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A vector space consists of:

 A set of vectors 𝒙, 𝒚, 𝒛,⋯.

 A set of scalars 𝑎, 𝑏, 𝑐,⋯.

 In this section, the scalars will usually be the real numbers.  Later, quantum 
theory makes heavy use of complex vector spaces.

 A rule of the addition of vectors: 𝒙 + 𝒚

 A rule for multiplying a vector by a scalar: 𝑎𝒙



 The addition rule must satisfy:

 If 𝒙 and 𝒚 are vectors, then 𝒙 + 𝒚 is a vector.

 Commutativity: 𝒙 + 𝒚 = 𝒚 + 𝒙.

 Associativity: 𝒙 + 𝒚 + 𝒛 = 𝒙 + (𝒚 + 𝒛).

 There exists a vector 𝟎 such that, for all vectors 𝒙

𝟎 + 𝒙 = 𝒙 + 𝟎 = 𝒙.

 For each vector 𝒙, there exists a unique vector −𝒙, such that

𝒙 + −𝒙 = −𝒙 + 𝒙 = 𝟎.



 The scalar multiplication rule must satisfy:

 For every scalar 𝑎 and every vector 𝒙, 𝑎𝒙 is a vector.

This implies 𝑎𝒙 + 𝑏𝒚 is always a vector for any scalars 𝑎, 𝑏 and any 
vectors 𝒙, 𝒚.

 Distributivity:

𝑎 𝒙 + 𝒚 = 𝑎𝒙 + 𝑎𝒚 and     𝑎 + 𝑏 𝒙 = 𝑎𝒙 + 𝑏𝒙.

 Associativity: 𝑎 𝑏𝒙 = 𝑎𝑏 𝒙.

 There exists a unit scalar 1 and a zero scalar 0 such that, for all 
vectors 𝒙,

1𝒙 = 𝒙 and        0𝒙 = 𝟎.



ℝ𝑛: The set of 𝑛-dimensional column vectors with real 
components.

 ℂ𝑛: The set of 𝑛-dimensional column vectors with complex 
components.

𝒓 =

𝑟1
𝑟2
⋮
𝑟𝑛

Addition is component-wise addition.  Scalars are the real 
numbers for ℝ𝑛 and complex numbers for ℂ𝑛.



ℝ∞ and ℂ∞: The set of infinite dimensional real or complex 
column vectors.

 The set of real or complex-valued functions of a real 
number 𝑥.

 Addition is 𝑓 + 𝑔 𝑥 = 𝑓 𝑥 + 𝑔(𝑥).

 Scalars are real or complex numbers with

𝑎𝑓 𝑥 = 𝑎𝑓(𝑥)



A set of 𝑁 nonzero vectors 𝒙1, 𝒙2, ⋯ , 𝒙𝑁 is linearly 
independent iff the only solution to the equation



𝑛=1

𝑁

𝑎𝑛𝒙𝑛 = 0

is 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛 = 0.

Otherwise the vectors are linearly dependent, and one of 
the vectors can be written as a sum of the others:

𝒙𝑗 = 

𝑛=1

𝑗−1

𝑏𝑛𝒙𝑛 + 

𝑛=𝑗+1

𝑁

𝑏𝑛𝒙𝑛 with 𝑏𝑛 = −
𝑎𝑛
𝑎𝑗



 The dimension 𝑑 of a vector space is the maximum number 
of linearly independent vectors.

A basis 𝒙1, 𝒙2, ⋯ , 𝒙𝑑 for a vector space is a linearly 
independent set of maximum size.

 All vectors can be written as:

𝒚 = σ𝑛=1
𝑑 𝑏𝑛𝒙𝑛

for some components 𝑏𝑛.



 For ℝ𝑛 and ℂ𝑛, the vectors

𝒆𝒋 =

0
0
⋮
0
1
0
⋮
0

are a basis, but not the only one.  E.g. for ℝ2 and ℂ2

1
0

,
1
1

is also a basis.

𝑗th component



ℝ𝑛 and ℂ𝑛 have dimension 𝑛.

ℝ∞ and ℂ∞ have dimension (countable) infinity.

 The space of functions of a real variable has dimension 
(uncountable) infinity.



A convex cone 𝐶 is a subset of a real vector space such 
that, if 𝒙, 𝒚 ∈ 𝐶 then 𝛼𝒙 + 𝛽𝒚 ∈ 𝐶 for any positive (or zero) 
scalars 𝛼, 𝛽 ≥ 0.

Note: A convex cone always includes the origin.

A convex cone is salient if, for every 𝒙 ∈ 𝐶, −𝒙 ∉ 𝐶.

 We will always work with salient convex cones, so when I say 
“cone”, that is what I mean.

 Example: The set of vectors with positive components.



𝐶



A vector 𝒙 is called an extreme 
point of 𝐶 if, whenever 

𝒙 = 𝛼𝒚 + 𝛽𝒛 for 𝐲, 𝒛 ∈ 𝐶 and 𝛼, 𝛽 ≥ 0, 

then 𝒚 = 𝛾𝒙 and 𝒛 = 𝛿𝒙 for 𝛾, 𝛿 ≥ 0.

An extremal ray of a cone 𝐶 is 
the set of points 𝛼𝒙 for 𝛼 ≥ 0
where 𝒙 is an extreme point.



