 = σ𝑗 𝑎𝑗|𝑗⟩

෍

𝑗

|𝑗⟩⟨𝑗| 𝜓 =෍

𝑗

|𝑗⟩⟨𝑗|𝜓⟩ =෍

𝑗,𝑘

𝑎𝑘 𝑗 𝑗 𝑘

=෍

𝑗,𝑘

𝑎𝑘 𝑗 𝛿𝑗𝑘 =෍

𝑗

𝑎𝑗|𝑗⟩ = |𝜓⟩



 The trace of a matrix 𝑀, denoted Tr(𝑀) is

Tr 𝑀 = σ𝑗 𝑗 𝑀 𝑗 = σ𝑗𝑀𝑗𝑗.

 The trace and outer products:
Tr(|𝜙⟩⟨𝜓|) = 𝜓 𝜙

 Proof: 

Tr(|𝜙⟩⟨𝜓|) =෍

𝑗

𝑗 𝜙 ⟨𝜓|𝑗⟩ =෍

𝑗

𝜓 𝑗 𝑗 𝜙 = ⟨𝜓 𝐼 𝜙⟩ = ⟨𝜓|𝜙⟩

 Cyclic property of the trace:
Tr 𝐴𝐵𝐶⋯𝑌𝑍 = Tr(𝑍𝐴𝐵𝐶⋯𝑌)

 Proof: 

Tr 𝐴𝐵𝐶⋯𝑌𝑍 =෍

𝑗

⟨𝑗 𝐴𝐵𝐶⋯𝑌𝑍 𝑗⟩ =෍

𝑗,𝑘

⟨𝑗 𝐴𝐵𝐶⋯𝑌|𝑘⟩⟨𝑘|𝑍 𝑗⟩

=෍

𝑗,𝑘

𝑘 𝑍 𝑗 𝑗 𝐴𝐵𝐶⋯𝑌 𝑘 = ෍

𝑘

𝑘 𝑍𝐴𝐵𝐶⋯𝑌 𝑘 = Tr(𝑍𝐴𝐵𝐶⋯𝑌)



 Firstly, since our normalized states 𝜌 do not include the zero matrix, 
we can form the state cone by just dropping the normalization 
constraint Tr 𝜌 = 1.  Therefore, the state cone just consists of all 
positive Hermitian matrices.

 Since the inner product is 𝑁,𝑀 = Tr(𝑁†𝑀), we know that an 
element of the dual cone 𝑓 can be written as 𝑓 𝜌 = Tr(𝐸𝜌) for 
some 𝑛 × 𝑛 matrix 𝐸, such that

Tr 𝐸𝜌 ≥ 0 for all positive matrices 𝜌.

 We will show that the state cone is self dual, so 𝐸 just has to be a 
positive matrix.



 Proposition: The cone of positive Hermitian matrices is self-dual.

 Proof: The extreme points of the state space are 𝜌 = |𝜓⟩⟨𝜓|, where 
|𝜓⟩ is a unit vector (pure state).

 Tr 𝐸𝜌 ≥ 0 is guaranteed for all other matrices in the cone provided 
it is true on these points, i.e.

Tr 𝐸 𝜓 〈𝜓|) = ⟨𝜓 𝐸 𝜓⟩ ≥ 0,

but this is just the definition of a positive matrix.



 To be a valid effect, we also need 𝑓 𝜌 ≤ 1 for all normalized states, or 
equivalently 𝑓 ≼ 𝑢, where 𝑢 is the unit effect.

 𝑢 is defined by 𝑢 𝜌 = 1 for all normalized states.  Since

Tr 𝐼𝜌 = Tr 𝜌 = 1,

𝑢 is represented by the identity matrix 𝐼.

 If we introduce the partial order on matrices 𝐸 ≼ 𝐹 if 𝐹 − 𝐸 is a positive 
operator, then a quantum effect is represented by a matrix 𝐸 such that 
0 ≼ 𝐸 ≼ 𝐼, where 0 is the matrix of all zeroes.

 The probability rule in quantum mechanics is therefore
Prob 𝐸 𝜌 = Tr(𝐸𝜌)

 This is called the (generalized) Born rule.

 Note that, if 𝜌 = |𝜓⟩⟨𝜓| is a pure state then

Prob 𝐸 𝜌 = Tr(𝐸|𝜓⟩⟨𝜓|) = ⟨𝜓 𝐸 𝜓⟩



 An observable is a set of effects {𝑓𝑗} such that σ𝑗 𝑓𝑗 = 𝑢.

 Therefore, in quantum mechanics it is a set of positive operators {𝐸𝑗}
such that 

σ𝑗 𝐸𝑗 = 𝐼.

 This is called a Positive Operator Valued Measure (POVM).  The 
operators 𝐸𝑗 are often called POVM elements instead of effects.

 We then have
Prob 𝑗 𝜌 = Tr(𝐸𝑗𝜌)



 Consider the operators 
{𝐸0, 𝐸1, 𝐸2}, where

𝐸𝑗 =
2

3
|𝜓𝑗⟩⟨𝜓𝑗|

 Then, it is straightforward 
to show that

σ𝑗=0
2 𝐸𝑗 = 𝐼.



