Quantum Foundations Lecture 5

February 12, 2018 Dr. Matthew Leifer leifer@chapman.edu HSC112

Exannple: Efiects of the Probability Simplex

- The extreme points of the 2D probability simplex are $\binom{1}{0}$ and $\binom{0}{1}$. The dual cone consists of vectors $\binom{a_{1}}{a_{2}}$ such that

$$
\binom{a_{1}}{a_{2}} \cdot\binom{1}{0} \geq 0 \text { or } a_{1} \geq 0 \text { and }\binom{a_{1}}{a_{2}} \cdot\binom{0}{1} \geq 0 \text { or } a_{2} \geq 0
$$

- This is the same as the cone generated by $\binom{1}{0}$ and $\binom{0}{1}$, so the 2D probability cone is self-dual.
- To get the space of effects, we have to add the conditions:

$$
\binom{a_{1}}{a_{2}} \cdot\binom{1}{0} \leq 1 \text { or } a_{1} \leq 1 \text { and }\binom{a_{1}}{a_{2}} \cdot\binom{0}{1} \leq 1 \text { or } a_{2} \leq 1
$$

Example: Efilects of the Probabilility Simplex

Example: Effects of the gloit/squit

- The extreme points of the gbit are $\binom{-1}{-1},\binom{1}{-1},\binom{-1}{1},\binom{1}{1}$, but we have to go one dimension higher for the cone, so we use:

$$
\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

\odot The dual cone consists of vectors $\boldsymbol{a}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$, which satisfy:

$$
-a_{1}-a_{2}+a_{3} \geq 0, a_{1}-a_{2}+a_{3} \geq 0,-a_{1}+a_{2}+a_{3} \geq 0, a_{1}+a_{2}+a_{3} \geq 0
$$

Example: Effiects of the glit/squift

$C(\Omega)$

$C^{*}(\Omega)$

Example: Effiects of the glbit/squit

- To get the space of effects, we also have to impose:

$$
\begin{aligned}
-a_{1}-a_{2}+a_{3} & \leq 1 \\
a_{1}-a_{2}+a_{3} & \leq 1 \\
-a_{1}+a_{2}+a_{3} & \leq 1 \\
a_{1}+a_{2}+a_{3} & \leq 1
\end{aligned}
$$

observables

\odot An observable is a set $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ of effects, such that

$$
\sum_{j=1}^{n} f_{j}(\omega)=1 \text { for all } \omega \in \Omega
$$

- Alternatively, it is a set of effects such that

$$
\sum_{j=1}^{n} f_{j}=u
$$

- We can always define a two-outcome observable from an effect f as $\{f, u-f\}$.
- Observables represent the full set of mathematical objects that can conceivably represent a well-defined measurement.

Schulitz Theorem

\odot Theorem: Any closed convex subset of \mathbb{R}^{n} is the state space of a test space.
๑ F. W. Schultz, Journal of Combinatorial Theory A vol. 17, p. 317 (1974)

- Schultz actually proved something more general, but this is the case we need here.
- Given this, we can dispense with the test space framework and just work with states and effects.

Generalized Probabilistic Theories (GPTs)

- A (finite dimensional)Generalized Probabilistic Theory (GPT) consists of
- A closed convex set Ω called the state space.
\odot The cone $C(\Omega)$ formed by lifting Ω.
- Alternatively, we could start with the cone, define a unit effect u and let

$$
\Omega=\{\omega \in C \mid u(\omega)=1\} .
$$

- A subset of the effects $\mathcal{E}(\Omega)$ representing the allowed measurement outcomes in the theory.
- The observables formed from this subset.
- A theory satisfies the no-restriction hypothesis if we allow all effects as measurement outcomes. We will assume this here, but there are interesting GPTs that do not satisfy it.