Given a set 𝑋 of vectors in ℝ𝑛, the conic hull of 𝑋 is a 
convex cone, denoted cone(𝑋), consisting of the set of all 
points of the form

σ𝑗 𝛼𝑗𝒙𝑗 for 𝛼𝑗 ≥ 0 and 𝒙𝑗 ∈ 𝑋



 Theorem: Let 𝑋 be a set of vectors in ℝ𝑛.  Every 𝒙 ∈ cone(𝑋)
can be written as a positive combination of vectors 
𝒙1, 𝒙2, … , 𝒙𝑚 ∈ 𝑋 that is linearly independent, so, in 
particular, 𝑚 ≤ 𝑛.

 Proof: Let 𝒙 ∈ cone(𝑋) and let 𝑚 be the smallest integer 
such that 𝒙 = σ𝑗=1

𝑚 𝛼𝑗𝒙𝑗 for 𝛼𝑗 ≥ 0 and 𝒙𝑗 ∈ 𝑋.

 If the vectors were linearly dependent, there would exist 
𝑎1, 𝑎2… , 𝑎𝑚 with at least one 𝑎𝑗 positive such that

σ𝑗=1
𝑚 𝑎𝑗𝒙𝑗 = 0.



 Let 𝛽 be the largest positive number such that

𝛾𝑗 = 𝛼𝑗 − 𝛽𝑎𝑗 ≥ 0 for all 𝑗.

At least one of the 𝛾𝑗’s is zero and

𝒙 =

𝑗=1

𝑚

𝛾𝑗𝒙𝑗

 This has 𝑚 − 1 nonzero terms, so contradicts the 
assumption that 𝑚 was the smallest possible integer.



 Theorem: Every convex cone 𝐶 in ℝ𝑛 is the conic hull of its 
extreme points.

 Let Ext 𝐶 be the set of extreme points of 𝐶.  Then, the 
theorem says

𝐶 = cone(Ext 𝐶 )

Corollary: Every 𝒙 ∈ 𝐶 can be written as a positive 
combination of at most 𝑛 extreme points.



A convex set 𝑆 in ℝ𝑛 is a set of vectors such that, 
whenever 𝒙, 𝒚 ∈ 𝑆 then

𝛼𝒙 + 𝛽𝒚 ∈ 𝑆 for all 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 = 1.

Note that we will always be interested in bounded, closed
convex sets.

 Bounded means that all the components of 𝒙 satisfy 𝑥𝑗 < 𝑁 for 
some positive, but arbitrarily large 𝑁.

 Closed means that, for any convergent sequence of vectors in 
𝑆, the limit point is also in 𝑆.

All closed convex sets are bounded. We will see that
salient cones are related to bounded convex sets.







 If we can write 𝒚 = σ𝑗=1
𝑛 𝛼𝑗𝒙𝑗 for 𝛼𝑗 ≥ 0 and σ𝑗 𝛼𝑗 = 1 then 𝒚 is 

called a convex combination of the 𝒙𝑗’s.

 Proposition: For a convex set 𝑆, any convex combination of 
vectors in 𝑆 is in 𝑆.

 Proof: Consider 𝒚 = σ𝑗=1
𝑛 𝛼𝑗𝒙𝑗 where 𝒙𝑗 ∈ 𝑆.

 Define 𝛼2
′ = 𝛼1 + 𝛼2 and 𝒙2

′ =
𝛼1

𝛼2
′ 𝒙1 +

𝛼2

𝛼2
′ 𝒙2.

 𝒙2
′ is in 𝑆 by definition and 𝛼2

′ +σ𝑗=3
𝑛 𝛼𝑗 = 1, so

𝒚 = 𝛼2
′𝒙2

′ +
𝑗=3

𝑛

𝛼𝑗𝒙𝑗

is a convex combination of 𝑛 − 1 terms in 𝑆.

 Proceeding by induction, we can reduce this to two terms, 
which is in 𝑆 by definition.



A vector 𝒙 is called an extreme point of 
𝑆 if whenever

𝒙 = 𝛼𝒚 + 𝛽𝒛

for 𝒚, 𝒛 ∈ 𝑆, 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 = 1,

then 𝒚 = 𝒛 = 𝒙.

 Extreme points always lie on the 
boundary of 𝑆, but boundary points are 
not necessarily extreme.



Given a set 𝑋 of vectors in ℝ𝑛, the convex hull of 𝑋, 
denoted conv(𝑋) is the set of all vectors of the form

𝒚 =

𝑗

𝛼𝑗𝒙𝑗

where 𝒙𝑗 ∈ 𝑋, 𝛼𝑗 ≥ 0, and σ𝑗 𝛼𝑗 = 1. 



 A convex set of dimension 𝑑 can be lifted to form a convex cone 
of dimension 𝑑 + 1.

 There are many ways to do this.  We will define the standard lifting 
as follows:

 For every vector 𝒙 in the convex set 𝑆 ⊆ ℝ𝑑, define the vector

𝒙′ =

1
𝑥1
𝑥2
⋮
𝑥𝑑

∈ ℝ𝑑+1

 Let 𝑋 be the set of such vectors and define the cone 𝐶 = cone 𝑋 .



 The convex set 𝑆 is 
embedded as a 
cross-section of the 
cone 𝐶.

 If 𝒙 is an extreme 
point of 𝑆 then 𝛼𝒙′ is 
an extremal ray of 
𝐶, i.e.

𝛼
𝛼𝑥1
𝛼𝑥2
⋮

𝛼𝑥𝑑

is extremal.


