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 Theorem: Let 𝑋𝑋 be a set of vectors in ℝ𝑛𝑛.  Every 𝒙𝒙 ∈ conv(𝑋𝑋)
can be written as a convex combination of vectors 
𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑚𝑚 ∈ 𝑋𝑋 with 𝑚𝑚 ≤ 𝑛𝑛 + 1.

 Proof: Let 𝑆𝑆 = conv(𝑋𝑋) and lift 𝑆𝑆 to ℝ𝑛𝑛+1 to form a convex 
cone 𝐶𝐶.

Clearly 𝐶𝐶 = cone(𝑋𝑋′) where 𝑋𝑋′ = {𝒙𝒙′|𝒙𝒙 ∈ 𝑋𝑋} and

𝒙𝒙𝑗𝑗′ =
1
𝒙𝒙𝑗𝑗



Carathéodory’s theorem for cones says that every 𝒙𝒙′ ∈ 𝐶𝐶
can be written as a positive combination of at most 𝑛𝑛 + 1
vectors in 𝑋𝑋𝑋

𝒙𝒙′ = ∑𝑗𝑗=1𝑛𝑛+1 𝛼𝛼𝑗𝑗𝒙𝒙𝑗𝑗′ with 𝛼𝛼𝑗𝑗 ≥ 0.
 If 𝒙𝒙𝑋 is in the embedding of 𝑆𝑆 in 𝐶𝐶 then its first component is 

1.  The first component of every 𝒙𝒙𝑗𝑗 is also 1.
 Therefore ∑𝑗𝑗=1𝑛𝑛+1 𝛼𝛼𝑗𝑗 = 1 and this is a convex combination.



 Theorem: Every closed convex set 𝑆𝑆 in ℝ𝑛𝑛 is the convex 
hull of its extreme points.

 Let Ext 𝑆𝑆 be the set of extreme points of 𝑆𝑆.  Then, the 
theorem says

𝑆𝑆 = conv(Ext 𝑆𝑆 )
Corollary: Every 𝒙𝒙 ∈ 𝑆𝑆 can be written as a positive 

combination of at most 𝑛𝑛 + 1 extreme points.



 For vector spaces, convex cones, and convex sets, there are 
natural classes of maps that preserve their structure.

 Let 𝑉𝑉 be a vector space.  A linear map 𝐴𝐴:𝑉𝑉 → 𝑉𝑉 is a map that 
satisfies

𝐴𝐴 𝑎𝑎𝒙𝒙 + 𝑏𝑏𝒚𝒚 = 𝑎𝑎𝐴𝐴 𝒙𝒙 + 𝑏𝑏𝐴𝐴(𝒚𝒚)
for all 𝒙𝒙,𝒚𝒚 ∈ 𝑉𝑉 and scalars 𝑎𝑎, 𝑏𝑏.

 Let 𝑉𝑉 be a real vector space. A No Good Name For It (NGNFI) map 
𝐴𝐴:𝑉𝑉 → 𝑉𝑉 is a map that satisfies

𝐴𝐴 𝛼𝛼𝒙𝒙 + 𝛽𝛽𝒚𝒚 = 𝛼𝛼𝐴𝐴 𝒙𝒙 + 𝛽𝛽𝐴𝐴(𝒚𝒚)
for all 𝒙𝒙,𝒚𝒚 ∈ 𝑉𝑉 and 𝛼𝛼,𝛽𝛽 ≥ 0.

 Let 𝑉𝑉 be a real vector space. An affine map 𝐴𝐴:𝑉𝑉 → 𝑉𝑉 is a map that 
satisfies

𝐴𝐴 𝛼𝛼𝒙𝒙 + 𝛽𝛽𝒚𝒚 = 𝛼𝛼𝐴𝐴 𝒙𝒙 + 𝛽𝛽𝐴𝐴(𝒚𝒚)
for all 𝒙𝒙,𝒚𝒚 ∈ 𝑉𝑉, 𝛼𝛼,𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 = 1.



 In other words, a NGNFI map is a maps that maps all
convex cones to convex cones and an affine maps is a 
map that maps all convex sets to convex sets.