 A special class of POVMs (and the only kind of measurement usually 
considered in undergraduate QM) is where each POVM element 𝑃𝑗
is a projector.  This is called a Projector Valued Measure (PVM).

 A PVM is also sometimes called a sharp observable.

 In order for σ𝑗 𝑃𝑗 = 𝐼 to hold, the projectors have to be orthogonal 
𝑃𝑗𝑃𝑘 = 0, i.e. they project onto orthogonal subspaces.

 To see why, suppose 𝑃1 and 𝑃2 are not orthogonal and let |𝜓⟩ be a 
vector that lies in the intersection of the subspaces they project 
onto so that 𝑃1 𝜓 = |𝜓⟩ and 𝑃2|𝜓⟩.  Then,

𝑃1 + 𝑃2 𝜓 = 2|𝜓⟩,

so σ𝑗 𝑃𝑗 ≠ 𝐼 because 𝐼 𝜓 = 𝐼.



 In undergraduate QM, what is called an “observable” is usually a 
Hermitian matrix 𝑀 (𝑀† = 𝑀).  Let’s see how this is connected to PVMs.

 Any Hermitian operator can be written in its spectral decomposition

𝑀 = σ𝑗 𝜆𝑗𝑃𝑗,

where the 𝜆𝑗’s are the eigenvalues of 𝑀 and the 𝑃𝑗’s are the projectors 
onto the corresponding eigenspaces.  These are orthogonal and σ𝑗 𝑃𝑗 = 1, 
so they define a PVM.

 We can think of the eigenvalues as giving values to the outcomes of the 
measurement, e.g. 𝜆𝑗 might be the position of a particle.

 Then, QM specifies the probability rule PVM with Prob 𝜆𝑗 𝜌 = Tr(𝑃𝑗𝜌), 
which is just the probability rule for the PVM {𝑃𝑗}.

 If we are not interested in the values of the outcomes, just their 
probabilities, we can dispense with Hermitian observables and just use 
PVMs.



 Consider the matrix

𝜎1 =
0 1
1 0

.

 This has spectral decomposition

𝜎1 = |+⟩⟨+| − |−⟩⟨−|,

where ± =
1

2
(|0⟩ ± |1⟩)

 So it corresponds to the PVM {|+⟩⟨+|, |−⟩⟨−|}.\

 The |+⟩⟨+| outcome has value +1 and The |−⟩⟨−| outcome has 
value −1.



 If the projectors in a PVM are all one-dimensional 𝑃𝑗 = |𝜙𝑗⟩⟨𝜙𝑗|, then 
{|𝜙𝑗⟩} is an orthonormal basis.  In this case, we can write the 
probabilities as

Pr 𝜙𝑗 𝜌 = Tr(|𝜙𝑗⟩⟨𝜙𝑗|𝜌) = ⟨𝜙𝑗 𝜌 𝜙𝑗⟩.

 If 𝜌 = |𝜓⟩⟨𝜓| is also a pure state then this can be written as

Pr 𝜙𝑗 𝜓 = 𝜙𝑗 𝜓 𝜓 𝜙𝑗 = 𝜙𝑗 𝜓
2
,

which is what is normally called the Born rule in undergrad QM.

 The example on the previous slide was an orthonormal basis 
measurement.



 Theorem: (Gleason’s Theorem) Consider the test space where the 
outcomes are projectors 𝜓 𝜓 onto unit vectors in ℂ𝑛 and the tests 
are orthonormal basis measurements.  If 𝑛 ≥ 3 then a state 𝜔 on this 
test space corresponds to a density matrix 𝜌, i.e. 𝜌 is positive and 
Tr 𝜌 = 1, with

𝜔(|𝜓⟩⟨𝜓|) = ⟨𝜓 𝜌 𝜓⟩.

A. M. Gleason, "Measures on the closed subspaces of a Hilbert space“, Indiana University 
Mathematics Journal, 6: 885–893 (1957)

 Note: There must be a test space for rebits and qubits, but it is not 
this “standard” quantum test space.  It must include some POVMs 
that are not PVMs.



 This section was meant to persuade you that quantum theory can be 
understood as a generalization of probability theory, situated within a 
well-motivated framework for such generalizations (GPTs).

 As such, it is a Church of the Smaller Hilbert Space approach to setting up 
quantum theory.

 This raises the question of why this GPT and not some other?  Why does 
nature use the orthonormal bases of ℂ𝑛 as its test space?
 Much work has been done on axiomatic reconstructions of quantum theory 

within this approach in recent years.  See D’Ariano et. al. on supplemental 
reading list for a particularly nice example.

 In traditional undergrad. quantum theory, the analogy between quantum 
pure states and physical waves is used to build the theory.  This is a Church 
of the Larger Hilbert Space approach.

 I think that which of these approaches you take more seriously biases you 
towards certain types of interpretation of quantum theory, and explains a 
lot of the talking past one another that happens in debates on 
interpretation.


