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 The extreme points of the 2D probability simplex are 
1
0

and 
0
1

.  

The dual cone consists of vectors 
𝑎1
𝑎2

such that

𝑎1
𝑎2

⋅
1
0

≥ 0 or 𝑎1 ≥ 0 and   
𝑎1
𝑎2

⋅
0
1

≥ 0 or 𝑎2 ≥ 0

 This is the same as the cone generated by 
1
0

and 
0
1

, so the 2D 

probability cone is self-dual.

 To get the space of effects, we have to add the conditions:

𝑎1
𝑎2

⋅
1
0

≤ 1 or 𝑎1 ≤ 1 and   
𝑎1
𝑎2

⋅
0
1

≤ 1 or 𝑎2 ≤ 1





 The extreme points of the gbit are 
−1
−1

,
1
−1

,
−1
1

,
1
1

, but we 

have to go one dimension higher for the cone, so we use:

−1
−1
1

,
1
−1
1

,
−1
1
1

,
1
1
1

 The dual cone consists of vectors 𝒂 =
𝑎1
𝑎2
𝑎3

, which satisfy:

−𝑎1 − 𝑎2 + 𝑎3≥ 0, 𝑎1 − 𝑎2 + 𝑎3 ≥ 0, −𝑎1 + 𝑎2 + 𝑎3 ≥ 0, 𝑎1 + 𝑎2 + 𝑎3 ≥ 0.



𝐶(Ω) 𝐶∗(Ω)

Ω



 To get the space of effects, we also have to impose:

−𝑎1 − 𝑎2 + 𝑎3≤ 1

𝑎1 − 𝑎2 + 𝑎3 ≤ 1

−𝑎1 + 𝑎2 + 𝑎3 ≤ 1, 

𝑎1 + 𝑎2 + 𝑎3 ≤ 1.

(Ω)



An observable is a set {𝑓1, 𝑓2, ⋯ , 𝑓𝑛} of effects, such that

σ𝑗=1
𝑛 𝑓𝑗 𝜔 = 1 for all 𝜔 ∈ Ω

Alternatively, it is a set of effects such that

σ𝑗=1
𝑛 𝑓𝑗 = 𝑢.

We can always define a two-outcome observable from 
an effect 𝑓 as {𝑓, 𝑢 − 𝑓}.

Observables represent the full set of mathematical 
objects that can conceivably represent a well-defined 
measurement.



 Theorem: Any closed convex subset of ℝ𝑛 is the state 
space of a test space.

 F. W. Schultz, Journal of Combinatorial Theory A vol. 17, p. 317 
(1974)

 Schultz actually proved something more general, but this is the 
case we need here.

Given this, we can dispense with the test space 
framework and just work with states and effects.



 A (finite dimensional)Generalized Probabilistic Theory (GPT) 
consists of
 A closed convex set Ω called the state space.

 The cone 𝐶(Ω) formed by lifting Ω.
 Alternatively, we could start with the cone, define a unit effect 𝑢 and let

Ω = {𝜔 ∈ 𝐶|𝑢 𝜔 = 1}.

 A subset of the effects (Ω) representing the allowed measurement 
outcomes in the theory.

 The observables formed from this subset.

 A theory satisfies the no-restriction hypothesis if we allow all 
effects as measurement outcomes.  We will assume this here, 
but there are interesting GPTs that do not satisfy it.



 A set of states {𝜔1, 𝜔2, ⋯ , 𝜔𝑛} is distinguishable in a GPT if there exists 
an observable {𝑓1, 𝑓2, ⋯ , 𝑓𝑛} such that

𝑓𝑗 𝜔𝑘 = 𝛿𝑗𝑘

 Theorem: In a simplex the set of pure states is distinguishable.  In any 
other GPT there exists a set of pure states that is not distinguishable.

 Proof: In the cone generated by the simplex, the 𝑛 pure states 
{𝜔1, 𝜔2, ⋯ , 𝜔𝑛} are linearly independent, so form a basis for ℝ𝑛.