 The reason NGNFI maps have no good name is that they 
are linear maps in disguise.
 We just define 𝐴𝐴 −𝛼𝛼𝒙𝒙 = −𝛼𝛼𝐴𝐴(𝒙𝒙) and extend by linearity.
 Carathéodory’s theorem for cones guarantees that this still maps 

convex cones to convex cones, hence is still an NGNFI map.
 Therefore, we can dispense with NGNFI maps and just use 

linear maps.  This is good news, as linear maps on ℝ𝑛𝑛 are 
just 𝑛𝑛 × 𝑛𝑛 matrices.



 Life is not so simple for affine maps.  A translation
𝐴𝐴 𝒙𝒙 = 𝒙𝒙 + 𝒛𝒛 for a fixed vector 𝒛𝒛 is affine.

 This cannot be extended to a linear map because linear 
maps must satisfy 𝐴𝐴 𝟎𝟎 = 𝟎𝟎, but here 𝐴𝐴 𝟎𝟎 = 𝒛𝒛.



Given a convex set 𝑆𝑆 that we want to map to another 
convex set via an affine map 𝐴𝐴, construct the lifted cone 
𝐶𝐶.

Define 𝐴𝐴′ 1
𝒙𝒙 = 1

𝐴𝐴(𝒙𝒙) for vectors with 1 as their first 

component.
 Every vector can be written as 𝑎𝑎𝒙𝒙𝑋 for some scalar 𝑎𝑎 and 

vector 𝒙𝒙𝑋 of this form.  Defining 𝐴𝐴′ 𝑎𝑎𝒙𝒙′ = 𝑎𝑎𝐴𝐴𝑋(𝒙𝒙𝑋) then gives 
us a linear map as before.

 For this reason, it is almost always better to work in the 
lifted space because we only need to use linear maps.



A hyperplane in ℝ𝑛𝑛 is a set of vectors 𝒙𝒙 satisfying an 
equation of the form

𝒂𝒂 ⋅ 𝒙𝒙 = 𝑏𝑏
where 𝒂𝒂 is a fixed vector and 𝑏𝑏 is a scalar.

 Generalizes the equation for a plane in 3d space.
A (closed) half-space in a real vector space is a set of 

vectors 𝒙𝒙 satisfying an inequality of the form
𝒂𝒂 ⋅ 𝒙𝒙 ≤ 𝑏𝑏

where 𝒂𝒂 is a fixed vector and 𝑏𝑏 is a scalar.





 Theorem: Given any two disjoint closed convex sets, 𝑆𝑆 and 
𝑆𝑆𝑋, there always exists a hyperplane 𝒂𝒂 ⋅ 𝒙𝒙 = 𝑏𝑏 such that

𝒂𝒂 ⋅ 𝒙𝒙 ≤ 𝑏𝑏 for all 𝒙𝒙 ∈ 𝑆𝑆
𝒂𝒂 ⋅ 𝒙𝒙′ > 𝑏𝑏 for all 𝒙𝒙′ ∈ 𝑆𝑆𝑋

Corollary: Since a single point is a closed convex set, for 
any point 𝒙𝒙𝑋 outside a closed convex set 𝑆𝑆, there exists a 
hyperplane such that

𝒂𝒂 ⋅ 𝒙𝒙 ≤ 𝑏𝑏 for all 𝒙𝒙 ∈ 𝑆𝑆
𝒂𝒂 ⋅ 𝒙𝒙′ > 𝑏𝑏





 Theorem: For a closed convex set 
𝑆𝑆, let 𝐻𝐻𝑆𝑆 be the set of half-spaces 
that contain 𝑆𝑆.  Then,

𝑆𝑆 =∩ℎ∈𝐻𝐻𝑆𝑆 ℎ
 Proof: For every point outside 𝑆𝑆, 

there exists a half-space ℎ that 
separates the point from 𝑆𝑆 by the 
previous corollary.  Therefore, 
every point outside 𝑆𝑆 is excluded 
by at least one ℎ ∈ 𝐻𝐻𝑆𝑆. 



A convex polytope is a convex set that has a finite 
number of extreme points.