Distinguishability in GPTs

- A set of states $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right\}$ is distinguishable in a GPT if there exists an observable $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ such that

$$
f_{j}\left(\omega_{k}\right)=\delta_{j k}
$$

\odot Theorem: In a simplex the set of pure states is distinguishable. In any other GPT there exists a set of pure states that is not distinguishable.
\odot Proof: In the cone generated by the simplex, the n pure states $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right\}$ are linearly independent, so form a basis for \mathbb{R}^{n}.
\odot Any basis has a dual basis $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ such that $f_{j}\left(\omega_{k}\right)=\delta_{j k}$

- Proof: Since the ω_{k} 's are linearly independent, we can independently define the value of f_{j} on each of them. The resulting set is linearly independent because it is impossible to reconstruct $f_{j}\left(\omega_{j}\right)=1$ by a linear combination of f_{k} 's that are all zero on ω_{j}.

Distinguishabillity in GPTs

- It remains to prove that $\sum_{j=1}^{n} f_{j}=u$. Since any ω can be written as a convex combination $\omega=\sum_{k=1}^{n} \alpha_{k} \omega_{k}$, we have

$$
\begin{gathered}
\left(\sum_{j=1}^{n} f_{j}\right)(\omega)=\sum_{j, k=1}^{n} \alpha_{k} f_{j}\left(\omega_{k}\right)=\sum_{j, k=1}^{n} \alpha_{k} \delta_{j k} \\
=\sum_{j=1}^{n} \alpha_{j}=1=u(\omega)
\end{gathered}
$$

- For the converse, if Ω is not a simplex then the set of pure states is linearly dependent in the lifted cone. Let $\left\{\omega_{1}, \cdots, \omega_{d}\right\}$ be the largest linearly independent subset. Then $\omega_{d+1}=\sum_{j=1}^{d} a_{j} \omega_{j}$ and suppose a_{k} is nonzero. Then,

$$
f_{k}\left(\omega_{d+1}\right)=\sum_{j=1}^{d} a_{j} f_{k}\left(\omega_{j}\right)=\sum_{j=1}^{d} a_{j} \delta_{j k}=a_{k} \neq 0
$$

so f_{k} cannot be both 1 on ω_{k} and 0 on ω_{d+1}.

Linear Freedom In GPTs

- The probabilities in a GPT depend on the combination $f_{\boldsymbol{a}}(\omega)=\boldsymbol{a} \cdot \omega$ of a state and an effect. We can represent an effect by the row vector $\boldsymbol{a}^{T}=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and then $\boldsymbol{a} \cdot \omega=\boldsymbol{a}^{T} \omega$ is just matrix multiplication.
- Let A be an invertible matrix, and let $\omega^{\prime}=A \omega, \boldsymbol{a}^{T^{\prime}}=\boldsymbol{a}^{T} A^{-1}$. Then

$$
\boldsymbol{a}^{T^{\prime}} \omega^{\prime}=\boldsymbol{a}^{T} A^{-1} A \omega=\boldsymbol{a}^{T} \omega
$$

- The probabilities are preserved under this transformation, so it follows that any two cones related by an invertible linear transformation describe the same theory.
- In particular, any simplex is equivalent to the probability simplex, so they all describe classical probability theory.
- We say that a GPT is self-dual if its cone can be mapped to a selfdual cone under a linear transformation.

3.v) Rebits

- Consider $\Omega=$ the unit disc,

$$
\binom{x}{y} \text { s.t. } x^{2}+y^{2} \leq 1
$$

- Lifting this to a cone gives

$$
\alpha\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \text { s.t. } x^{2}+y^{2} \leq 1
$$

- As you have/will show in Hwk 1, this cone is self dual.
- If we also impose $\boldsymbol{a} \cdot\left(\begin{array}{l}x \\ y \\ 1\end{array}\right) \leq 1$ we get $\mathcal{E}(\Omega)$.

3.v) Rebiins

Another 3-dimensional Inner Product

Space

© Consider the set of 2×2 real symmetric matrices $M^{T}=M$ where $M_{j k}^{T}=M_{k j}$.

- This is a real vector space. In fact, it is an inner product space. In Hwk 1, you prove that

$$
(N, M)=\operatorname{Tr}\left(N^{\dagger} M\right)=\sum_{j, k=1}^{n} N_{j k}^{*} M_{j k}
$$

is an inner product on the $n \times n$ complex matrices where N^{\dagger}, defined by $N_{j k}^{\dagger}=N_{k j}^{*}$ is called the Hermitian adjoint of N.