 Any basis has a dual basis {𝑓1, 𝑓2, ⋯ , 𝑓𝑛} such that 𝑓𝑗 𝜔𝑘 = 𝛿𝑗𝑘
 Proof: Since the 𝜔𝑘’s are linearly independent, we can independently define 

the value of 𝑓𝑗 on each of them.  The resulting set is linearly independent 

because it is impossible to reconstruct 𝑓𝑗 𝜔𝑗 = 1 by a linear combination of 
𝑓𝑘’s that are all zero on 𝜔𝑗.



 It remains to prove that σ𝑗=1
𝑛 𝑓𝑗 = 𝑢 .  Since any 𝜔 can be written as a 

convex combination 𝜔 = σ𝑘=1
𝑛 𝛼𝑘𝜔𝑘, we have


𝑗=1

𝑛

𝑓𝑗 𝜔 =
𝑗,𝑘=1

𝑛

𝛼𝑘𝑓𝑗(𝜔𝑘) =
𝑗,𝑘=1

𝑛

𝛼𝑘𝛿𝑗𝑘

=
𝑗=1

𝑛

𝛼𝑗 = 1 = 𝑢 𝜔 .

 For the converse, if Ω is not a simplex then the set of pure states is linearly 
dependent in the lifted cone.  Let {𝜔1, ⋯ , 𝜔𝑑} be the largest linearly 
independent subset.  Then 𝜔𝑑+1 = σ𝑗=1

𝑑 𝑎𝑗𝜔𝑗 and suppose 𝑎𝑘 is nonzero.  
Then,

𝑓𝑘 𝜔𝑑+1 =
𝑗=1

𝑑

𝑎𝑗𝑓𝑘(𝜔𝑗) =
𝑗=1

𝑑

𝑎𝑗𝛿𝑗𝑘 = 𝑎𝑘 ≠ 0

so 𝑓𝑘 cannot be both 1 on 𝜔𝑘 and 0 on 𝜔𝑑+1.



 The probabilities in a GPT depend on the combination 𝑓𝒂 𝜔 = 𝒂 ⋅ 𝜔
of a state and an effect.  We can represent an effect by the row 
vector 𝒂𝑇 = (𝑎1, 𝑎2, ⋯ , 𝑎𝑛) and then 𝒂 ⋅ 𝜔 = 𝒂𝑇𝜔 is just matrix 
multiplication.

 Let 𝐴 be an invertible matrix, and let 𝜔′ = 𝐴𝜔, 𝒂𝑇
′
= 𝒂𝑇𝐴−1.  Then

𝒂𝑇
′
𝜔′ = 𝒂𝑇𝐴−1𝐴𝜔 = 𝒂𝑇𝜔

 The probabilities are preserved under this transformation, so it 
follows that any two cones related by an invertible linear 
transformation describe the same theory.

 In particular, any simplex is equivalent to the probability simplex, so 
they all describe classical probability theory.

 We say that a GPT is self-dual if its cone can be mapped to a self-
dual cone under a linear transformation.



 Consider Ω = the unit disc, 

𝑥
𝑦 s.t. 𝑥2 + 𝑦2 ≤ 1.

 Lifting this to a cone gives 

𝛼
𝑥
𝑦
1

s.t. 𝑥2 + 𝑦2 ≤ 1.

 As you have/will show in Hwk 1, this cone is self dual.

 If we also impose 𝒂 ⋅
𝑥
𝑦
1

≤ 1 we get (Ω).



Ω

𝐶(Ω) 𝐶∗(Ω)
(Ω)



 Consider the set of 2 × 2 real symmetric matrices 𝑀𝑇 = 𝑀 where 
𝑀𝑗𝑘

𝑇 = 𝑀𝑘𝑗.

 This is a real vector space.  In fact, it is an inner product space.  In 
Hwk 1, you prove that

𝑁,𝑀 = Tr 𝑁†𝑀 =
𝑗,𝑘=1

𝑛

𝑁𝑗𝑘
∗ 𝑀𝑗𝑘

is an inner product on the 𝑛 × 𝑛 complex matrices where 𝑁†, defined 
by 𝑁𝑗𝑘

† = 𝑁𝑘𝑗
∗ is called the Hermitian adjoint of 𝑁.