 For a polytope, the extreme points are usually called 
vertices.

 Let 𝑋𝑋 be a subset of the vertices.  conv(𝑋𝑋) is called a face
of the polytope.

 If conv(𝑋𝑋) only contains boundary points of the polytope, 
and no vertex can be added to 𝑋𝑋 such that this is still the 
case then conv(𝑋𝑋) is called a facet.





 To define a convex polytope, 
we can give:
 A list of its vertices – The V-

representation
 A list of the half-spaces defining 

the facets – The H-
representation.

 Converting between reps is 
computationally challenging.  
See 
ftp://ftp.math.ethz.ch/users/fu
kudak/reports/polyfaq040618.
pdf

V-rep: 
0
0
0

,
1
0
0

,
0
1
0

, 
0
0
1

,
0
1
1

,
1
0
1

,
1
1
0

,
1
1
1

H-rep: 0 ≤ 𝑥𝑥 ≤ 1, 0 ≤ 𝑦𝑦 ≤ 1, 0 ≤ 𝑧𝑧 ≤ 1

ftp://ftp.math.ethz.ch/users/fukudak/reports/polyfaq040618.pdf


 A simplex is a complex polytope such that its vertices are 
linearly independent in the lifted cone.

 Consequences:
 A simplex in ℝ𝑛𝑛 can have at most 𝑛𝑛 + 1 vertices.
 Every point inside a simplex can be written uniquely as a convex 

combination of its vertices.



We now discuss the motivating example for all of this 
mathematics.

A probability vector in ℝ𝑛𝑛 is a vector 𝒑𝒑 with positive 
components 𝑝𝑝𝑗𝑗 ≥ 0 that sum to 1, ∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑗𝑗 = 1.

 The probability simplex Δ𝑛𝑛 is the set of all probability 
vectors in ℝ𝑛𝑛.
 Note that Δ𝑛𝑛 actually has dimension 𝑛𝑛 − 1 because we could 

eliminate one component using the equality ∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑗𝑗 = 1.
 It is convenient to keep representing it in ℝ𝑛𝑛 because that allows 

us to define the lifted cone on the same space, i.e. we just drop 
the condition ∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑗𝑗 = 1.





An inner product on a vector space is a function (𝐱𝐱, 𝐲𝐲)
from pairs of vectors to scalars, satisfying
 (Conjugate) symmetry: 𝒙𝒙,𝒚𝒚 ∗ = (𝒚𝒚,𝒙𝒙)
 Linearity: 𝒛𝒛,𝑎𝑎𝒙𝒙 + 𝑏𝑏𝒚𝒚 = 𝑎𝑎 𝒛𝒛,𝒙𝒙 + 𝑏𝑏
 Positive definiteness: 

𝒙𝒙,𝒙𝒙 ≥ 0 and 𝒙𝒙,𝒙𝒙 = 0 iff 𝒙𝒙 = 𝟎𝟎.
Note: ∗ denotes complex conjugate – only relevant for 

complex vector spaces.
An inner product space is a vector space equipped with 

an inner product.



 For ℝ𝑛𝑛 and ℂ𝑛𝑛, the dot product is an inner product

 For ℝ𝑛𝑛:

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

⋅

𝑥𝑥1′

𝑥𝑥2′
⋮
𝑥𝑥𝑛𝑛′

= 𝑥𝑥1𝑥𝑥1′ + 𝑥𝑥2𝑥𝑥2′ + ⋯+ 𝑥𝑥𝑛𝑛𝑥𝑥𝑛𝑛′

 For ℂ𝑛𝑛:

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

⋅

𝑥𝑥1′

𝑥𝑥2′
⋮
𝑥𝑥𝑛𝑛′

= 𝑥𝑥1∗𝑥𝑥1′ + 𝑥𝑥2∗𝑥𝑥2′ + ⋯+ 𝑥𝑥𝑛𝑛∗ 𝑥𝑥𝑛𝑛′



A basis 𝒙𝒙1,𝒙𝒙2,⋯ ,𝒙𝒙𝑛𝑛 for an 𝑛𝑛-dimensional vector space is called 
orthonormal if