- Since we are dealing with real-valued matrices, $N^{\dagger}=N^{T}$ in this case, so the inner product is

$$
(N, M)=\operatorname{Tr}\left(N^{T} M\right)=\sum_{j, k=1}^{n} N_{j k} M_{j k}
$$

Another 3-dimensional Inner Product

Space

- The 2×2 real symmetric matrices are a 3 -dimensional vector space, since there are 3 parameters in the matrix.

$$
\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)
$$

- Since it is an inner product space, we can find an orthonormal basis. You can check that $\sigma_{0} / \sqrt{2}, \sigma_{1} / \sqrt{2}, \sigma_{2} / \sqrt{2}$ is such a basis, where

$$
\sigma_{0}=I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- This means that instead of writing our rebit vectors in \mathbb{R}^{3} as $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ we can write then as 2×2 matrices $\frac{1}{\sqrt{2}}\left(a \sigma_{0}+b \sigma_{1}+c \sigma_{2}\right)$.

Rebilts in Manrix Space

- Actually, since we have linear freedom in choosing our representation, for the state cone, we normally use the mapping:

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \rightarrow \frac{1}{2}\left(a \sigma_{0}+b \sigma_{1}+c \sigma_{2}\right)
$$

i.e. we apply the linear transformation $\boldsymbol{x} \rightarrow \boldsymbol{x} / \sqrt{2}$ and then embed in matrix space. To preserve probabilities, effect vectors will then get multiplied by $\sqrt{2}$ before mapping to matrix space.

- We choose to embed our state space Ω in the σ_{1}, σ_{2} subspace, so a normalized state is of the form

$$
\frac{1}{2}\left(I+x \sigma_{1}+y \sigma_{2}\right) \quad \text { with } \quad x^{2}+y^{2} \leq 1
$$

A Panolpy of Vector Spaces

- We should be careful to note that we have now introduced three inner product spaces, and we do not want to mix them up.
- We have the three dimensional vector space \mathbb{R}^{3} that we originally represented our rebit in. I will continue to use bold for vectors x in this space, \boldsymbol{x}^{T} for the corresponding dual vector and $\boldsymbol{x} \cdot \boldsymbol{y}$ for the inner product.
- We have the three dimension space of 2×2 matrices. I will use capitals M for matrices in this space, M^{T} for the corresponding dual, and $\operatorname{Tr}\left(N^{T} M\right)$ for their inner product.
- We also have the two-dimensional vector space \mathbb{R}^{2} that the matrices act on. Following quantum conventions, I use Dirac notation for this space:
$\odot|x\rangle=\binom{x_{0}}{x_{1}}$ for vectors, $\langle x|=\left(x_{0}, x_{1}\right)$ for dual vectors and $\langle x \mid y\rangle=x_{0} y_{0}+x_{1} y_{1}$ for inner products.
- We also introduce the basis vectors $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$, so we can write any vector as $|x\rangle=x_{0}|0\rangle+x_{1}|1\rangle$.

Hermifilan Adjoints

\odot For an $n \times n$ complex matrix M, its Hermitian adjoint M^{\dagger} is given by

$$
M_{j k}^{\dagger}=M_{k j}^{*}
$$

- For real matrices we can use $M^{T}=M$, where $M_{j k}^{T}=M_{k j}$
- Taking the Hermitian adjoint reverses the order of products, i.e. $(M N)^{\dagger}=N^{\dagger} M^{\dagger}$.

$$
\begin{gathered}
(M N)_{j k}^{\dagger}=(M N)_{k j}^{*}=\left(\sum_{m} M_{k m} N_{m j}\right)^{*}=\sum_{m} M_{k m}^{*} N_{m j}^{*} \\
\quad=\sum_{m} M_{m k}^{\dagger} N_{j m}^{\dagger}=\sum_{m} N_{j m}^{\dagger} M_{m k}^{\dagger}=\left(N^{\dagger} M^{\dagger}\right)_{j k}
\end{gathered}
$$

Hermifilan Matrices

- An $n \times n$ complex matrix is Hermitian if $M^{\dagger}=M$.
- For real matrices we can use $M^{T}=M$, where $M_{j k}^{T}=M_{k j}$.
- A projection operator or projector P is a Hermitian matrix that also satisfies $P^{2}=P$.
- The identity matrix I is a projector, since $I_{j k}=\delta_{j k}$ and $I^{2}=I$.
- An outer product is a matrix of the form $|y\rangle\langle x|$ define to act via

$$
(|x\rangle\langle y|)|z\rangle=|x\rangle\langle y \mid z\rangle
$$

where $\langle y \mid z\rangle$ is the inner product.

