Quantum Foundations Lecture 3

February 5, 2018 Dr. Matthew Leifer <u>leifer@chapman.edu</u> HSC112

Carathéodory's Theorem for Convex Sets

- **Theorem:** Let X be a set of vectors in \mathbb{R}^n . Every $x \in \text{conv}(X)$ can be written as a convex combination of vectors $x_1, x_2, \dots, x_m \in X$ with $m \le n + 1$.
- Proof: Let $S = \operatorname{conv}(X)$ and lift S to \mathbb{R}^{n+1} to form a convex cone C.
- Clearly $C = \operatorname{cone}(X')$ where $X' = \{x' | x \in X\}$ and

$$m{x}_j' = \begin{pmatrix} 1 \\ m{x}_j \end{pmatrix}$$

Carathéodory's Theorem for Convex Sets

• Carathéodory's theorem for cones says that every $x' \in C$ can be written as a positive combination of at most n + 1vectors in X'

$$\mathbf{x}' = \sum_{j=1}^{n+1} \alpha_j \mathbf{x}'_j$$
 with $\alpha_j \ge 0$.

• If x' is in the embedding of S in C then its first component is 1. The first component of every x_j is also 1.

• Therefore $\sum_{j=1}^{n+1} \alpha_j = 1$ and this is a convex combination.

Krein-Milman theorem for convex sets

- **Theorem**: Every closed convex set S in \mathbb{R}^n is the convex hull of its extreme points.
- Let Ext(S) be the set of extreme points of S. Then, the theorem says

 $S = \operatorname{conv}(\operatorname{Ext}(S))$

• Corollary: Every $x \in S$ can be written as a positive combination of at most n + 1 extreme points.

Linear and Affine Maps

- For vector spaces, convex cones, and convex sets, there are natural classes of maps that preserve their structure.
- Let V be a vector space. A linear map $A: V \to V$ is a map that satisfies

 $A(a\mathbf{x} + b\mathbf{y}) = aA(\mathbf{x}) + bA(\mathbf{y})$

for all $x, y \in V$ and scalars a, b.

• Let V be a real vector space. A No Good Name For It (NGNFI) map $A: V \rightarrow V$ is a map that satisfies

 $A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A(\mathbf{x}) + \beta A(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha, \beta \ge 0$.

• Let V be a real vector space. An affine map $A: V \to V$ is a map that satisfies

$$A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$$

for all $x, y \in V$, $\alpha, \beta \ge 0$ and $\alpha + \beta = 1$.

Linear and Affine Maps

- In other words, a NGNFI map is a maps that maps all convex cones to convex cones and an affine maps is a map that maps all convex sets to convex sets.
- The reason NGNFI maps have no good name is that they are linear maps in disguise.
 - We just define $A(-\alpha x) = -\alpha A(x)$ and extend by linearity.
 - Carathéodory's theorem for cones guarantees that this still maps convex cones to convex cones, hence is still an NGNFI map.
- Therefore, we can dispense with NGNFI maps and just use linear maps. This is good news, as linear maps on \mathbb{R}^n are just $n \times n$ matrices.

Linear and Affine Maps

• Life is not so simple for affine maps. A translation

 $A(\mathbf{x}) = \mathbf{x} + \mathbf{z}$ for a fixed vector \mathbf{z} is affine.

• This cannot be extended to a linear map because linear maps must satisfy $A(\mathbf{0}) = \mathbf{0}$, but here $A(\mathbf{0}) = \mathbf{z}$.

Lifting to the rescue!

 Given a convex set S that we want to map to another convex set via an affine map A, construct the lifted cone C.

• Define
$$A'\begin{pmatrix} 1\\ x \end{pmatrix} = \begin{pmatrix} 1\\ A(x) \end{pmatrix}$$
 for vectors with 1 as their first component.

- Every vector can be written as ax' for some scalar a and vector x' of this form. Defining A'(ax') = aA'(x') then gives us a linear map as before.
- For this reason, it is almost always better to work in the lifted space because we only need to use linear maps.

Hyperplanes and Half-Spaces

• A hyperplane in \mathbb{R}^n is a set of vectors \boldsymbol{x} satisfying an equation of the form

$\boldsymbol{a} \cdot \boldsymbol{x} = b$

where \boldsymbol{a} is a fixed vector and \boldsymbol{b} is a scalar.

• Generalizes the equation for a plane in 3d space.