𝒙𝒙𝑗𝑗 ,𝒙𝒙𝑘𝑘 = 𝛿𝛿𝑗𝑗𝑘𝑘 = �0 if 𝑗𝑗 ≠ 𝑘𝑘
1 if 𝑗𝑗 = 𝑘𝑘

 For an orthonormal basis, if 𝒙𝒙 = ∑𝑗𝑗=1𝑛𝑛 𝑎𝑎𝑗𝑗𝒙𝒙𝑗𝑗 then
𝒙𝒙𝑘𝑘 ,𝒙𝒙 = �

𝑗𝑗=1

𝑛𝑛
𝑎𝑎𝑗𝑗 𝒙𝒙𝑘𝑘 ,𝒙𝒙𝑗𝑗 = �

𝑗𝑗=1

𝑛𝑛
𝑎𝑎𝑗𝑗𝛿𝛿𝑗𝑗𝑘𝑘 = 𝑎𝑎𝑘𝑘

so there is an easy way of finding components.

 Example: For ℝ2 and ℂ2, 1
0 , 0

1 is orthonormal, but 1
0 , 1

1 is 
not.



A dual vector on a vector space 𝑉𝑉 is a linear function 
from 𝑉𝑉 to the scalars.

𝑓𝑓 𝑎𝑎𝒙𝒙 + 𝑏𝑏𝒚𝒚 = 𝑎𝑎𝑓𝑓 𝒙𝒙 + 𝑏𝑏𝑓𝑓(𝒚𝒚)
 The set of dual vectors, denoted 𝑉𝑉∗ is itself a vector 

space, called the dual vector space.
 We define addition as: 𝑓𝑓 + 𝑔𝑔 𝒙𝒙 = 𝑓𝑓 𝒙𝒙 + 𝑔𝑔(𝒙𝒙)
 And scalar multiplication as: 𝑎𝑎𝑓𝑓 𝒙𝒙 = 𝑎𝑎(𝑓𝑓 𝒙𝒙 )



Consider the case of ℝ𝑛𝑛 and the set of vectors
𝐹𝐹𝑎𝑎 = 𝒙𝒙 ∈ ℝ𝑛𝑛|𝑓𝑓 𝒙𝒙 = 𝑎𝑎

for some fixed dual vector 𝑓𝑓 and scalar 𝑎𝑎.
 If 𝒙𝒙,𝒚𝒚 ∈ 𝐹𝐹𝑎𝑎 then 𝑏𝑏𝒙𝒙 + 𝑐𝑐𝒚𝒚 ∈ 𝐹𝐹𝑎𝑎 whenever 𝑏𝑏 + 𝑐𝑐 = 1

𝑓𝑓 𝑏𝑏𝒙𝒙 + 𝑐𝑐𝒚𝒚 = 𝑏𝑏𝑓𝑓 𝒙𝒙 + 𝑐𝑐𝑓𝑓(𝒚𝒚)
= 𝑏𝑏𝑎𝑎 + 𝑐𝑐𝑎𝑎 = 𝑏𝑏 + 𝑐𝑐 𝑎𝑎 = 𝑎𝑎

 This means that 𝐹𝐹𝑎𝑎 contains the lines connecting any two 
points and hence it is a hyperplane.

We can specify 𝑓𝑓 by giving two hyperplanes on which it 
takes two different values and then filling in by linearity.





 It is no accident that a hyperplane in ℝ𝑛𝑛 is given by an 
equation of the form 𝒂𝒂 ⋅ 𝒙𝒙 = 𝑏𝑏.

