Quantum Foundations Lecture 5

February 12, 2018
Dr. Matthew Leifer
leifer@chapman.edu
HSC112

Example: Effects of the Probability Simplex

• The extreme points of the 2D probability simplex are $\binom{1}{0}$ and $\binom{0}{1}$. The dual cone consists of vectors $\binom{a_1}{a_2}$ such that

$$\binom{a_1}{a_2} \cdot \binom{1}{0} \ge 0 \quad \text{or } a_1 \ge 0 \quad \text{and} \quad \binom{a_1}{a_2} \cdot \binom{0}{1} \ge 0 \quad \text{or } a_2 \ge 0$$

- \circ This is the same as the cone generated by $\binom{1}{0}$ and $\binom{0}{1}$, so the 2D probability cone is self-dual.
- To get the space of effects, we have to add the conditions:

$$\binom{a_1}{a_2} \cdot \binom{1}{0} \le 1 \text{ or } a_1 \le 1 \text{ and } \binom{a_1}{a_2} \cdot \binom{0}{1} \le 1 \text{ or } a_2 \le 1$$

Example: Effects of the Probability Simplex

Example: Effects of the gbit/squit

• The extreme points of the gbit are $\binom{-1}{-1}$, $\binom{1}{-1}$, $\binom{-1}{1}$, $\binom{1}{1}$, but we have to go one dimension higher for the cone, so we use:

$$\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

• The dual cone consists of vectors $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, which satisfy: $-a_1 - a_2 + a_3 \ge 0$, $a_1 - a_2 + a_3 \ge 0$, $-a_1 + a_2 + a_3 \ge 0$, $a_1 + a_2 + a_3 \ge 0$.

Example: Effects of the gbit/squit

 $C^*(\Omega)$

Example: Effects of the gbit/squit

• To get the space of effects, we also have to impose:

$$-a_1 - a_2 + a_3 \le 1$$

$$a_1 - a_2 + a_3 \le 1$$

$$-a_1 + a_2 + a_3 \le 1$$

$$a_1 + a_2 + a_3 \le 1$$

Observables

- An observable is a set $\{f_1, f_2, \cdots, f_n\}$ of effects, such that $\sum_{j=1}^n f_j(\omega) = 1$ for all $\omega \in \Omega$
- Alternatively, it is a set of effects such that

$$\sum_{j=1}^n f_j = u.$$

- We can always define a two-outcome observable from an effect f as $\{f, u f\}$.
- Observables represent the full set of mathematical objects that can conceivably represent a well-defined measurement.

Schultz Theorem

- **Theorem**: Any closed convex subset of \mathbb{R}^n is the state space of a test space.
 - F. W. Schultz, Journal of Combinatorial Theory A vol. 17, p. 317 (1974)
 - Schultz actually proved something more general, but this is the case we need here.
- Given this, we can dispense with the test space framework and just work with states and effects.

Generalized Probabilistic Theories (GPTs)

- A (finite dimensional)Generalized Probabilistic Theory (GPT) consists of
 - \circ A closed convex set Ω called the state space.
 - The cone $C(\Omega)$ formed by lifting Ω .
 - Alternatively, we could start with the cone, define a unit effect u and let $\Omega = \{\omega \in C | u(\omega) = 1\}.$
 - \circ A subset of the effects $\mathcal{E}(\Omega)$ representing the allowed measurement outcomes in the theory.
 - The observables formed from this subset.
- A theory satisfies the no-restriction hypothesis if we allow all effects as measurement outcomes. We will assume this here, but there are interesting GPTs that do not satisfy it.

