Quantum roundations Lecture 2

January 31, 2018 Dr. Matthew Leifer leifer@chapman.edu HSC112

2) Mathematical Background

i. Vector Spaces
ii. Convex Cones
iii. Convex Sets
iv. Convex Polytopes
v. Inner Products
vi. Dual Spaces

2.il) Vector Spaces

\odot A vector space consists of:
© A set of vectors $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \cdots$.
© A set of scalars a, b, c, \cdots.

- In this section, the scalars will usually be the real numbers. Later, quantum theory makes heavy use of complex vector spaces.
© A rule of the addition of vectors: $\boldsymbol{x}+\boldsymbol{y}$
- A rule for multiplying a vector by a scalar: $a \boldsymbol{x}$

Vector addifion rules

- The addition rule must satisfy:
© If \boldsymbol{x} and \boldsymbol{y} are vectors, then $\boldsymbol{x}+\boldsymbol{y}$ is a vector.
- Commutativity: $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{x}$.
© Associativity: $(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z}=\boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})$.
- There exists a vector $\mathbf{0}$ such that, for all vectors \boldsymbol{x}

$$
\mathbf{0}+x=x+\mathbf{0}=x
$$

- For each vector \boldsymbol{x}, there exists a unique vector $-\boldsymbol{x}$, such that

$$
\boldsymbol{x}+(-\boldsymbol{x})=(-\boldsymbol{x})+\boldsymbol{x}=\mathbf{0} .
$$

Scalar Mulifiplication Rules

- The scalar multiplication rule must satisfy:
- For every scalar a and every vector $\boldsymbol{x}, a \boldsymbol{x}$ is a vector.

This implies $a \boldsymbol{x}+b \boldsymbol{y}$ is always a vector for any scalars a, b and any vectors $\boldsymbol{x}, \boldsymbol{y}$.

- Distributivity:

$$
a(\boldsymbol{x}+\boldsymbol{y})=a \boldsymbol{x}+a \boldsymbol{y} \quad \text { and } \quad(a+b) \boldsymbol{x}=a \boldsymbol{x}+b \boldsymbol{x}
$$

- Associativity: $a(b \boldsymbol{x})=(a b) \boldsymbol{x}$.

๑ There exists a unit scalar 1 and a zero scalar 0 such that, for all vectors \boldsymbol{x},

$$
1 \boldsymbol{x}=\boldsymbol{x} \quad \text { and } \quad 0 \boldsymbol{x}=\mathbf{0}
$$

Exanples of vector spaces

$\odot \mathbb{R}^{n}$: The set of n-dimensional column vectors with real components.
$\odot \mathbb{C}^{n}$: The set of n-dimensional column vectors with complex components.

$$
\boldsymbol{r}=\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right)
$$

\odot Addition is component-wise addition. Scalars are the real numbers for \mathbb{R}^{n} and complex numbers for \mathbb{C}^{n}.

Examples of vector spaces

$\odot \mathbb{R}^{\infty}$ and \mathbb{C}^{∞} : The set of infinite dimensional real or complex column vectors.

- The set of real or complex-valued functions of a real number x.
- Addition is $(f+g)(x)=f(x)+g(x)$.
- Scalars are real or complex numbers with

$$
(a f)(x)=a f(x)
$$

Dimension and bases

\odot A set of N nonzero vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{N}$ is linearly independent iff the only solution to the equation

$$
\sum_{n=1}^{N} a_{n} x_{n}=0
$$

is $a_{1}=a_{2}=\cdots=a_{n}=0$.

- Otherwise the vectors are linearly dependent, and one of the vectors can be written as a sum of the others:

$$
\boldsymbol{x}_{j}=\sum_{n=1}^{j-1} b_{n} \boldsymbol{x}_{n}+\sum_{n=j+1}^{N} b_{n} \boldsymbol{x}_{n} \quad \text { with } \quad b_{n}=-\frac{a_{n}}{a_{j}}
$$

Dimension and bases

\odot The dimension d of a vector space is the maximum number of linearly independent vectors.
\odot A basis $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{d}$ for a vector space is a linearly independent set of maximum size.

- All vectors can be written as:

$$
\boldsymbol{y}=\sum_{n=1}^{d} b_{n} \boldsymbol{x}_{n}
$$

for some components b_{n}.

