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2) Mathematical Background

. Vector Spaces

i. Convex Cones

i. Convex Sets

v. Convex Polytopes
v. Inner Products

vi. Dual Spaces



2.1) Vector Spaces

® A vector space consists of:
@ A set of vectors x,y,z, .

® A set of scalars a,b, ¢, ---.

@ In this section, the scalars will usually be the real numbers. Later, guantum
theory makes heavy use of complex vector spaces.

@ A rule of the addition of vectors: x + y
® A rule for multiplying a vector by a scalar: ax



Vector addition rules

® The addition rule must satisty:

@ If x and y are vectors, then x + y is a vector.

@ Commutativity: x +y =y + x.

® Associafivity: (x+y)+z=x+ (y + 2).

® There exists a vector 0 such that, for all vectors x

O+x=x+0=unx.

® For each vector x, there exists a unigue vector —x, such that

x+(—x)=(—x)+x=0.



Scalar Multiplication Rules

® The scalar multiplication rule must satisty:
® For every scalar a and every vector x, ax is a vector.

This implies ax + by is always a vector for any scalars a, b and any
vectors x, y.

® Distributivity:
alx+y)=ax+ay and (a+b)x=ax+ bx.
® Associativity: a(bx) = (ab)x.

® There exists a unit scalar 1 and a zero scalar 0 such that, for all
vectors x,

1x=x and Ox = 0.



Examples of vector spaces

® R™: The set of n-dimensional column vectors with real
components.

® C™: The set of n-dimensional column vectors with complex

components.
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® Addition is component-wise addition. Scalars are the real
numbers for R® and complex numbers for C".



Examples of vector spaces

@ R* and C*: The set of infinite dimensional real or complex
column vectors.

® The set of real or complex-valued functions of a real
number x.
@ Additionis (f + g)(x) = f(x) + g(x).
@ Scalars are real or complex numbers with

(af)(x) = af (x)



Dimension and bases

® A set of N honzero vectors x4, x,, -+, Xy IS linearly
independent Iff the onl;llvsolu’rion to the equation

z a,xXx, =0

Sa;, =a, =+ =a, =0.

® Otherwise the vectors are linearly dependent, and one of

the vec’rors ccm be wr1|\;r’ren as a sum of the others:

anxn z by  with by =—="

n=j+1 J



Dimension and bases

® The dimension d of a vector space is the maximum number
of linearly independent vectors.

® A basis x4, x,,, x4 fOr a vector space is a linearly
independent set of maximum size.

® All vectors can be written as:

— \d
Y = Xn=1bnXxy
for some components b,,.



Examples

® For R™ and C", the vectors
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are a basis, but not the only one. E.g. for R? and C?

(é) , (i) IS also a basis.




Examples

® R™ and C™* have dimension n.
@ R* and C* have dimension (countable) infinity.

® The space of functions of a real variable has dimension
(uncountable) infinity.



2.11) Convex Cones

® A convex cone C Is a subset of a real vector space such

that, if x,y € C then ax + By € C for any positive (or zero)
scalars a, f = 0.

® Note: A convex cone always includes the origin.

® A convex cone s salient if, forevery x e C, —x ¢ C.

@ We will always work with salient convex cones, so when | say
“Ycone”, that is what | mean.

® Example: The set of vectors with positive components.



Examples




Exiremal Rays

® A vector x Is called an exfreme 7
point of C If, whenever
Extremal point
X = Qay + BZ fOI’ V,Z eEC Oﬂd a,ﬁ > O, Extremal ray—

theny=yxandz=4dxfory,§ =0. ~

® An extremal ray of a cone C Is
the set of points ax fora = 0
where x Is an extreme point.




Conic Hulls

® Given a set X of vectors in R"™, the conic hull of X Is a
convex cone, denoted cone(X), consisting of the set of all
points of the form

Z]a]x] for a; > (0 and Xj eX
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Carathéodory’'s Theorem for Cones

© Theorem: Let X be a set of vectors in R®. Every x € cone(X)
can be written as a positive combination of vectors
X1,X5, ...,X,, €X thatis linearly independent, so, in
particular, m < n.

® Proof: Let x € cone(X) and let m be the smallest integer
such that x = Y7, ajx; for a; = 0 and x; € X.

@ If the vectors were linearly dependent, there would exist
a, a, ..., a, With at least one a; positive such that

m —
j=1 Clj.X'j = 0.



Carathéodory’'s Theorem for Cones

@ Let B be the largest positive number such that
yj = a; — Ba; = 0 forall j.
® At least one of the y;’'s is zero and

X = Eijj

® This has m — 1 nonzero ’rerms, so confradicts the
assumption that m was the smallest possible integer.



Krein-Milman theorem for cones

® Theorem: Every convex cone C in R" is the conic hull of ifs
extreme points.

® Let Ext(C) be the set of extreme points of C. Then, the

theorem says
C = cone(Ext(C))

@ Corollary: Every x € C can be written as a positive
combination of at most n extreme poinfts.



2.1if) Convex Sefts

® A convex set S in R" is a set of vectors such that,
whenever x,y € S then

ax+pyeS fordla =0 a+p=1.

® Note that we will always be interested in bounded, closed
convex sefs.

® Bounded means that all the components of x satisfy |x;| < N for
some positive, but arbitrarily large N.

@ Closed means that, for any convergent sequence of vectors in
S, the limit pointis also in S.

® All closed convex sets are bounded. We will see that
salient cones are related 1o bounded convex sefts.



Examples

=y

Convex: Line connecting any two Not Convex: There is a line connecting
points is included in S. two points that is not in S.

Simplexes:

point line triangle tetrahedron
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Examples

Polygons:




Convex Combinations

o If we canwrite y = Y7 a;x; fora; = 0and };a; = 1 then y is
called a convex combination of the x;'s.
® Proposition: For a convex set S, any convex combinafion of
vecforsin Sisin S.
. 1 — n
® Proof: Consider y = Y7_; ajx; where x; € §.
o Define a} = a; + a, and x, = %xl +%x2.
2 2
® x5 isin § by definition and a; + Yj-;a; = 1, sO
n
y = aéx'z + (ij]'
J=3
IS @ convex combination of n —1 termsin S.

® Proceeding by induction, we can reduce this fo two terms,
which is in § by definition.



Exireme Poinfs

® A vector x is called an extreme point of
S If whenever

xX=ay+ [z
fory,zeS,a, =20,a+p =1,
theny =2z =x.

® Extreme points always lie on the
boundary of S, but boundary points are
not necessarily extreme.

A

e = extreme point

e = non-extreme point



Convex Hulls

® Gliven a set X of vectors in R, the convex hull of X,
denoted conv(X) is the set of all vectors of the form

Yy = Zajxj
J

where x; € X, @; =2 0, and );a; = 1.
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Converiing a Convex Set Into a Convex
Cone

® A convex set of dimension d can be liffed to form a convex cone
of dimension d + 1.

® There are many ways to do this. We will define the standard liffing
as follows:

® For every vector x in the convex set § € R%, define the vector

1
X1
x' =] x, | e R¢*H1
X:d
® Let X be the set of such vectors and define the cone € = cone(X).



Examples

® The convex set S is
embedded as a
cross-section of the
cone C.

@ If x IS an extreme
point of § then ax’ is
an extremal ray of
C,l.e.

a
ax,

ax, |is extremal.
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