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Properties of the Rebii Mairix
Representation

@ To find the eigenvectors, let’s switch to polar coordinates
X =rsinf y = rcosf

since then ||n|| = r.

® In these coordinates, we have
D= (1 + rcos@ rsinf )

rsinf 1 —rcos6
@ It s now straightforward to check that the two orthogonal unit vectors

cosg sing
In+) = 5 | =cos> |0)+51n 1) and [n—) = g | =sin- |O)—cos—|1)
sin— —Cos -

are the eigenvectors with p|n £) = 14 |n#).



Pure Rebit States

o If the state is pure then ||n|| = /x2+y2=1,501, =1and 1_ =0. As

a result, the density operator is
p = [n+)n+|

@ This is Just the projector onto the one-dimensional subspace
spanned by [n +) = cosg |0) + sing |1).

@ In quantum mechanics, we often use the vector |n+) to represent @
pure state rather than the projector |n+)Xn + |. This is just a matter of
convenience.

® The space of pure states is a vector space, but you should not
confuse p = %pl + %pz, iIntferpretable as a mixture, with |y) = % |Y,) +

=I¥1). which is called a superposition.



Reblt state space

(10) = 1)

L
[
Sl

p =5 ([0)0] + [n+)(n + 1)

In+) = cos 4]0) + sin ¢]1)



3.vl) Qublts

® Consider Q = the unit ball,

X
<Y> s.h.ox?+y2+2z%2 < 1.
Z

® Liffing this to a cone gives

X
a 321 shx?+y?+2z2<1.
1

@ This cone is self dual (similar to Hwk 1 proof for disc).
X

@ If we also impose a - < 1 we get £(Q).

y
Z
1



Qubits in Mafrix Space

® Unfor’runo’rel¥, the space of 2 X 2 real symmetric matrices is only 3-dimensional, so we
cannot use it here. However, if we go to the 2 x 2 complex Hermitian matrices MT =
M, then this has 4 dimensions.
( a c+ id)
c—id b

@ This is sfill a real vector space. Real linear combinations of Hermitian matrices are still
Hermitian.
® Since we know (N, M) = TrgVTM) Is an inner product, we can find an orthonormall

basis. You can check that =2, =, =%, 2 is such a basis, where

V2’2’ V2 V2
0212(1 0) U:(o 1) 0:(0 —i) 62(1 0)
0 0 1/’ 1=\1 o)’ 27\i o)’ 37\ -1

® This means that instead of writing our qubit vectors in R® as we can write then as

QL AT Q

2 X 2 matrices %(aao + boy + co, + doy).



Qubits in Mafrix Space

® Again, we usually choose a different normalization so that

1
-5 (agy + bay + co, + dog)

QL OT Q

®@ We choose to embed our state space Q in the gy, g,, 03 subspace, so
a hormalized state is of the form

p=-(+x0;, +y0o, +203) with x2+y2 422 <1,

or _1(1+Z x—iy)
P =3 x+iy 1-—z



Qubits in Mafrix Space

® Again, let’s look at the eigenvalues and eigenvectors. The
characteristic equation is

‘1 +z — 21 X — iy
x+ iy 1—2z-21
® AS before, this has solutions

Le=-Atlnl)=-1+/x2+y? +2)

=0 or 422 —41+1—x*>—y?—2z2=0

X
where n = (y) with x? +y% +2z% < 1.
Z
® Again, we have a positive mafrix 0 < AL < 1with A, + 4, =1 or
Tr(p) = 1.



Qubits in Mafrix Space

@ To find the eigenvectors, we switch to spherical polar coordinates
x = rsinfcos¢ 7y = rsinfsin¢g z = rcoslO

so that [In]|| = .
® In these coordinates, we have

_ ( 1 + rcos@ rsinfcosgp — irsianingb) _ (1 + rcosf rsin@e‘id’)
P = \rsing + irsinfsing 1 —rcos6 "~ \rsin@et® 1 — rcosB
® and you can check that the two orthogonal unit vectors
6 . 0
cos - p o sin— 9 , p
In+)=1{ o | = cos=|0) + e!?sin=|1) and |n—) = = sin—|0) — e*?cos=|1)
e“”sin; 2 2 —Cos > ° 2

are the eigenvectors with p|n +) = 14 |nt).