Examples

\odot For \mathbb{R}^{n} and \mathbb{C}^{n}, the vectors

are a basis, but not the only one. E.g. for \mathbb{R}^{2} and \mathbb{C}^{2}
$\binom{1}{0},\binom{1}{1}$ is also a basis.

Examples

$\odot \mathbb{R}^{n}$ and \mathbb{C}^{n} have dimension n.
$\odot \mathbb{R}^{\infty}$ and \mathbb{C}^{∞} have dimension (countable) infinity.

- The space of functions of a real variable has dimension (uncountable) infinity.

2.uli) Convex Cones

- A convex cone C is a subset of a real vector space such that, if $\boldsymbol{x}, \boldsymbol{y} \in C$ then $\alpha \boldsymbol{x}+\beta \boldsymbol{y} \in C$ for any positive (or zero) scalars $\alpha, \beta \geq 0$.
- Note: A convex cone always includes the origin.
\odot A convex cone is salient if, for every $\boldsymbol{x} \in C,-\boldsymbol{x} \notin C$.
- We will always work with salient convex cones, so when I say "cone", that is what I mean.
๑ Example: The set of vectors with positive components.

Examples

Exifemall Rays

\odot A vector \boldsymbol{x} is called an extreme point of C if, whenever
$\boldsymbol{x}=\alpha \boldsymbol{y}+\beta \mathbf{z}$ for $\mathbf{y}, \mathbf{z} \in C$ and $\alpha, \beta \geq 0$,
then $\boldsymbol{y}=\gamma \boldsymbol{x}$ and $\boldsymbol{z}=\delta \boldsymbol{x}$ for $\gamma, \delta \geq 0$.

- An extremal ray of a cone C is the set of points $\alpha \boldsymbol{x}$ for $\alpha \geq 0$ where \boldsymbol{x} is an extreme point.

Conic Hulls

- Given a set X of vectors in \mathbb{R}^{n}, the conic hull of X is a convex cone, denoted cone (X), consisting of the set of all points of the form

$$
\sum_{j} \alpha_{j} \boldsymbol{x}_{j} \text { for } \alpha_{j} \geq 0 \text { and } \boldsymbol{x}_{j} \in X
$$

Caraitheoodory's Theorem for Cones

\odot Theorem: Let X be a set of vectors in \mathbb{R}^{n}. Every $\boldsymbol{x} \in \operatorname{cone}(X)$ can be written as a positive combination of vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m} \in X$ that is linearly independent, so, in particular, $m \leq n$.
\odot Proof: Let $\boldsymbol{x} \in \operatorname{cone}(X)$ and let m be the smallest integer such that $\boldsymbol{x}=\sum_{j=1}^{m} \alpha_{j} \boldsymbol{x}_{j}$ for $\alpha_{j} \geq 0$ and $\boldsymbol{x}_{\boldsymbol{j}} \in X$.
๑ If the vectors were linearly dependent, there would exist $a_{1}, a_{2} \ldots, a_{m}$ with at least one a_{j} positive such that

$$
\sum_{j=1}^{m} a_{j} x_{j}=0 .
$$

Caraithéodory's Theorem for Cones

- Let β be the largest positive number such that

$$
\gamma_{j}=\alpha_{j}-\beta a_{j} \geq 0 \text { for all } j
$$

- At least one of the γ_{j} 's is zero and

$$
\boldsymbol{x}=\sum_{j=1}^{m} \gamma_{j} \boldsymbol{x}_{j}
$$

\odot This has $m-1$ nonzero terms, so contradicts the assumption that m was the smallest possible integer.

Krein-Milman theorem for cones

\odot Theorem: Every convex cone C in \mathbb{R}^{n} is the conic hull of its extreme points.

- Let $\operatorname{Ext}(C)$ be the set of extreme points of C. Then, the theorem says

$$
C=\operatorname{cone}(\operatorname{Ext}(C))
$$

\odot Corollary: Every $\boldsymbol{x} \in C$ can be written as a positive combination of at most n extreme points.