Distinguishability in GPTs

- A set of states $\{\omega_1, \omega_2, \cdots, \omega_n\}$ is distinguishable in a GPT if there exists an observable $\{f_1, f_2, \cdots, f_n\}$ such that $f_i(\omega_k) = \delta_{ik}$
- **Theorem**: In a simplex the set of pure states is distinguishable. In any other GPT there exists a set of pure states that is not distinguishable.
- **Proof**: In the cone generated by the simplex, the n pure states $\{\omega_1, \omega_2, \dots, \omega_n\}$ are linearly independent, so form a basis for \mathbb{R}^n .
- Any basis has a dual basis $\{f_1, f_2, \cdots, f_n\}$ such that $f_j(\omega_k) = \delta_{jk}$
 - Proof: Since the ω_k 's are linearly independent, we can independently define the value of f_j on each of them. The resulting set is linearly independent because it is impossible to reconstruct $f_j(\omega_j) = 1$ by a linear combination of f_k 's that are all zero on ω_j .

Distinguishability in GPTs

• It remains to prove that $\sum_{j=1}^n f_j = u$. Since any ω can be written as a convex combination $\omega = \sum_{k=1}^n \alpha_k \omega_k$, we have

$$\left(\sum_{j=1}^{n} f_{j}\right)(\omega) = \sum_{j=1}^{n} \alpha_{k} f_{j}(\omega_{k}) = \sum_{j,k=1}^{n} \alpha_{k} \delta_{jk}$$
$$= \sum_{j=1}^{n} \alpha_{j} = 1 = u(\omega).$$

• For the converse, if Ω is not a simplex then the set of pure states is linearly dependent in the lifted cone. Let $\{\omega_1,\cdots,\omega_d\}$ be the largest linearly independent subset. Then $\omega_{d+1}=\sum_{j=1}^d a_j\omega_j$ and suppose a_k is nonzero. Then,

$$f_k(\omega_{d+1}) = \sum_{j=1}^d a_j f_k(\omega_j) = \sum_{j=1}^d a_j \delta_{jk} = a_k \neq 0$$

so f_k cannot be both 1 on ω_k and 0 on ω_{d+1} .

Linear Freedom In GPTs

- The probabilities in a GPT depend on the combination $f_a(\omega) = a \cdot \omega$ of a state and an effect. We can represent an effect by the row vector $\mathbf{a}^T = (a_1, a_2, \cdots, a_n)$ and then $\mathbf{a} \cdot \omega = \mathbf{a}^T \omega$ is just matrix multiplication.
- Let A be an invertible matrix, and let $\omega' = A\omega$, $a^{T'} = a^TA^{-1}$. Then $a^{T'}\omega' = a^TA^{-1}A\omega = a^T\omega$
- The probabilities are preserved under this transformation, so it follows that any two cones related by an invertible linear transformation describe the same theory.
- In particular, any simplex is equivalent to the probability simplex, so they all describe classical probability theory.
- We say that a GPT is self-dual if its cone can be mapped to a selfdual cone under a linear transformation.

3.v) Rebits

 \bullet Consider Ω = the unit disc,

$$\binom{x}{y} \text{ s.t. } x^2 + y^2 \le 1.$$

Lifting this to a cone gives

$$\alpha \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \text{s.t. } x^2 + y^2 \le 1.$$

As you have/will show in Hwk 1, this cone is self dual.

• If we also impose
$$a \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \le 1$$
 we get $\mathcal{E}(\Omega)$.

3.v) Rebits

Another 3-dimensional Inner Product Space

- Consider the set of 2×2 real symmetric matrices $M^T = M$ where $M_{jk}^T = M_{kj}$.
- This is a real vector space. In fact, it is an inner product space. In Hwk 1, you prove that

$$(N,M) = \operatorname{Tr}(N^{\dagger}M) = \sum_{j,k=1}^{n} N_{jk}^{*} M_{jk}$$

is an inner product on the $n \times n$ complex matrices where N^{\dagger} , defined by $N_{ik}^{\dagger} = N_{kj}^{*}$ is called the Hermitian adjoint of N.

