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Example: Effects of the Probability
Simplex

@ The extreme points of the 2D probability simplex are ((1)) and (O)

1
al) such that
a;

aq 1 aq 0
(az)-(O)ZO ora; =0 and (az)-(l)ZO ora, =0

@ This is the same as the cone generated by ((1)) and ((1)) so the 2D
probability cone is self-dual.
® To get the space of effects, we have to add the conditions:

aq 1 aq 0
(az)-(O)S1 ora; <1 and (a2)°(1)gl ora, <1

The dual cone consists of vectors (
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Example: Effects of the gbit/squit

® The extreme points of the gbit are (:1)(_11)(_11) , G) but we

have to go one dimension higher for the cone, so we use:

SIRIIY

a4

® The dual cone consists of vectors a = <a2>, which satisfy:
as

—-a; —a, +az3=0,a; —a,+a; =0, —ay+a,+az;=0,a; +a, +az; = 0.
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Example: Effects of the gbli/squit

® To get the space of effects, we also have to impose:
l

—a; —a, +asz<1
a,—a, +taz <1
—a, +a, +az <1,
a, +a, +az <1.




Observables

® An observable is a set {fy, f>, -+, [} of effects, such that
iz1 filw) =1forallw € Q
@ Alternatively, it is a set of effects such that
n —_
j=1fj = u.

® We can always define a two-outcome observable from
an effect f as {f,u — f}.

® Observables represent the full set of mathematical
objects that can conceivably represent a well-defined
measurement.



Schuliz Theorem

® Theorem: Any closed convex subset of R™ is the state
space of a test space.

® F. W. Schultz, Journal of Combinatorial Theory A vol. 17, p. 317
(1974)

® Schultz actually proved something more general, but this is the
case we need here.

@ Given this, we can dispense with the test space
framework and just work with states and effects.



Generalized Probabilistic Theories (GPTs)

® A (finite dimensional)Generalized Probabilistic Theory (GPT)
consists of
® A closed convex set Q called the sfate space.

® The cone C(Q) formed by lifting Q.
@ Alternatively, we could start with the cone, define a unit effect u and let
O ={w e Clu(w) =1}.

® A subset of the effects £(Q) representing the allowed measurement
outcomes in the theory.

® The observables formed from this subset.
® A theory saftisfies the no-resfriction hypothesis if we allow all

effects as measurement outcomes. We will assume this here,
but there are interesting GPTs that do not safisfy if.



Distinguishability in GPTs

® A set of states {wq, w,, -+, w,} Is distinguishable in a GPT it there exists
an observable {f;, f5, -+, fn} such that
filwy) = 6jk
© Theorem: In a simplex the set of pure states is distinguishable. In any
other GPT there exists a set of pure states that is not distinguishable.

@ Proof: In the cone generated by the simplex, the n pure states
{wq, w,, -, w,} are linearly independent, so form a basis for R™.

® Any basis has a dual basis {1, f2, -+, fn} such that f;(wy) = §j
@ Proof: Since the w;'s are linearly independent, we can independently define
the value of f; on each of them. The resulfing set is linearly independent
because it is impossible to reconstruct fi(w;) = 1 by a linear combination of
fx's that are all zero on w;.



Distinguishability in GPTs

® It remains to prove that Y% 1f] =u. SinCe any w can be written as a
convex combination w = 1 AW, We have

<zj=1fj> (@) = 2],]{:1 aifi(wg) = zj,k=1 ay Ok

=z ai =1=u(w).

j=1

® For the converse, if Q Is not a simplex then the set of pure states is linearly
dependent in the lifted cone. Let {w,, -, wq} be the largest linearly
independent subset. Then w4, = Zji 1 ajw; And suppose ay is nonzero.
Then,

d d
fr(wgyr ) = Z 1ajfk(wj) = Z 1aj5jk =ar #0
j= j=

SO f;, cannot be both 1 on w;, and 0 oN wg41.-



Linear Freedom In GPTs

@ The probabilities in a GPT depend on the combination f,(w) = a - w
of a state and an effect. We can represent an effect by the row
vector a’ = (ay,a,,+,a,) and then a - w = a’ w is just matrix
multiplication.

® Let A be an invertible matrix, and let o’ = Aw, a’ = aTA™1. Then
al’ v =a’A 4w = a’w
® The probabilities are preserved under this fransformation, so if

follows that any two cones related by an invertible linear
transformation describe the same theory.

@ In particular, any simplex is equivalent to the probability simplex, so
they all describe classical probability theory.

