Quantum Foundations Lecture 2

January 31, 2018 Dr. Matthew Leifer <u>leifer@chapman.edu</u> HSC112

2) Mathematical Background

- i. Vector Spaces
- ii. Convex Cones
- iii. Convex Sets
- iv. Convex Polytopes
- v. Inner Products
- vi. Dual Spaces

2.i) Vector Spaces

• A vector space consists of:

• A set of vectors x, y, z, \cdots .

• A set of scalars a, b, c, \cdots .

 In this section, the scalars will usually be the real numbers. Later, quantum theory makes heavy use of complex vector spaces.

• A rule of the addition of vectors: x + y

 \odot A rule for multiplying a vector by a scalar: ax

Vector addition rules

• The addition rule must satisfy:

 \odot If x and y are vectors, then x + y is a vector.

- Commutativity: x + y = y + x.
- Associativity: (x + y) + z = x + (y + z).

 \odot There exists a vector **0** such that, for all vectors x

0 + x = x + 0 = x.

 \odot For each vector x, there exists a unique vector -x, such that

$$x + (-x) = (-x) + x = 0.$$

Scalar Multiplication Rules

- The scalar multiplication rule must satisfy:
 - For every scalar a and every vector x, ax is a vector.
 - This implies ax + by is always a vector for any scalars a, b and any vectors x, y.
 - Distributivity:

 $a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + a\mathbf{y}$ and $(a + b)\mathbf{x} = a\mathbf{x} + b\mathbf{x}$.

• Associativity: $a(b\mathbf{x}) = (ab)\mathbf{x}$.

 \odot There exists a unit scalar 1 and a zero scalar 0 such that, for all vectors $\pmb{x},$

$$1x = x$$
 and $0x = 0$.

Examples of vector spaces

- $\odot \mathbb{R}^n$: The set of *n*-dimensional column vectors with real components.
- \mathbb{C}^n : The set of *n*-dimensional column vectors with complex components.

$$\boldsymbol{r} = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix}$$

 \odot Addition is component-wise addition. Scalars are the real numbers for \mathbb{R}^n and complex numbers for \mathbb{C}^n .

Examples of vector spaces

- $\odot \ \mathbb{R}^{\infty}$ and \mathbb{C}^{∞} : The set of infinite dimensional real or complex column vectors.
- The set of real or complex-valued functions of a real number x.
 - Addition is (f + g)(x) = f(x) + g(x).
 - Scalars are real or complex numbers with

(af)(x) = af(x)

Dimension and bases

• A set of N nonzero vectors x_1, x_2, \dots, x_N is linearly independent iff the only solution to the equation

$$\sum_{n=1}^{n} a_n x_n = 0$$

is
$$a_1 = a_2 = \dots = a_n = 0$$
.

 Otherwise the vectors are linearly dependent, and one of the vectors can be written as a sum of the others:

$$x_{j} = \sum_{n=1}^{J-1} b_{n} x_{n} + \sum_{n=j+1}^{N} b_{n} x_{n}$$
 with $b_{n} = -\frac{a_{n}}{a_{j}}$

Dimension and bases

- The dimension d of a vector space is the maximum number of linearly independent vectors.
- A basis x_1, x_2, \cdots, x_d for a vector space is a linearly independent set of maximum size.

• All vectors can be written as:

 $\mathbf{y} = \sum_{n=1}^{d} b_n \mathbf{x}_n$

for some components b_n .

Examples

Examples

- $\odot \mathbb{R}^{\infty}$ and \mathbb{C}^{∞} have dimension (countable) infinity.
- The space of functions of a real variable has dimension (uncountable) infinity.

2.ii) Convex Cones

- A convex cone C is a subset of a real vector space such that, if $x, y \in C$ then $\alpha x + \beta y \in C$ for any positive (or zero) scalars $\alpha, \beta \ge 0$.
- Note: A convex cone always includes the origin.
- A convex cone is salient if, for every $x \in C$, $-x \notin C$.
 - We will always work with salient convex cones, so when I say "cone", that is what I mean.

• Example: The set of vectors with positive components.

Examples

Extremal Rays

• A vector **x** is called an extreme point of C if, whenever

$$x = \alpha y + \beta z$$
 for $y, z \in C$ and $\alpha, \beta \geq 0$,

then
$$y = \gamma x$$
 and $z = \delta x$ for $\gamma, \delta \ge 0$.

• An extremal ray of a cone C is the set of points αx for $\alpha \ge 0$ where x is an extreme point.