• Since we are dealing with real-valued matrices, $N^{\dagger} = N^{T}$ in this case, so the inner product is

$$(N,M) = \operatorname{Tr}(N^T M) = \sum_{j,k=1}^n N_{jk} M_{jk}$$

Another 3-dimensional Inner Product Space

 \circ The 2 x 2 real symmetric matrices are a 3-dimensional vector space, since there are 3 parameters in the matrix.

$$\begin{pmatrix} a & c \\ c & b \end{pmatrix}$$

Since it is an inner product space, we can find an orthonormal

basis. You can check that
$$\sigma_0/\sqrt{2}$$
, $\sigma_1/\sqrt{2}$, $\sigma_2/\sqrt{2}$ is such a basis, where $\sigma_0=I=\begin{pmatrix}1&0\\0&1\end{pmatrix}$, $\sigma_1=\begin{pmatrix}0&1\\1&0\end{pmatrix}$, $\sigma_2=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$

 \circ This means that instead of writing our rebit vectors in \mathbb{R}^3 as $\binom{a}{b}$ we can write then as 2×2 matrices $\frac{1}{\sqrt{2}}(a\sigma_0 + b\sigma_1 + c\sigma_2)$.

Rebits in Matrix Space

 Actually, since we have linear freedom in choosing our representation, for the state cone, we normally use the mapping:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \rightarrow \frac{1}{2} (a\sigma_0 + b\sigma_1 + c\sigma_2)$$

i.e. we apply the linear transformation $x \to x/\sqrt{2}$ and then embed in matrix space. To preserve probabilities, effect vectors will then get multiplied by $\sqrt{2}$ before mapping to matrix space.

• We choose to embed our state space Ω in the σ_1, σ_2 subspace, so a normalized state is of the form

$$\frac{1}{2}(I + x\sigma_1 + y\sigma_2) \quad \text{with} \quad x^2 + y^2 \le 1.$$

A Panolpy of Vector Spaces

- We should be careful to note that we have now introduced three inner product spaces, and we do not want to mix them up.
 - We have the three dimensional vector space \mathbb{R}^3 that we originally represented our rebit in. I will continue to use bold for vectors \boldsymbol{x} in this space, \boldsymbol{x}^T for the corresponding dual vector and $\boldsymbol{x} \cdot \boldsymbol{y}$ for the inner product.
 - We have the three dimension space of 2×2 matrices. I will use capitals M for matrices in this space, M^T for the corresponding dual, and $\text{Tr}(N^TM)$ for their inner product.
 - We also have the two-dimensional vector space \mathbb{R}^2 that the matrices act on. Following quantum conventions, I use Dirac notation for this space:
 - $|x\rangle = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$ for vectors, $\langle x| = (x_0, x_1)$ for dual vectors and $\langle x|y\rangle = x_0y_0 + x_1y_1$ for inner products.
 - We also introduce the basis vectors $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, so we can write any vector as $|x\rangle = x_0 |0\rangle + x_1 |1\rangle$.

Hermitian Adjoints

- \odot For an $n \times n$ complex matrix M, its Hermitian adjoint M^{\dagger} is given by $M_{jk}^{\dagger} = M_{kj}^{*}$
 - \odot For real matrices we can use $M^T=M$, where $M_{jk}^T=M_{kj}$
- Taking the Hermitian adjoint reverses the order of products, i.e. $(MN)^{\dagger} = N^{\dagger}M^{\dagger}$.

$$(MN)_{jk}^{\dagger} = (MN)_{kj}^{*} = \left(\sum_{m} M_{km} N_{mj}\right)^{*} = \sum_{m} M_{km}^{*} N_{mj}^{*}$$
$$= \sum_{m} M_{mk}^{\dagger} N_{jm}^{\dagger} = \sum_{m} N_{jm}^{\dagger} M_{mk}^{\dagger} = \left(N^{\dagger} M^{\dagger}\right)_{jk}$$

Hermitian Matrices

- An $n \times n$ complex matrix is Hermitian if $M^{\dagger} = M$.
 - For real matrices we can use $M^T = M$, where $M_{jk}^T = M_{kj}$.
- A projection operator or projector P is a Hermitian matrix that also satisfies $P^2 = P$.
 - The identity matrix I is a projector, since $I_{jk} = \delta_{jk}$ and $I^2 = I$.
- An outer product is a matrix of the form $|y\rangle\langle x|$ define to act via $(|x\rangle\langle y|)|z\rangle = |x\rangle\langle y|z\rangle$

where $\langle y|z\rangle$ is the inner product.