• A (closed) half-space in a real vector space is a set of vectors \mathbf{x} satisfying an inequality of the form $\mathbf{a} \cdot \mathbf{x} \le b$

where \boldsymbol{a} is a fixed vector and \boldsymbol{b} is a scalar.

Examples

Hyperplane Separation Theorem

Theorem: Given any two disjoint closed convex sets, S and S', there always exists a hyperplane $a \cdot x = b$ such that
 $a \cdot x \leq b$ for all $x \in S$

$a \cdot x' > b$ for all $x' \in S'$

• Corollary: Since a single point is a closed convex set, for any point x' outside a closed convex set S, there exists a hyperplane such that

 $a \cdot x \le b$ for all $x \in S$ $a \cdot x' > b$

Hyperplane Representation of Convex Sets

• Theorem: For a closed convex set S, let H_S be the set of half-spaces that contain S. Then,

 $S = \cap_{h \in H_S} h$

• Proof: For every point outside S, there exists a half-space h that separates the point from S by the previous corollary. Therefore, every point outside S is excluded by at least one $h \in H_S$.

2.iv) Convex Polytopes

- A convex polytope is a convex set that has a finite number of extreme points.
- For a polytope, the extreme points are usually called vertices.
- Let X be a subset of the vertices. conv(X) is called a face of the polytope.
- If conv(X) only contains boundary points of the polytope, and no vertex can be added to X such that this is still the case then conv(X) is called a *facet*.

Example

Some Faces that are not Facets

V-Representation and H-Representation

- To define a convex polytope, we can give:
 - A list of its vertices The Vrepresentation
 - A list of the half-spaces defining the facets – The *H*representation.
- Converting between reps is computationally challenging. See

<u>ftp://ftp.math.ethz.ch/users/fu</u> <u>kudak/reports/polyfaq040618.</u> <u>pdf</u>

V-rep: $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ H-rep: $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$

Simplexes

- A *simplex* is a complex polytope such that its vertices are linearly independent in the lifted cone.
- Consequences:
 - A simplex in \mathbb{R}^n can have at most n + 1 vertices.
 - Every point inside a simplex can be written *uniquely* as a convex combination of its vertices.

The Probability Simplex

- We now discuss the motivating example for all of this mathematics.
- A probability vector in \mathbb{R}^n is a vector p with positive components $p_j \ge 0$ that sum to $1, \sum_{j=1}^n p_j = 1$.
- The probability simplex Δ_n is the set of all probability vectors in \mathbb{R}^n .
 - Note that Δ_n actually has dimension n-1 because we could eliminate one component using the equality $\sum_{j=1}^n p_j = 1$.
 - It is convenient to keep representing it in \mathbb{R}^n because that allows us to define the lifted cone on the same space, i.e. we just drop the condition $\sum_{j=1}^n p_j = 1$.

2.v) Inner Products

 An inner product on a vector space is a function (x, y) from pairs of vectors to scalars, satisfying

• (Conjugate) symmetry: $(x, y)^* = (y, x)$

• Linearity:
$$(\mathbf{z}, a\mathbf{x} + b\mathbf{y}) = a(\mathbf{z}, \mathbf{x}) + b$$

• Positive definiteness:

 $(x, x) \ge 0$ and (x, x) = 0 iff x = 0.

- Note: * denotes complex conjugate only relevant for complex vector spaces.
- An inner product space is a vector space equipped with an inner product.

Examples

 \odot For \mathbb{R}^n and \mathbb{C}^n , the dot product is an inner product

• For \mathbb{R}^n : $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2' \\ \vdots \\ x'_n \end{pmatrix} = x_1 x_1' + x_2 x_2' + \dots + x_n x_n'$ • For \mathbb{C}^n : $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x' \end{pmatrix} = x_1^* x_1' + x_2^* x_2' + \dots + x_n^* x_n'$

Orthonormal bases

• A basis x_1, x_2, \cdots, x_n for an *n*-dimensional vector space is called orthonormal if

$$(\mathbf{x}_j, \mathbf{x}_k) = \delta_{jk} = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{cases}$$

• For an orthonormal basis, if $\mathbf{x} = \sum_{j=1}^{n} a_j \mathbf{x}_j$ then $(\mathbf{x}_k, \mathbf{x}) = \sum_{j=1}^{n} a_j (\mathbf{x}_k, \mathbf{x}_j) = \sum_{j=1}^{n} a_j \delta_{jk} = a_k$

so there is an easy way of finding components.