2.iili) Convex Sets

\odot A convex set S in \mathbb{R}^{n} is a set of vectors such that, whenever $\boldsymbol{x}, \boldsymbol{y} \in S$ then

$$
\alpha \boldsymbol{x}+\beta \boldsymbol{y} \in S \quad \text { for all } \alpha, \beta \geq 0, \alpha+\beta=1
$$

- Note that we will always be interested in bounded, closed convex sets.
- Bounded means that all the components of \boldsymbol{x} satisfy $\left|x_{j}\right|<N$ for some positive, but arbitrarily large N.
- Closed means that, for any convergent sequence of vectors in S, the limit point is also in S.
- All closed convex sets are bounded. We will see that salient cones are related to bounded convex sets.

Examples

Convex: Line connecting any two points is included in S.

Not Convex: There is a line connecting two points that is not in S.

Simplexes:
point
\bullet

```
line
```

\qquad
triangle

tetrahedron

Examples

Polygons:

Convex Combinations

\odot If we can write $\boldsymbol{y}=\sum_{j=1}^{n} \alpha_{j} \boldsymbol{x}_{j}$ for $\alpha_{j} \geq 0$ and $\sum_{j} \alpha_{j}=1$ then \boldsymbol{y} is called a convex combination of the \boldsymbol{x}_{j} 's.
\odot Proposition: For a convex set S, any convex combination of vectors in S is in S.
\odot Proof: Consider $\boldsymbol{y}=\sum_{j=1}^{n} \alpha_{j} \boldsymbol{x}_{j}$ where $\boldsymbol{x}_{j} \in S$.
\odot Define $\alpha_{2}^{\prime}=\alpha_{1}+\alpha_{2}$ and $x_{2}^{\prime}=\frac{\alpha_{1}}{\alpha_{2}^{\prime}} x_{1}+\frac{\alpha_{2}}{\alpha_{2}^{\prime}} x_{2}$.
$\odot x_{2}^{\prime}$ is in S by definition and $\alpha_{2}^{\prime}+\sum_{j=3}^{n} \alpha_{j}=1$, so

$$
\boldsymbol{y}=\alpha_{2}^{\prime} \boldsymbol{x}_{2}^{\prime}+\sum_{j=3}^{\boldsymbol{n}^{n}} \alpha_{j} \boldsymbol{x}_{j}
$$

is a convex combination of $n-1$ terms in S.

- Proceeding by induction, we can reduce this to two terms, which is in S by definition.

Extreme Points

- A vector \boldsymbol{x} is called an extreme point of S if whenever

$$
\begin{gathered}
\boldsymbol{x}=\alpha \boldsymbol{y}+\beta \mathbf{z} \\
\text { for } \boldsymbol{y}, \mathbf{z} \in S, \alpha, \beta \geq 0, \alpha+\beta=1 \\
\text { then } \boldsymbol{y}=\mathbf{z}=\boldsymbol{x}
\end{gathered}
$$

- Extreme points always lie on the boundary of S, but boundary points are not necessarily extreme.

- = extreme point
- = non-extreme point

Convex Hulls

- Given a set X of vectors in \mathbb{R}^{n}, the convex hull of X, denoted $\operatorname{conv}(X)$ is the set of all vectors of the form

$$
\boldsymbol{y}=\sum_{j} \alpha_{j} \boldsymbol{x}_{j}
$$

where $\boldsymbol{x}_{j} \in X, \alpha_{j} \geq 0$, and $\sum_{j} \alpha_{j}=1$.

Converting a Convex Set Info a Convex Cone

- A convex set of dimension d can be lifted to form a convex cone of dimension $d+1$.
- There are many ways to do this. We will define the standard lifting as follows:
\odot For every vector \boldsymbol{x} in the convex set $S \subseteq \mathbb{R}^{d}$, define the vector

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right) \in \mathbb{R}^{d+1}
$$

- Let X be the set of such vectors and define the cone $C=\operatorname{cone}(X)$.

Examples

\odot The convex set S is embedded as a cross-section of the cone C.

- If \boldsymbol{x} is an extreme point of S then αx^{\prime} is an extremal ray of C, i.e.
$\left(\begin{array}{c}\alpha \\ \alpha x_{1} \\ \alpha x_{2} \\ \vdots \\ \alpha x_{d}\end{array}\right)$ is extremal.