- If $|x\rangle$ is a unit vector $(\langle x \mid x\rangle=1)$ then $|x\rangle\langle x|$ is a projector because

$$
|x\rangle\langle x \mid x\rangle\langle x|=|x\rangle\langle x|
$$

Eigenvalues and Eigenvectors

- A vector $|x\rangle$ is an eigenvector of a matrix M if

$$
M|x\rangle=\lambda|x\rangle
$$

where λ is a scalar called an eigenvalue of M.

- e.g. All vectors are eigenvectors of I, since $I|x\rangle=|x\rangle$.
- In general, more than one eigenvector may correspond to the same eigenvalue. The eigenspace of an eigenvalue is the linear subspace spanned by the corresponding eigenvectors.
- If the eigenspace is one-dimensional, the eigenvalue is called nondegenerate.
- If the eigenspace has dimension ≥ 2, the eigenvalue is called degenerate.

Eigenvalues/vectors of Hermitian mafrices

- Theorem: All the eigenvalues of a Hermitian operator are real and eigenvectors belonging to different eigenspaces are orthogonal.
- A matrix for which all the eigenvalues are nondegenerate is called a non-degenerate matrix.
- The eigenvectors of a non-degenerate Hermitian matrix form a complete orthonormal basis.
- As a result, we can write such a matrix as

$$
M=\sum_{n} \lambda_{n}\left|x_{n}\right\rangle\left\langle x_{n}\right|
$$

where λ_{j} are the eigenvalues and $\left|x_{j}\right\rangle$ are the eigenvectors.

Eigenvalues/vectors of Hermition motrices

- To see why, note that if $\left\{\left|x_{j}\right\rangle\right\}$ is a complete orthonormal basis then any vector $|x\rangle$ can be written as $|x\rangle=\sum_{j} a_{j}\left|x_{j}\right\rangle$, and then

$$
\begin{aligned}
& M|x\rangle=\sum_{j} a_{j} M\left|x_{j}\right\rangle=\sum_{j} a_{j} \lambda_{j}\left|x_{j}\right\rangle=\sum_{j, k} a_{k} \lambda_{j} \delta_{j k}\left|x_{k}\right\rangle \\
& =\sum_{j, k} a_{k} \lambda_{j}\left|x_{j}\right\rangle\left\langle x_{j} \mid x_{k}\right\rangle=\left(\sum_{j} \lambda_{j}\left|x_{j}\right\rangle\left\langle x_{j}\right|\right)\left(\sum_{k} a_{k}\left|x_{k}\right\rangle\right)
\end{aligned}
$$

- This has the following generalization:
\odot Theorem: The Spectral Theorem: Any Hermitian matrix can be written as $M=\sum_{j} \lambda_{j} P_{j}$, where the λ_{j} are distinct eigenvalues and the P_{j} are the projectors onto the corresponding eigenspaces, i.e.
$P_{j}\left|x_{j}\right\rangle=\left|x_{j}\right\rangle$ for any vector in the eigenspace and $P_{j}|x\rangle=0$ for vectors orthogonal to the eigenspace.

Positive Malirices

- An $n \times n$ Hermitian matrix is called positive if

$$
\langle x| M|x\rangle \geq 0 \text { for all vectors }|x\rangle .
$$

- Theorem: A Hermitian matrix M is positive iff its eigenvalues are ≥ 0.
- Proof: Only if direction: Let $|x\rangle$ be an eigenvector of M with eigenvalue λ. Then,

$$
\langle x| M|x\rangle=\lambda\langle x \mid x\rangle=\lambda\langle x \mid x\rangle
$$

- By positivity $\langle x| M|x\rangle \geq 0$, so $\lambda\langle x \mid x\rangle$ and hence $\lambda \geq 0$ by positivity of the inner product.
- If direction: M can be written in its spectral decomposition as

$$
M=\sum_{j} \lambda_{j}\left|x_{j}\right\rangle\left\langle x_{j}\right|
$$

where λ_{j} are the eigenvalues and $\left|x_{j}\right\rangle$ the eigenvectors of M.