• If $|x\rangle$ is a unit vector $(\langle x|x\rangle = 1)$ then $|x\rangle\langle x|$ is a projector because $|x\rangle\langle x|x\rangle\langle x| = |x\rangle\langle x|$

Eigenvalues and Eigenvectors

 \circ A vector $|x\rangle$ is an eigenvector of a matrix M if

$$M|x\rangle = \lambda |x\rangle$$
,

where λ is a scalar called an eigenvalue of M.

- \circ e.g. All vectors are eigenvectors of I, since $I|x\rangle = |x\rangle$.
- In general, more than one eigenvector may correspond to the same eigenvalue. The eigenspace of an eigenvalue is the linear subspace spanned by the corresponding eigenvectors.
 - If the eigenspace is one-dimensional, the eigenvalue is called nondegenerate.
 - If the eigenspace has dimension ≥ 2, the eigenvalue is called degenerate.

Eigenvalues/vectors of Hermitian matrices

- **Theorem**: All the eigenvalues of a Hermitian operator are real and eigenvectors belonging to different eigenspaces are orthogonal.
- A matrix for which all the eigenvalues are nondegenerate is called a non-degenerate matrix.
- The eigenvectors of a non-degenerate Hermitian matrix form a complete orthonormal basis.
- As a result, we can write such a matrix as

$$M = \sum_{n} \lambda_n |x_n\rangle\langle x_n|$$

where λ_i are the eigenvalues and $|x_i\rangle$ are the eigenvectors.

Eigenvalues/vectors of Hermitian matrices

• To see why, note that if $\{|x_j\rangle\}$ is a complete orthonormal basis then any vector $|x\rangle$ can be written as $|x\rangle = \sum_j a_j |x_j\rangle$, and then

$$M|x\rangle = \sum_{j} a_{j} M|x_{j}\rangle = \sum_{j} a_{j} \lambda_{j} |x_{j}\rangle = \sum_{j,k} a_{k} \lambda_{j} \delta_{jk} |x_{k}\rangle$$
$$= \sum_{j,k} a_{k} \lambda_{j} |x_{j}\rangle \langle x_{j}| x_{k}\rangle = \left(\sum_{j} \lambda_{j} |x_{j}\rangle \langle x_{j}|\right) \left(\sum_{k} a_{k} |x_{k}\rangle\right)$$

- This has the following generalization:
- **Theorem**: The Spectral Theorem: Any Hermitian matrix can be written as $M = \sum_{j} \lambda_{j} P_{j}$, where the λ_{j} are distinct eigenvalues and the P_{j} are the projectors onto the corresponding eigenspaces, i.e.
- $P_j |x_j\rangle = |x_j\rangle$ for any vector in the eigenspace and $P_j |x\rangle = 0$ for vectors orthogonal to the eigenspace.

Positive Matrices

- \bullet An $n \times n$ Hermitian matrix is called positive if
 - $\langle x|M|x\rangle \geq 0$ for all vectors $|x\rangle$.
- **Theorem**: A Hermitian matrix M is positive iff its eigenvalues are ≥ 0 .
- **Proof**: Only if direction: Let $|x\rangle$ be an eigenvector of M with eigenvalue λ . Then,

$$\langle x|M|x\rangle = \lambda\langle x|x\rangle = \lambda\langle x|x\rangle$$

- By positivity $\langle x|M|x\rangle \geq 0$, so $\lambda\langle x|x\rangle$ and hence $\lambda \geq 0$ by positivity of the inner product.
- If direction: M can be written in its spectral decomposition as

$$M = \sum_{j} \lambda_{j} |x_{j}\rangle\langle x_{j}|$$

where λ_j are the eigenvalues and $|x_j\rangle$ the eigenvectors of M.