 If we vary 𝑏𝑏 and keep 𝒂𝒂 fixed then this defines a set of 
parallel hyperplanes and hence a dual vector

𝑓𝑓𝒂𝒂 𝒙𝒙 = 𝒂𝒂 ⋅ 𝒙𝒙
 In any vector space, a vector 𝒂𝒂 ∈ 𝑉𝑉 determines a dual 

vector 𝑓𝑓𝒂𝒂 ∈ 𝑉𝑉∗ via
𝑓𝑓𝒂𝒂 𝒙𝒙 = (𝒂𝒂,𝒙𝒙)



 The correspondence between vectors and duals is one-
to-one.  For any dual vector 𝑓𝑓 ∈ 𝑉𝑉∗, define a vector 𝒂𝒂𝑓𝑓 ∈ 𝑉𝑉
as follows:
 Let 𝒙𝒙1,𝒙𝒙2,⋯ be an orthonormal basis for 𝑉𝑉.
 Define 𝒂𝒂𝑓𝑓 = ∑𝑗𝑗 𝑓𝑓 𝒙𝒙𝑗𝑗 𝒙𝒙𝑗𝑗.
 Then 𝑓𝑓 𝒙𝒙 = (𝒂𝒂𝑓𝑓 ,𝒙𝒙)

 Proof: Since 𝒙𝒙1,𝒙𝒙2,⋯ is an basis, we can write 𝒙𝒙 = ∑𝑗𝑗 𝑏𝑏𝑗𝑗𝒙𝒙𝑗𝑗.  Then,

𝒂𝒂𝑓𝑓,𝒙𝒙 = 𝒂𝒂𝑓𝑓,�
𝑗𝑗

𝑏𝑏𝑗𝑗𝒙𝒙𝑗𝑗 = �
𝑗𝑗

𝑏𝑏𝑗𝑗(𝒂𝒂𝑓𝑓, 𝑥𝑥𝑗𝑗) = �
𝑗𝑗

𝑏𝑏𝑗𝑗𝑓𝑓(𝑥𝑥𝑗𝑗)

= 𝑓𝑓 �
𝑗𝑗

𝑏𝑏𝑗𝑗𝒙𝒙𝑗𝑗 = 𝑓𝑓(𝒙𝒙)

A dual vector can be represented either as a set of 
parallel hyperplanes in 𝑉𝑉 or as a vector in 𝑉𝑉. 



Given a convex cone 𝐶𝐶, the dual cone 𝐶𝐶∗ is the set of all 
dual vectors 𝑓𝑓 such that 𝑓𝑓 𝒙𝒙 ≥ 0 for all 𝒙𝒙 ∈ 𝐶𝐶.

 Equivalently, we can think of it as the set of all vectors 𝒂𝒂
such that 𝒂𝒂,𝒙𝒙 ≥ 0 𝒙𝒙 ∈ 𝐶𝐶.
 This makes it possible to draw the cone and its dual in the same 

space.
 The dual cone is itself a convex cone.
 Because dual vectors are linear, to check if 𝑓𝑓 ∈ 𝐶𝐶∗ it 

suffices to check that 𝑓𝑓 𝒙𝒙 ≥ 0 for the extremal rays.



Cone 𝐶𝐶 Dual cone 𝐶𝐶∗



A cone 𝐶𝐶 is called self-dual if 𝐶𝐶 = 𝐶𝐶∗ (when we are 
representing dual vectors as inner products with vectors in 
the original space).

 Examples:
 The cone generated by the probability simplex is self-dual.
 The cone generated by a hypersphere (sphere in arbitrary 

dimension) is self-dual. 



 Last lecture, we explained how to lift a convex set to a 
convex cone by adding a dimension.

 You can reduce the dimension again by looking at points 
that lie on a specified hyperplane.
 This will impose an equation 𝒂𝒂 ⋅ 𝒙𝒙 = 𝑏𝑏, which can be used to 

eliminate one of the components.
 The intersection of a convex cone with a hyperplane will 

be a closed convex set if it intersects every extremal ray.
 More formally, given a cone 𝐶𝐶, we choose a dual vector 
𝑢𝑢 called the unit such that 0 < 𝑢𝑢 𝒙𝒙 < ∞ on all extremal 
rays and define

𝑆𝑆 = 𝒙𝒙 ∈ 𝐶𝐶|𝑢𝑢 𝒙𝒙 = 1



 If we are using the standard lifting
𝒙𝒙 → 1

𝒙𝒙

then choosing 𝑢𝑢 𝒙𝒙 =
1
0
⋮
0

⋅ 𝒙𝒙 will give us back our original 

convex set.
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