 Since we are dealing with real-valued matrices, 𝑁† = 𝑁𝑇 in this 
case, so the inner product is

𝑁,𝑀 = Tr 𝑁𝑇𝑀 =
𝑗,𝑘=1

𝑛

𝑁𝑗𝑘𝑀𝑗𝑘



 The 2 × 2 real symmetric matrices are a 3-dimensional vector space, 
since there are 3 parameters in the matrix.

𝑎 𝑐
𝑐 𝑏

 Since it is an inner product space, we can find an orthonormal 
basis.  You can check that 𝜎0/ 2, 𝜎1/ 2, 𝜎2/ 2 is such a basis, where

𝜎0 = 𝐼 =
1 0
0 1

, 𝜎1 =
0 1
1 0

, 𝜎2 =
1 0
0 −1

 This means that instead of writing our rebit vectors in ℝ3 as 

𝑎
𝑏
𝑐

we 

can write then as 2 × 2 matrices 
1

2
𝑎𝜎0 + 𝑏𝜎1 + 𝑐𝜎2 .



 Actually, since we have linear freedom in choosing our 
representation, for the state cone, we normally use the mapping:

𝑎
𝑏
𝑐

→
1

2
𝑎𝜎0 + 𝑏𝜎1 + 𝑐𝜎2

i.e. we apply the linear transformation 𝒙 → 𝒙/ 2 and then embed in 
matrix space.  To preserve probabilities, effect vectors will then get 
multiplied by 2 before mapping to matrix space.

 We choose to embed our state space Ω in the 𝜎1, 𝜎2 subspace, so a 
normalized state is of the form

1

2
𝐼 + 𝑥𝜎1 + 𝑦𝜎2 with    𝑥2 + 𝑦2 ≤ 1.



 We should be careful to note that we have now introduced three 
inner product spaces, and we do not want to mix them up.

 We have the three dimensional vector space ℝ3 that we originally 
represented our rebit in.  I will continue to use bold for vectors 𝒙 in this space, 
𝒙𝑇 for the corresponding dual vector and 𝒙 ⋅ 𝒚 for the inner product.

 We have the three dimension space of 2 × 2 matrices.  I will use capitals 𝑀 for 
matrices in this space, 𝑀𝑇 for the corresponding dual, and Tr 𝑁𝑇𝑀 for their 
inner product.

 We also have the two-dimensional vector space ℝ2 that the matrices act on.  
Following quantum conventions, I use Dirac notation for this space:

 𝑥 =
𝑥0
𝑥1

for vectors, ⟨𝑥| = (𝑥0, 𝑥1) for dual vectors and 𝑥 𝑦 = 𝑥0𝑦0 + 𝑥1𝑦1

for inner products.

 We also introduce the basis vectors 0 =
1
0

and 1 =
0
1

, so we can 

write any vector as 𝑥 = 𝑥0 0 + 𝑥1|1⟩.



 For an 𝑛 × 𝑛 complex matrix 𝑀, its Hermitian adjoint 𝑀† is given by

𝑀𝑗𝑘
† = 𝑀𝑘𝑗

∗

 For real matrices we can use 𝑀𝑇 = 𝑀, where 𝑀𝑗𝑘
𝑇 = 𝑀𝑘𝑗

 Taking the Hermitian adjoint reverses the order of products, i.e. 
𝑀𝑁 † = 𝑁†𝑀†.

𝑀𝑁 𝑗𝑘
† = 𝑀𝑁 𝑘𝑗

∗ = 

𝑚

𝑀𝑘𝑚𝑁𝑚𝑗

∗

=

𝑚

𝑀𝑘𝑚
∗ 𝑁𝑚𝑗

∗

=

𝑚

𝑀𝑚𝑘
† 𝑁𝑗𝑚

† =

𝑚

𝑁𝑗𝑚
† 𝑀𝑚𝑘

† = 𝑁†𝑀†
𝑗𝑘



 An 𝑛 × 𝑛 complex matrix is Hermitian if 𝑀† = 𝑀.

