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 We will consider a simple type of black-box experiment.

 𝑃 is the choice of preparation setting

 𝑀 is the choice of measurement setting

 𝑘 is the outcome of the measurement (takes a finite number of values)

 A theory must predict Prob(𝑘|𝑃,𝑀) for all choices of 𝑃 and 𝑀.

 System means whatever accounts for the correlation between 𝑃 and (𝑀, 𝑘).



A test space is a way of formalizing the description of a 
measurement device.

A (locally finite) test space (𝑋, Σ) consists of

 A set 𝑋 of outcomes (not necessarily finite).

 A set Σ of tests (not necessarily finite).

 Each test 𝐸 is a finite subset of 𝑋, interpreted as the set of 
outcomes for a measurement that can be performed on the 
system.

A test space is called finite if 𝑋 is a finite set.  A finite test 
space is also called a hypergraph.



A classical test space has just one test.

({𝑒1, 𝑒2, ⋯ , 𝑒𝑛}, {{𝑒1, 𝑒2, ⋯ 𝑒𝑛}})

A semi-classical test space has non-overlapping tests.

({𝑒1, 𝑒2, ⋯ , 𝑒𝑛, 𝑓1, 𝑓2, ⋯ , 𝑓𝑛, ⋯ , 𝑧1, 𝑧2, ⋯ , 𝑧𝑛}, {{𝑒1, 𝑒2, ⋯ 𝑒𝑛}, {𝑓1, 𝑓2, ⋯ , 𝑓𝑛},⋯ {𝑧1, 𝑧2, ⋯ , 𝑧𝑛}})



A classical bit: 

{0,1 , {{0,1}})

A generalized bit (gbit) or square bit (squit): 

({00,01,10,11}, {{00,01}, {10,11}})



 Specker’s triangle:

({𝑒, 𝑓, 𝑔}, {{𝑒, 𝑓}, {𝑓, 𝑔}, {𝑔, 𝑒}})

 Importantly, tests can overlap. 𝑒, 𝑓 and 𝑔 each appear in two 
tests.

 When the same outcome appears in more than one test, we 
regard it as physically the same thing in each test, perhaps 
because it always has the same probability for every 
preparation.



A state on a test space is a function 𝜔:𝑋 → [0,1] such that

∀𝐸 ∈ Σ, 

𝑒∈E

𝜔 𝑒 = 1

 Each test is assigned a probability distribution and if an 
outcome appears in more than one test, it receives the 
same probability in each one.

We can represent states as vectors 𝝎 ∈ ℝ𝑋.

 Note: ℝ𝑋 just means ℝ 𝑋 , with the axes labelled by elements of 𝑋.

 The components are given by 𝜔𝑒 = 𝜔(𝑒).



 The state space Ω of a test space is the set of all states.
 It is defined by a set of linear inequalities

𝜔 𝑒 ≥ 0

 Together with a set of linear equalities



𝑒∈𝐸

𝜔 𝑒 = 1

 It will therefore be a closed convex set in ℝ𝑋, but its 
dimension may be much less than |𝑋| because 
independent equalities can be used to reduce the 
dimension.

 If the test space is finite then the state space is a 
polytope.



 For a classical test space, the state space is just the probability 
simplex Δ𝑋.

{𝑒1, 𝑒2, ⋯ , 𝑒𝑛}, {{𝑒1, 𝑒2, ⋯ 𝑒𝑛}} 𝜔 𝑒𝑛 ≥ 0, 

𝑗

𝜔 𝑒𝑗 = 1



 For a gbit/squit, the state space is a square
𝜔00 ≥ 0, 𝜔01≥ 0, 𝜔10≥ 0, 𝜔11≥ 0
𝜔00 + 𝜔01 = 1, 𝜔10 +𝜔11 = 1

 We can use the two equalities to eliminate 𝜔01 and 𝜔11.  Then, we 
are left with

0 ≤ 𝜔00 ≤ 1, 0 ≤ 𝜔10 ≤ 1



 The Specker triangle only has one state 

 Let’s look at the equalities:
𝜔𝑒 + 𝜔𝑓 = 1, 𝜔𝑓 + 𝜔𝑔 = 1, 𝜔𝑔 +𝜔𝑒 = 1

 The first one gives us 𝜔𝑓 = 1 − 𝜔𝑒.  Substituting into the 
second gives 𝜔𝑔 −ω𝑒 = 0.

We now have two simultaneous equations in two 
variables, with solution 𝜔𝑒 = 𝜔𝑔 =

1

2
.

Hence, also 𝜔𝑓 =
1

2
.

Note, one can also find test spaces with no states 😭



How can we make sense of this weird state?

A puppy is in a transparent triangular cage, 

partitioned into 3 compartments by opaque 

walls with a door in them.  The light is switched 

off.  You stand at one of the corners of the 

cage and switch the light on.  You can only 

see two compartments and you observe 

which one the puppy is in.

You always see the puppy, with 50/50 

probability in one of the two compartments 

you can see.

Reason: The puppy is friendly and moves to 

one of the compartments nearest you while 

the light is still off.



 Measurement contextuality occurs when the way you make a 
measurement affects what happens.
 You are not simply observing something that is independent of your 

choice of measurement.