Positive Matrices

• If we assume that $\lambda_i \geq 0$ and let $|x\rangle$ be any vector then

$$\langle x|M|x\rangle = \langle x|\left(\sum_{j}\lambda_{j}|x_{j}\rangle\langle x_{j}|\right)|x\rangle = \sum_{j}\lambda_{j}\langle x|x_{j}\rangle\langle x_{j}|x\rangle = \sum_{j}\lambda_{j}|\langle x_{j}|x\rangle|^{2} \ge 0$$

Properties of the Rebit Matrix Representation

A normalized state in our matrix representation is of the form

$$\rho = \frac{1}{2}(I + x\sigma_1 + y\sigma_2)$$

- This is called a density matrix in quantum mechanics.
- Let's define the vector $\mathbf{n} = \begin{pmatrix} x \\ y \end{pmatrix}$ and find the eigenvalues and eigenvectors of ρ .

$$\rho = \frac{1}{2} \begin{pmatrix} 1+y & x \\ x & 1-y \end{pmatrix}$$

The characteristic equation is

$$\begin{vmatrix} 1 + y - 2\lambda & x \\ x & 1 - y - 2\lambda \end{vmatrix} = 0 \text{ or } 4\lambda^2 - 4\lambda + 1 - x^2 - y^2 = 0.$$

Properties of the Rebit Matrix Representation

The solution of this quadratic equation is

$$\lambda_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{x^2 + y^2} \right) = \frac{1}{2} (1 \pm ||\boldsymbol{n}||)$$

- Since $0 \le ||n|| = \sqrt{x^2 + y^2} \le 1$, the eigenvalues satisfy $0 \le \lambda_{\pm} \le 1$, so ρ is a positive matrix.
- Also $\lambda_+ + \lambda_- = 1$, so $Tr(\rho) = 1$ because the trace is basis independent.
- In this way, we can get *any* positive symmetric 2×2 matrix that satisfies $Tr(\rho) = 1$, so it is equivalent to define a (normalized) density operator as a positive symmetric 2×2 matrix that satisfies $Tr(\rho) = 1$.

Properties of the Rebit Matrix Representation

- To find the eigenvectors, let's switch to polar coordinates $x=r{\sin}\theta \ \ y=r{\cos}\theta$ since then ||n||=r.
- In these coordinates, we have

$$\rho = \begin{pmatrix} 1 + r\cos\theta & r\sin\theta \\ r\sin\theta & 1 - r\cos\theta \end{pmatrix}$$

It is now straightforward to check that the two orthogonal unit vectors

$$|n+\rangle = \begin{pmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} \end{pmatrix} = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle \text{ and } |n-\rangle = \begin{pmatrix} \sin\frac{\theta}{2} \\ -\cos\frac{\theta}{2} \end{pmatrix} = \sin\frac{\theta}{2}|0\rangle - \cos\frac{\theta}{2}|1\rangle$$

are the eigenvectors with $\rho | n \pm \rangle = \lambda_+ | n \pm \rangle$.

Pure Rebit States

• If the state is pure then $||n|| = \sqrt{x^2 + y^2} = 1$, so $\lambda_+ = 1$ and $\lambda_- = 0$. As a result, the density operator is

$$\rho = |n+\rangle\langle n+|$$

- This is just the projector onto the one-dimensional subspace spanned by $|n +\rangle = \cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} |1\rangle$.
- In quantum mechanics, we often use the vector $|n+\rangle$ to represent a pure state rather than the projector $|n+\rangle\langle n+|$. This is just a matter of convenience.
- The space of