 For real matrices we can use 𝑀𝑇 = 𝑀, where 𝑀𝑗𝑘
𝑇 = 𝑀𝑘𝑗.

 A projection operator or projector 𝑃 is a Hermitian matrix that also 
satisfies 𝑃2 = 𝑃.

 The identity matrix 𝐼 is a projector, since 𝐼𝑗𝑘 = 𝛿𝑗𝑘 and 𝐼2 = 𝐼.

 An outer product is a matrix of the form |𝑦⟩⟨𝑥| define to act via
|𝑥⟩⟨𝑦| 𝑧 = |𝑥⟩⟨𝑦|𝑧⟩

where ⟨𝑦|𝑧⟩ is the inner product.

 If |𝑥⟩ is a unit vector ( 𝑥 𝑥 = 1) then |𝑥⟩⟨𝑥| is a projector because
|𝑥⟩⟨𝑥|𝑥⟩⟨𝑥| = |𝑥⟩⟨𝑥|



 A vector |𝑥⟩ is an eigenvector of a matrix 𝑀 if

𝑀 𝑥 = 𝜆|𝑥⟩,

where 𝜆 is a scalar called an eigenvalue of 𝑀.

 e.g. All vectors are eigenvectors of 𝐼, since 𝐼 𝑥 = |𝑥⟩.

 In general, more than one eigenvector may correspond to the 
same eigenvalue.  The eigenspace of an eigenvalue is the linear 
subspace spanned by the corresponding eigenvectors.

 If the eigenspace is one-dimensional, the eigenvalue is called 
nondegenerate.

 If the eigenspace has dimension ≥ 2, the eigenvalue is called degenerate.



 Theorem: All the eigenvalues of a Hermitian operator are real and 
eigenvectors belonging to different eigenspaces are orthogonal.

 A matrix for which all the eigenvalues are nondegenerate is called 
a non-degenerate matrix.

 The eigenvectors of a non-degenerate Hermitian matrix form a 
complete orthonormal basis.

 As a result, we can write such a matrix as

𝑀 =

𝑛

𝜆𝑛|𝑥𝑛⟩⟨𝑥𝑛|

where 𝜆𝑗 are the eigenvalues and |𝑥𝑗⟩ are the eigenvectors.



 To see why, note that if {|𝑥𝑗⟩} is a complete orthonormal basis then 
any vector |𝑥⟩ can be written as 𝑥 = σ𝑗 𝑎𝑗|𝑥𝑗⟩, and then

𝑀 𝑥 =

𝑗

𝑎𝑗𝑀 𝑥𝑗 =

𝑗

𝑎𝑗𝜆𝑗|𝑥𝑗⟩ =

𝑗,𝑘

𝑎𝑘 𝜆𝑗𝛿𝑗𝑘|𝑥𝑘⟩

=

𝑗,𝑘

𝑎𝑘𝜆𝑗|𝑥𝑗⟩⟨𝑥𝑗| 𝑥𝑘⟩ = 

𝑗

𝜆𝑗|𝑥𝑗⟩⟨𝑥𝑗| 

𝑘

𝑎𝑘|𝑥𝑘⟩

 This has the following generalization:

 Theorem: The Spectral Theorem: Any Hermitian matrix can be 
written as 𝑀 = σ𝑗 𝜆𝑗𝑃𝑗, where the 𝜆𝑗 are distinct eigenvalues and the 
𝑃𝑗 are the projectors onto the corresponding eigenspaces, i.e.

𝑃𝑗 𝑥𝑗 = |𝑥𝑗⟩ for any vector in the eigenspace and 𝑃𝑗 𝑥 = 0 for vectors 
orthogonal to the eigenspace.



 An 𝑛 × 𝑛 Hermitian matrix is called positive if

⟨𝑥|𝑀|𝑥⟩ ≥ 0 for all vectors |𝑥⟩.

 Theorem: A Hermitian matrix 𝑀 is positive iff its eigenvalues are ≥ 0.