 This is a feature of quantum theory that we will explore later.  
What is puzzling about it?
 If the puppy story were really true, then there is no real reason why 
Prob(𝑒) should be independent of whether we measure {𝑒, 𝑓} or {𝑔, 𝑒}.  
For example the puppy might prefer to stand on your left, so Prob 𝑒 =
0 for {𝑒, 𝑓} and 1 for {𝑒, 𝑔}.

 We always observe 𝜔 𝑒 = 1

2
because this is the only state, but our 

model does not explain why.

 This is an example of a fine tuning, IMO the biggest problem with 
quantum theory.



 A state is called pure if it is an extreme point of Ω, otherwise it is 
called mixed.

 A mixed state can be written as a nontrivial convex 
combination of extremal states

𝜔 = σ𝜇∈Ext Ω 𝑝𝜇𝜇,    𝑝𝜇 ≥ 0,    σ𝜇∈Ext(Ω)𝑝𝜇 = 1

 We can always construct a preparation device that prepares 
𝜔 if we have devices to prepare the pure states and classical 
randomness.

 The decomposition is unique iff Ω is a simplex, i.e. only for 
classical theories.  For any other state space, there is more 
than one decomposition of mixed states into pure states.
 Another feature we will see in quantum theory.
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We know that the tests of a test space represent possible 
measurements, but are these the only possible 
measurements?

 No.  We could, for example, use classical randomness to decide 
which test to perform and also use classical randomness to 
decide how to relabel the outcomes.

 On some test spaces, there are even additional measurements 
that cannot be represented this way.  We’ll study this in the case 
of quantum mechanics later.



 Let Ω be the state space of a test space.  An effect is an affine 
functional 𝑓: Ω → [0,1]

𝑓 𝑝𝜔 + 1 − 𝑝 𝜇 = 𝑝𝑓 𝜔 + 1 − 𝑝 𝑓(𝜇)
∀𝜔 ∈ Ω, 0 ≤ 𝑓 𝜔 ≤ 1

 An effect is the most general way of assigning a probability to 
all states.
 We want effects to be affine because one way of preparing 𝑝𝜔 +

1 − 𝑝 𝜇 is to have devices that prepare 𝜔 and 𝜇 and decide which 
one to use with probabilities 𝑝 and 1 − 𝑝.

 An affine functional is an example of an affine map, where 
the output space is just ℝ.  As we know, this is not necessarily a 
linear function on the state space.



 But we know how to deal with that.  We can form a cone 𝐶(Ω) by lifting to 
one dimension higher and closing under positive linear combinations.  This 
is called the state cone.

 All 𝜇 ∈ 𝐶(Ω) can be written as 𝜇 = 𝛼𝜔 for some 𝜔 ∈ Ω.

 In ℝ𝑋, the state cone is specified by
∀𝑒 ∈ 𝑋, 𝜔 𝑒 ≥ 0

∀𝐸 ∈ Σ, σ𝑒∈𝐸𝜔 𝑒 = 𝛼 for some 𝛼 ≥ 0.

 This represents the space of unnormalized states – divide by 𝛼 to get a 
normalized state.

 On this space, an effect is represented by a linear functional.

 Since we require 𝑓 𝜔 ≥ 0, effects lie inside the dual cone 𝐶∗(Ω), so we call 
this the effect cone.

 However, not every element of the dual cone is an effect because we 
also have to satisfy 𝑓 𝜔 ≤ 1 for 𝜔 ∈ 𝜔.



 Therefore the space of effects (Ω) is the set of all 𝑓 ∈ 𝐶∗(Ω)
such that 𝑓 𝜔 ≤ 1 for all 𝜔 ∈ Ω.
 Note: We can check this condition just for the extreme points of Ω.

 We can express this a different way.  Let 𝑢 ∈ (Ω) be the unit 
effect

𝑢 𝜔 = 1 for all 𝜔 ∈ Ω
 and let 0 be the zero effect 0 𝜔 = 0.

 Define a partial order relation ≼ on 𝐶∗(Ω) by

𝑓 ≼ 𝑔 ⇔ 𝑓 𝜔 ≤ 𝑔(𝜔) for all 𝜔 ∈ 𝐶(Ω).
 Then, (Ω) is the set of all linear functionals 𝑓 such that 

0 ≼ 𝑓 ≼ 𝑢.



 An outcome 𝑒 ∈ 𝑋 obviously defines an effect via
𝑒 𝜔 = 𝜔(𝑒)

 I am abusing notation by using the same symbol for the outcome and 
the effect.

 In ℝ𝑋 these effects are represented by the standard basis 
vectors because

0
0
⋮
1
⋮
0

̇

𝜔𝑎
𝜔𝑏

⋮
𝜔𝑒
⋮
𝜔𝑧

= 𝜔(𝑒)



 Since σ𝑒∈𝐸𝜔 𝑒 = 1 for any test 𝐸 and any state 𝜔, we can 
represent the unit effect in ℝ𝑋 by picking a test and 
setting

𝑢𝑒 = ቊ
1, 𝑒 ∈ 𝐸
0, 𝑒 ∉ 𝐸

 The representation of an effect in ℝ𝑋 is generally non-
unique because 𝐶(Ω) has a lower dimension than ℝ𝑋 due 
to the equalities defining Ω.  If we instead use a 
representations of the same dimension as 𝐶(Ω) by 
eliminating equalities then the effects will be represented 
by unique vectors.