Posilive Matrices

- If we assume that $\lambda_{j} \geq 0$ and let $|x\rangle$ be any vector then

$$
\langle x| M|x\rangle=\langle x|\left(\sum_{j} \lambda_{j}\left|x_{j}\right\rangle\left\langle x_{j}\right|\right)|x\rangle=\sum_{j} \lambda_{j}\left\langle x \mid x_{j}\right\rangle\left\langle x_{j} \mid x\right\rangle=\sum_{j} \lambda_{j}\left|\left\langle x_{j} \mid x\right\rangle\right|^{2} \geq 0
$$

Properties of the Rebit Matrix Representotion

- A normalized state in our matrix representation is of the form

$$
\rho=\frac{1}{2}\left(I+x \sigma_{1}+y \sigma_{2}\right)
$$

\odot This is called a density matrix in quantum mechanics.

- Let's define the vector $\boldsymbol{n}=\binom{x}{y}$ and find the eigenvalues and eigenvectors of ρ.

$$
\rho=\frac{1}{2}\left(\begin{array}{cc}
1+y & x \\
x & 1-y
\end{array}\right)
$$

- The characteristic equation is

$$
\left|\begin{array}{cc}
1+y-2 \lambda & x \\
x & 1-y-2 \lambda
\end{array}\right|=0 \text { or } 4 \lambda^{2}-4 \lambda+1-x^{2}-y^{2}=0
$$

Properties of the Rebin Matrix Representotion

- The solution of this quadratic equation is

$$
\lambda_{ \pm}=\frac{1}{2}\left(1 \pm \sqrt{x^{2}+y^{2}}\right)=\frac{1}{2}(1 \pm\|\boldsymbol{n}\|)
$$

© Since $0 \leq\|\boldsymbol{n}\|=\sqrt{x^{2}+y^{2}} \leq 1$, the eigenvalues satisfy $0 \leq \lambda_{ \pm} \leq 1$, so ρ is a positive matrix.
© Also $\lambda_{+}+\lambda_{-}=1$, so $\operatorname{Tr}(\rho)=1$ because the trace is basis independent.

- In this way, we can get any positive symmetric 2×2 matrix that satisfies $\operatorname{Tr}(\rho)=1$, so it is equivalent to define a (normalized) density operator as a positive symmetric 2×2 matrix that satisfies $\operatorname{Tr}(\rho)=1$.

Propenties of the Rebil Manix Representation

- To find the eigenvectors, let's switch to polar coordinates

$$
x=r \sin \theta \quad y=r \cos \theta
$$

since then $\|\boldsymbol{n}\|=r$.

- In these coordinates, we have

$$
\rho=\left(\begin{array}{cc}
1+r \cos \theta & r \sin \theta \\
r \sin \theta & 1-r \cos \theta
\end{array}\right)
$$

- It is now straightforward to check that the two orthogonal unit vectors

$$
|n+\rangle=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}=\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2}|1\rangle \text { and } \quad|n-\rangle=\binom{\sin \frac{\theta}{2}}{-\cos \frac{\theta}{2}}=\sin \frac{\theta}{2}|0\rangle-\cos \frac{\theta}{2}|1\rangle
$$

are the eigenvectors with $\rho|n \pm\rangle=\lambda_{ \pm}|n \pm\rangle$.

Pure Rebit States

\odot If the state is pure then $\|\boldsymbol{n}\|=\sqrt{x^{2}+y^{2}}=1$, so $\lambda_{+}=1$ and $\lambda_{-}=0$. As a result, the density operator is

$$
\rho=|n+\rangle\langle n+|
$$

- This is just the projector onto the one-dimensional subspace spanned by $|n+\rangle=\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2}|1\rangle$.
- In quantum mechanics, we often use the vector $|n+\rangle$ to represent a pure state rather than the projector $|n+\rangle\langle n+|$. This is just a matter of convenience.
- The space of