 Proof: Only if direction: Let |𝑥⟩ be an eigenvector of 𝑀 with 
eigenvalue 𝜆.  Then,

⟨𝑥|𝑀|𝑥⟩ = 𝜆⟨𝑥|𝑥⟩ = 𝜆⟨𝑥|𝑥⟩

 By positivity ⟨𝑥 𝑀 𝑥⟩ ≥ 0, so 𝜆⟨𝑥|𝑥⟩ and hence 𝜆 ≥ 0 by positivity of the 
inner product.

 If direction:  𝑀 can be written in its spectral decomposition as

𝑀 =

𝑗

𝜆𝑗|𝑥𝑗⟩⟨𝑥𝑗|

where 𝜆𝑗 are the eigenvalues and 𝑥𝑗 the eigenvectors of 𝑀. 



 If we assume that 𝜆𝑗 ≥ 0 and let |𝑥⟩ be any vector then

⟨𝑥 𝑀 𝑥⟩ = ⟨𝑥| 

𝑗

𝜆𝑗 𝑥𝑗 𝑥𝑗 |𝑥⟩ =

𝑗

𝜆𝑗⟨𝑥|𝑥𝑗⟩⟨𝑥𝑗|𝑥⟩ =

𝑗

𝜆𝑗 𝑥𝑗 𝑥
2
≥ 0



 A normalized state in our matrix representation is of the form

𝜌 =
1

2
𝐼 + 𝑥𝜎1 + 𝑦𝜎2

 This is called a density matrix in quantum mechanics.

 Let’s define the vector 𝒏 =
𝑥
𝑦 and find the eigenvalues and 

eigenvectors of 𝜌.

𝜌 =
1

2

1 + 𝑦 𝑥
𝑥 1 − 𝑦

 The characteristic equation is

1 + 𝑦 − 2𝜆 𝑥
𝑥 1 − 𝑦 − 2𝜆

= 0 or 4𝜆2 − 4𝜆 + 1 − 𝑥2 − 𝑦2 = 0.



 The solution of this quadratic equation is

𝜆± =
1

2
1 ± 𝑥2 + 𝑦2 =

1

2
1 ± 𝒏

 Since 0 ≤ 𝒏 = 𝑥2 + 𝑦2 ≤ 1, the eigenvalues satisfy 0 ≤ 𝜆± ≤ 1, so 𝜌
is a positive matrix.

 Also 𝜆+ + 𝜆− = 1, so Tr 𝜌 = 1 because the trace is basis 
independent.

 In this way, we can get any positive symmetric 2 × 2 matrix that 
satisfies Tr 𝜌 = 1, so it is equivalent to define a (normalized) density 
operator as a positive symmetric 2 × 2 matrix that satisfies Tr 𝜌 = 1.



 To find the eigenvectors, let’s switch to polar coordinates
𝑥 = 𝑟sin𝜃 𝑦 = 𝑟cos𝜃

since then 𝒏 = 𝑟.

 In these coordinates, we have

𝜌 =
1 + 𝑟cos𝜃 𝑟sin𝜃
𝑟sin𝜃 1 − 𝑟cos𝜃

 It is now straightforward to check that the two orthogonal unit vectors

𝑛 + =
cos

𝜃

2

sin
𝜃

2

= cos
𝜃

2
0 + sin

𝜃

2
|1⟩ and   𝑛 − =

sin
𝜃

2

−cos
𝜃

2

= sin
𝜃

2
0 − cos

𝜃

2
|1⟩

are the eigenvectors with 𝜌 𝑛 ± = 𝜆±|𝑛±⟩.



 If the state is pure then 𝒏 = 𝑥2 + 𝑦2 = 1, so 𝜆+ = 1 and 𝜆− = 0.  As 
a result, the density operator is

𝜌 = |𝑛+⟩⟨𝑛 + |

 This is just the projector onto the one-dimensional subspace 

spanned by 𝑛 + = cos
𝜃

2
0 + sin

𝜃

2
|1⟩.

 In quantum mechanics, we often use the vector |𝑛+⟩ to represent a 
pure state rather than the projector |𝑛+⟩⟨𝑛 + |.  This is just a matter of 
convenience.

 The space of 