Conic Hulls

• Given a set X of vectors in \mathbb{R}^n , the conic hull of X is a convex cone, denoted cone(X), consisting of the set of all points of the form

Carathéodory's Theorem for Cones

- **Theorem:** Let X be a set of vectors in \mathbb{R}^n . Every $x \in \text{cone}(X)$ can be written as a positive combination of vectors $x_1, x_2, \dots, x_m \in X$ that is linearly independent, so, in particular, $m \leq n$.
- Proof: Let $x \in \text{cone}(X)$ and let m be the smallest integer such that $x = \sum_{j=1}^{m} \alpha_j x_j$ for $\alpha_j \ge 0$ and $x_j \in X$.
- If the vectors were linearly dependent, there would exist $a_1, a_2 \dots, a_m$ with at least one a_j positive such that

$$\sum_{j=1}^m a_j \boldsymbol{x}_j = 0.$$

Carathéodory's Theorem for Cones

• Let β be the largest positive number such that $\gamma_j = \alpha_j - \beta a_j \ge 0$ for all j. • At least one of the γ_j 's is zero and $\mathbf{x} = \sum_{j=1}^m \gamma_j \mathbf{x}_j$

• This has m - 1 nonzero terms, so contradicts the assumption that m was the smallest possible integer.

Krein-Milman theorem for cones

- **Theorem**: Every convex cone C in \mathbb{R}^n is the conic hull of its extreme points.
- Let Ext(C) be the set of extreme points of C. Then, the theorem says

 $C = \operatorname{cone}(\operatorname{Ext}(C))$

• Corollary: Every $x \in C$ can be written as a positive combination of at most n extreme points.

2.iii) Convex Sets

• A convex set S in \mathbb{R}^n is a set of vectors such that, whenever $x, y \in S$ then

 $\alpha x + \beta y \in S$ for all $\alpha, \beta \ge 0, \alpha + \beta = 1$.

 Note that we will always be interested in bounded, closed convex sets.

- Bounded means that all the components of x satisfy $|x_j| < N$ for some positive, but arbitrarily large N.
- Closed means that, for any convergent sequence of vectors in *S*, the limit point is also in *S*.
- All closed convex sets are bounded. We will see that salient cones are related to bounded convex sets.

Polygons:

Convex Combinations

• If we can write $y = \sum_{j=1}^{n} \alpha_j x_j$ for $\alpha_j \ge 0$ and $\sum_j \alpha_j = 1$ then y is called a convex combination of the x_j 's.

- **Proposition**: For a convex set *S*, any convex combination of vectors in *S* is in *S*.
- Proof: Consider $y = \sum_{j=1}^{n} \alpha_j x_j$ where $x_j \in S$.
- Define $\alpha'_2 = \alpha_1 + \alpha_2$ and $\mathbf{x}'_2 = \frac{\alpha_1}{\alpha'_2}\mathbf{x}_1 + \frac{\alpha_2}{\alpha'_2}\mathbf{x}_2$.
- x'_2 is in S by definition and $\alpha'_2 + \sum_{j=3}^n \alpha_j = 1$, so $y = \alpha'_2 x'_2 + \sum_{j=3}^n \alpha_j x_j$

is a convex combination of n-1 terms in S.

 Proceeding by induction, we can reduce this to two terms, which is in S by definition.

Extreme Points

 A vector x is called an extreme point of S if whenever

 $x = \alpha y + \beta z$
for $y, z \in S, \alpha, \beta \ge 0, \alpha + \beta = 1$,
then y = z = x.

 Extreme points always lie on the boundary of S, but boundary points are not necessarily extreme.

 $\bullet = \text{extreme point}$

 $\bullet = \text{non-extreme point}$

Convex Hulls

• Given a set X of vectors in \mathbb{R}^n , the convex hull of X, denoted conv(X) is the set of all vectors of the form

Converting a Convex Set Into a Convex Cone

- A convex set of dimension d can be lifted to form a convex cone of dimension d + 1.
- There are many ways to do this. We will define the standard lifting as follows:
- For every vector x in the convex set $S \subseteq \mathbb{R}^d$, define the vector

$$\boldsymbol{x}' = \begin{pmatrix} 1\\ x_1\\ x_2\\ \vdots\\ x_d \end{pmatrix} \in \mathbb{R}^{d+1}$$

• Let X be the set of such vectors and define the cone C = cone(X).

Examples

- The convex set *S* is embedded as a cross-section of the cone *C*.
- If x is an extreme point of S then αx' is an extremal ray of C, i.e.

$$\begin{pmatrix} \alpha \\ \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_d \end{pmatrix}$$
 is extremal.