Pure Qubit States

o If the state is pure then ||n|| = /x2 +y2 +2z2=1,50 1, =1
and A_ = 0. As aresult, the density operator is
p=[n+t¥n+|
® This is just the projector onto the one-dimensional
subspace spanned by [n +) = Cosg |0) + ei"’sing |1).



Qubit States

=) = 10)




3.vil) Quantum Theory as a GPT

® You might have thought that, to get a general quantum state
space, we have to use a hypersphere, but this is not correct.

@ Instead, we generalize the complex vector space that our matrices
act on to arbitrary dimensions.

@ A (finite dimensional) quantum system is associated with the vector
space C".

@ A state (density mairix) is a positive, Hermitian matrix p that satisfies

Tr(p) = 1.

® A pure state is a projector p = |YP){| onto the one-dimensional
subspace spanned by a unit vector |Y), i.e. (Y|y) = 1.

© We often just use the vector |) to represent a pure state, but note that e'?|y)
represents the same state.



A Bit More Linear Algebra

® We now want to describe the effects and observables in guantum
mechanics. But first, a few useful bits of linear algebra.

@ First, the most useful result in Dirac notation:
® Proposition: For any orthonormal basis {[j)}, 1 =2, 1j){j].

® Proof: Any vector [) can be written as [y) = X a;lj)

(Z |j><j|> Wy =D 1)lw) = ) a1k
J J

Kk

= @)= ) ali) = )

Jk J



Properties of the Trace

@ The frace of a matrix M, denoted Tr(M) Is
Tr(M) = Z]<]|M|]> = Zijj-
® The trace and outer products:

Tr(lpXyD) = Pl

® Proof:

Tr(gNwD = ) I8 Wl = > @) 1) = (IlIg) = (bl#)
J J

@ Cyclic property of the trace:
Tr(ABC ---YZ) = Tr(ZABC ---Y)

® Proof:
Tr(ABC - YZ) = z(leBC - YZIj) = z(jIABC A
J j.k

- Z(kIZIj)(jIABC Y|k = Z(kIZAB’C Y|k} = Tr(ZABC - Y)
Jik k



Quantum Effects

@ Firstly, since our normalized states p do not include the zero maitrix,
we can form the state cone by just dropping the normalization
constraint Tr(p) = 1. Therefore, the state cone just consists of all
positive Hermitian matrices.

® Since the inner product is (N, M) = Tr(NTM), we know that an
element of the dual cone f can be written as f(p) = Tr(Ep) for
some n X n matrix E, such that

Tr(Ep) = 0 for all positive matrices p.

@ We will show that the state cone is self dual, so E just has to be a
positive mafrix.



Quantum Effects

® Proposition: The cone of positive Hermitian matrices is self-dual.

@ Proof: The extreme points of the state space are p = |[Y )|, where
|Y) Is a unit vector (pure state).

® Tr(Ep) = 0 is guaranteed for all other matrices in the cone provided
it is frue on these points, i.e.

Tr(ElYXl) = (WIElY) = 0,

but this is just the definition of a positive matrix.



Quantum Effects

® To be a valid effect, we also need f(p) < 1 for all normalized states, or
equivalently f < u, where u is the unit effect.

@ u is defined by u(p) = 1 for all normalized states. Since
Tr(Ip) = Tr(p) =1,
u is represented by the identity matrix I.

@ If we infroduce the partial order on matrices E < F if F — E is a positive
operator, then a quantum effect is represented by a matrix E such that
0 < E < I, where 0is the matrix of all zeroes.

@ The probability rule in guantum mechanics is therefore
Prob(E|p) = Tr(Ep)

@ This is called the (generalized) Born rule.

@ Note that, if p = || is a pure state then

Prob(E|p) = Tr(E|YXy|) = (PIE]p)



Quantum Observables (POVMs)

® An observable is a set of effects {f;} such that ¥, f; = u.

® Therefore, in quantum mechanics it is a set of positive operators {E;}
such that

@ This is called a Positive Operator Valued Measure (POVM). The
operators E; are often called POVM elements instead of effects.