® We say that a GPT is self-dual if its cone can be mapped to a self-
dual cone under a linear tfransformation.



3.v) Rebits

® Consider Q = the unit disc,

y
@ Liffing this to a cone gives

X
a (y) s.t.x? +y% <1,
1

® As you have/will show in Hwk 1, this cone is self dual.

X
( )S.T.x2+y2S1.

X
@ If we also impose a - (y) < 1 we get £(Q).
1



3.v) Rebits
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Another 3-dimensional Inner Product

Space

® Consider the set of 2 x 2 real symmetric matrices MT = M where
M, = My;.

@ This is a real vector space. In fact, it is an inner product space. In
Hwk 1, you prove that

n
(N,M) =Tr(NTM) = z N Mj,
jk=1
is an inner product on the n x n complex matrices where NT, defined
by N = Ni; is called the Hermitian adjoint of N.

@ Since we are dealing with real-valued matrices, NT = N7 in this
case, so the inner product is

n
(N,M) =Tr(NTM) = z - 1NjkM,-k
]’ =



Another 3-dimensional Inner Product
Space

@ The 2 x 2 real symmetric matrices are a 3-dimensional vector space,
since there are 3 parameters in the matrix.

(¢ b)

c b

® Since it is an inner product space, we can find an orthonormal
basis. You can check that a,/v2, 0, /V2, 0, /72 is such a basis, where

10 01 10
o=1=\y 1) =\ o) %27\ _1

a
® This means that instead of writing our rebit vectors in R3 as <b> we

C
can write then as 2 x 2 matrices % (aoy + boy + coy).



Rebiis in Mairix Space

@ Actually, since we have linear freedom in choosing our
representation, for the state cone, we normally use the mapping:

N\ 1
<b> — —(aoy + boy + coy)
c 2

i.e. we apply the linear tfransformation x - x/v/2 and then embed in
matrix space. To preserve probabilities, effect vectors will then get

multiplied by V2 before mapping to matrix space.

® We choose to embed our state space Q in the g4, 0, subspace, so a
normalized state is of the form

l(I + x0, +yo,) with x? +y% < 1.
2



A Panolpy of Vector Spaces

® We should be careful to note that we have now infroduced three
Inner product spaces, and we do not want to mix them up.

® We have the three dimensional vector space R3 that we originally
represented our rebit in. | will confinue to use bold for vectors x in this space,
xT for the corresponding dual vector and x - y for the inner product.

® We have the three dimension space of 2 x 2 maftrices. | will use capitals M for
matrices in this space, MT for the corresponding dual, and Tr(NTM) for their
inner product.

® We also have the two-dimensional vector space R? that the matrices act on.
Following quantum conventions, | use Dirac notation for this space:

X
e |x) = (x(l’) for vectors, (x| = (xq,x1) for dual vectors and (x|y) = xyyy + X1

for inner products.

(1) and |1) = (O) SO we can

® We also intfroduce the basis vectors |0) = 0 1

write any vector as |x) = x,|0) + x4 |1).



Hermifian Adjoints

® For an n x n complex matrix M, its Hermitian adjoint MT is given by
o g
Mjj, = My
® Forreal matrices we can use MT = M, where M},"{ = My;

® Taking the Hermitian adjoint reverses the order of products, i.e.
(MN)T = NTMT,

(MN)]' = (MN)k] EMkm mj zletmN;zj
— I VAl Y a
o ZMmkNj zN]mMmk NTMT)
m



Hermitian Malrices

® AN n x n complex matrix is Hermitian if MT = M.
o Forreal matrices we can use MT = M, where Mjj, = My;.
® A projection operator or projector P is a Hermitian matrix that also
satisfies P2 = P.
® The identity matrix I is a projector, since I, = 6 and I* = 1.

® An outer product is a matrix of the form |y){x| define to act via
(lxXyDlz) = [x){y]z)
where (y|z) is the inner product.
@ If |x) Is a unit vector ({(x|x) = 1) then |x){x| is a projector because

o) (e[ x ] =[x (x|



Eilgenvalues and Eigenvectors

® A vector |x) is an eigenvector of a matrix M if
M|x) = A|x),
where A is a scalar called an eigenvalue of M.
@ e.g. All vectors are eigenvectors of I, since I|x) = |x).
@ In general, more than one eigenvector may correspond to the

same eigenvalue. The eigenspace of an eigenvalue is the linear
subspace spanned by the corresponding eigenvectors.