• Example: For \mathbb{R}^2 and \mathbb{C}^2 , $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is orthonormal, but $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is not.

2.vi) Dual Spaces

 A dual vector on a vector space V is a linear function from V to the scalars.

 $f(a\mathbf{x} + b\mathbf{y}) = af(\mathbf{x}) + bf(\mathbf{y})$

- The set of dual vectors, denoted V* is itself a vector space, called the dual vector space.
 - We define addition as: $(f + g)(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$
 - And scalar multiplication as: (af)(x) = a(f(x))

Dual vectors and Hyperplanes

• Consider the case of \mathbb{R}^n and the set of vectors $F_a = \{x \in \mathbb{R}^n | f(x) = a\}$

for some fixed dual vector f and scalar a.

• If
$$x, y \in F_a$$
 then $bx + cy \in F_a$ whenever $b + c = 1$
 $f(bx + cy) = bf(x) + cf(y)$
 $= ba + ca = (b + c)a = a$

• This means that F_a contains the lines connecting any two points and hence it is a hyperplane.

 We can specify f by giving two hyperplanes on which it takes two different values and then filling in by linearity.

Duals and Inner Products

- It is no accident that a hyperplane in \mathbb{R}^n is given by an equation of the form $a \cdot x = b$.
- If we vary *b* and keep *a* fixed then this defines a set of parallel hyperplanes and hence a dual vector $f_a(x) = a \cdot x$

In any vector space, a vector a ∈ V determines a dual vector $f_a ∈ V^*$ via

$$f_a(\mathbf{x}) = (\mathbf{a}, \mathbf{x})$$

Duals and Inner Products

• The correspondence between vectors and duals is oneto-one. For any dual vector $f \in V^*$, define a vector $a_f \in V$ as follows:

• Let x_1, x_2, \cdots be an orthonormal basis for V.

- Define $a_f = \sum_j f(x_j) x_j$.
- Then $f(\mathbf{x}) = (\mathbf{a}_f, \mathbf{x})$

• Proof: Since $\mathbf{x}_1, \mathbf{x}_2, \cdots$ is an basis, we can write $\mathbf{x} = \sum_j b_j \mathbf{x}_j$. Then, $(\mathbf{a}_f, \mathbf{x}) = \left(\mathbf{a}_f, \sum_j b_j \mathbf{x}_j\right) = \sum_j b_j (\mathbf{a}_f, \mathbf{x}_j) = \sum_j b_j f(\mathbf{x}_j)$ $= f\left(\sum_j b_j \mathbf{x}_j\right) = f(\mathbf{x})$

• A dual vector can be represented either as a set of parallel hyperplanes in *V* or as a vector in *V*.

Dual Cones

- Given a convex cone C, the dual cone C^* is the set of all dual vectors f such that $f(x) \ge 0$ for all $x \in C$.
- Equivalently, we can think of it as the set of all vectors a such that $(a, x) \ge 0$ $x \in C$.
 - This makes it possible to draw the cone and its dual in the same space.
- The dual cone is itself a convex cone.
- Output Because dual vectors are linear, to check if $f ∈ C^*$ it suffices to check that f(x) ≥ 0 for the extremal rays.

Self-Duality

- A cone C is called *self-dual* if $C = C^*$ (when we are representing dual vectors as inner products with vectors in the original space).
- Examples:
 - The cone generated by the probability simplex is self-dual.
 - The cone generated by a hypersphere (sphere in arbitrary dimension) is self-dual.

Defining a Closed Convex Set from a Convex Cone

- Last lecture, we explained how to lift a convex set to a convex cone by adding a dimension.
- You can reduce the dimension again by looking at points that lie on a specified hyperplane.
 - This will impose an equation $\mathbf{a} \cdot \mathbf{x} = b$, which can be used to eliminate one of the components.
- The intersection of a convex cone with a hyperplane will be a closed convex set if it intersects every extremal ray.
- More formally, given a cone C, we choose a dual vector u called the *unit* such that $0 < u(x) < \infty$ on all extremal rays and define

$$S = \{ \boldsymbol{x} \in C | u(\boldsymbol{x}) = 1 \}$$

Defining a Closed Convex Set from a Convex Cone

• If we are using the standard lifting $x \to \begin{pmatrix} 1 \\ x \end{pmatrix}$

then choosing
$$u(x) = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \cdot x$$
 will give us back our original convex set.