® We then have
Prob(jlp) = Tr(E;p)



Example: The Trine POVM

® Consider the operators [¢o)
{E,, E1,E>}, Where

Ej = 2 [, }jl

® Then, it is straightforward
to show that

2 —
]=0E] - I.

0)




Projector Valued Measures (PVMs)

® A special class of POVMs (and the only kind of measurement usually
considered in undergraduate QM) is where each POVM element P;
is a projector. This is called a Projector Valued Measure (PVM).

® A PVM is also sometimes called a sharp observable.

@ In order for };: P; = I to hold, the projectors have 1o be orthogonal
PP, =0, l.e. ’rfwey project onto orthogonal subspaces.

® To see why, suppose P, and P, are not orthogonal and let |) be a
vector that lies in the m’rersechon of the subspaces they project
onto so that Py |y) = |¢) and P,|y). Then,

(P + Py) [y = 2|y),
SO 2.; P # 1 because I[yY) = 1.



“Observables” In Quantum Mechanics

® In undergraduate QM, what is called an “observable” is usually a
Hermitian matrix M (MT = M). Let's see how this is connected to PVMs.

® Any Hermitian operator can be written in its spectral decomposition
M =2 4P

where the 4;'s are the eigenvalues of M and the P;'s are the projectors
onto the corresponding eigenspaces. These are or{hogonol and 2 P =1,
so they define a PVM.

@ We can think of the eigenvalues as giving values to the outcomes of the
measurement, e.g. 4; might be the position of a parficle.

o Then, QM specifies the probability rule PYM with Prob(4;|p) = Tr(P;p).
which is just the probability rule for the PVM {P;}.

@ If we are not interested in the values of the outcomes, just their
probabilities, we can dispense with Hermitian observables and just use
PVMes.



Example

® Consider the matrix

5 = (0 1)
17 \1 o)
® This has spectral decomposition
o1 = |+N(+]| = =X~
where | 1) = = (|0) % [1))
® So It corresponds to the PVM {|+){+], |-X—1}.\

® The |+)+| outcome has value +1 and The |-){(—| outcome has
value —1.



Orthonormal Basis Measurements

o If the projectors in a PVM are all one-dimensional P; = |¢;}{¢;|, then
{l$;)}is an orthonormal basis. In this case, we can write the
probabilities as

Pr(¢j|p) = Tr(19;Xdjlp) = (d;lple;).

o If p = |Y)| is also a pure state then this can be written as

2
Pr(g;|y) = (;[w)wle;) = [(&;[¥)].
which is what is normally called the Born rule in undergrad QM.

® The example on the previous slide was an orthonormal basis
measurement.



The Quanium Test Space

@ Theorem: (Gleason’s Theorem) Consider the test space where the
outcomes are projectors |Y) | onto unit vectors in C* and the tests
are orthonormal basis measurements. If n = 3 then a state w on this
test space corresponds 1o a density mairix p, i.e. p is positive and
Tr(p) = 1, with

(YY) = Wlplp).

A. M. Gleason, "Measures on the closed subspaces of a Hilbert space”, Indiana University
Mathematics Journal, 6: 885-893 (1957)
® Note: There must be a test space for rebits and qubits, but it is not
this “standard” quantum test space. It must include some POVMs
that are not PVMs.



Conclusion

® This section was meant to persuade you that guantum theory can be
understood as a generalization of probability theory, situated within a
well-motivated framework for such generalizations (GPTs).

@ As such, itis a Church of the Smaller Hilbert Space approach to setting up
quantum theory.

® This raises the question of why this GPT and nof some ofthere Why does
nature use the orthonormal bases of C* as its test spacee
® Much work has been done on axiomatic reconstructions of quantum theory

within this approach in recent years. See D’Ariano et. al. on supplemental
reading list for a particularly nice example.

® In fraditional undergrad. quanfum theory, the analogy between quantum
pure states and physical waves is used 1o build the theory. This is a Church
of the Larger Hilbert Space approach.

@ | think that which of these approaches you take more seriously biases you
fowards certain types of inferpretation of quanfum theory, and explains a
lot of the talking past one another that happens in debates on
intferpretation.