@ If the eigenspace is one-dimensional, the eigenvalue is called
nondegenerate.

@ If the eigenspace has dimension > 2, the eigenvalue is called degenerate.



Elgenvalues/vectors of Hermitian
mairices

@ Theorem: All the eigenvalues of a Hermitian operator are real and
eigenvectors belonging to different eigenspaces are orthogonal.

@ A matrix for which all the eigenvalues are nondegenerate is called
a non-degenerate matrix.

® The eigenvectors of a non-degenerate Hermitian matrix form @
complete orthonormal basis.

® As aresult, we can write such a matrix as

M=) Al

where 4; are the eigenvalues and |x;) are the eigenvectors.



Elgenvalues/vectors of Hermitian
mairices

® To see why, note that if {|x;)} is a complete orthonormal basis then
any vector |x) can be wri’rfen as |x) = X;ajl|x;), and then

Ml.X') = 2 a]M|x]> = 2 a]/1]|x]) = 2 Ay /1]5]k|xk)

J J

],k
= 2 A Aj |5 )X | Xk ) = (2 Aj|xj><xf|> 2 | Xic)
J

Jik k
@ This has the following generalization:

© Theorem: The Spectral Theorem: Any Hermitian matrix can be
written as M = . 4;P;, where the 4; are distinct eigenvalues and the

P; are the projectors onto the corresponding eigenspaces, i.e.

Pj|xj) = |x;) for any vector in the eigenspace and P;[x) = 0 for vectors
orthogonal to the eigenspace.



Positive Mairices

® An n X n Hermitian matrix is called positive if
(x|M|x) = 0 for all vectors |x).
@ Theorem: A Hermitian maftrix M is positive iff its eigenvalues are > 0.

® Proof: Only if direction: Let |x) be an eigenvector of M with
eigenvalue A. Then,

(x|M|x) = Ax|x) = Ax|x)

® By positivity (x|M|x) = 0, so A{x|x) and hence A1 = 0 by positivity of the
inner product.

@ If direction: M can be written in its spectral decomposition as
M=) L)
J

where 4; are the eigenvalues and |x;) the eigenvectors of M.



Positive Mairices

o If we assume that 4; = 0 and let |x) be any vector then

(x|M|x) = (x| (Z /1]-|x,-)(xj|> Ix) = ZAj<x|xj><xj|x> _ Z;tj|(x,-|x)|2 >0
; ; ;



Properties of the Rebii Mairix
Representation

@ A normalized state in our mcf’rrix representation is of the form
p =7 +x01+y03)
@ This is called a density matrix in guantum mechanics.

;) and find the eigenvalues and

1/1+y X
h= 5( x 11— )
y
® The characteristic equation is
1+y—-21

2
X 1—y—2A

® Let’s define the vectorn = (
eigenvectors of p.

=0 Or4r? —41+1—-x%—-y2=0.



Properties of the Rebii Mairix

Representaiion
® The solution of this qucljdro’ric equation is1
— 2 2) — _
de =5 (1237 +y?) =S £l

® Since 0 < ||n|| = \/xz + y2 < 1, the eigenvalues safisfy 0 < 1. < 1,50 p
IS a positive matrix.

©@ AlsoA, +1_=1,50 Tr(p) = 1 because the frace is basis
Independent.

@ In this way, we can get any positive symmetric 2 x 2 matrix that
saftisfies Tr(p) = 1, so it is equivalent to define a (normalized) density
operator as a positive symmetric 2 X 2 matrix that satisfies Tr(p) = 1.



Properties of the Rebii Mairix
Representation

@ To find the eigenvectors, let’s switch to polar coordinates
X =rsinf y = rcosf

since then ||n|| = r.

® In these coordinates, we have
D= (1 + rcos@ rsinf )

rsinf 1 —rcos6
@ It s now straightforward to check that the two orthogonal unit vectors

cosg sing
In+) = 5 | =cos> |0)+51n 1) and [n—) = g | =sin- |O)—cos—|1)
sin— —Cos -

are the eigenvectors with p|n £) = 14 |n#).



Pure Rebit States

o If the state is pure then ||n|| = /x2+y2=1,501, =1and 1_ =0. As
a result, the density operator is
p = n+)n+|
@ This is Just the projector onto the one-dimensional subspace
spanned by [n +) = cosg |0) + sing |1).

@ In quantum mechanics, we often use the vector |n+) to represent @
pure state rather than the projector |n+)Xn + |. This is just a matter of
convenience.

® The space of



