CHAPMAN | INSTITUTE FOR UNIVERSITY | QUANTUM STUDIES

Matthew Leifer Chapman University Joint work with Tobias Fritz (Max Planck Inst. for Math. Sci.) arXiv:1505.01151

Introduction
Weaker predictive
structures
Prosaic example
Generalizing quantum
theory
Test spaces
Plausibility measures
Agreement
Archimedean condition
Main results
Proof idea
Conclusion

Introduction

Weaker predictive structures

Introduction Weaker predictive structures Prosaic example Generalizing quantum theory Test spaces Plausibility measures Agreement Archimedean condition Main results Proof idea

Conclusion

- We normally say that, at a minimum, a physical theory should supply *probabilities* for the outcomes of any experiment.
- But it is possible to contemplate weaker predictive structures, e.g.
 - □ *Possibilistic*/modal/relational theories: For any event A we can say whether A is possible or impossible, e.g. supports on test spaces¹.
 - \Box *Comparative* theories: For events *A* and *B*, it may be possible to say that *A* is less likely than *B*, without giving precise numerical probabilities, and relative likelihood may only be a partial order.
- Plausibility measures², unify probabilistic, comparative, and possibilistic predictions. They have only been developed for classical theories. We generalize to *test spaces*.

²N. Fiedman and J. Halpern, *Proc. 11th Conference on Uncertainty in Artificial Intelligence* (UAI1995) (1995). arXiv:1302.4947.

IQSA 13/07/2016 - 3 / 36

¹D. Foulis et. al., *Found. Phys.* 13:813–842 (1983). C. Randall and D. Foulis, *Found. Phys.* 13:843–857 (1983). D. Foulis et. al., *IJTP* 31:789–807 (1992).

Motivation: Prosaic example

Introduction
Weaker predictive
structures
Prosaic example
Generalizing quantum theory
Test spaces
Plausibility measures
Agreement
Archimedean condition

|--|

Conclusion

Adversarial scenarios:

- □ Consider a device with n settings that prepares ρ_j when the setting is j.
- □ You want to bet on the outcomes of a quantum experiment described by a POVM $\{E_k\}$. However, the bookmaker gets to choose the setting *after* you have placed your bets.
- It does not make sense to assign a prior probability to the setting because it is chosen adversarialy.
- $\Box \quad \text{However, it is still safe to say that } E_k \text{ is less likely than } E_m \text{ if } \\ \text{Tr} (E_k \rho_j) < \text{Tr} (E_m \rho_j) \text{ for all } j.$

Motivation: Generalizing quantum theory

Introduction

Weaker	predictive
structure	es

Prosaic example

Generalizing quantum theory

- Test spaces
- Plausibility measures
- Agreement
- Archimedean condition
- Main results
- Proof idea

Conclusion

- Requiring probabilities restricts the possible generalizations of quantum theory.
 - \Box E.g. Cannot have quantum theory with \mathbb{C} replaced by a finite field because vector spaces over finite fields have no inner product.
 - Schumacher and Westmoreland constructed a *possibilistic* quantum theory over finite fields³.
 - More generally, some well-defined operational structures, e.g. test spaces, quantum logics, contextuality scenarios etc. have no probabilistic states, but they do have possibilistic and comparative states.

³B. Schumacher and M. Westmoreland, *Proc. 7th International QPL Workshop* (2010). arXiv:1010.2929

Introduction
Test spaces
Test spaces
Examples
Events
Probability measures
Plausibility measures
Agreement
Archimedean condition
Main results
Proof idea
Conclusion

Test spaces

Test spaces

Introduction
Test spaces
Test spaces
Examples
Events
Probability measures
Agreement
Archimedean condition
Main results
Proof idea

Conclusion

Definition: A *test space* (X, Σ) consits of

 \Box A set *X* of *outcomes*.

 \Box A set Σ of subsets of X such that

$$\bigcup_{T \in \Sigma} T = X.$$

A set $T \in \Sigma$ is called a *test*.

A test space is called *finite* if X is finite (in which case the test space is a *hypergraph*).

It is *locally finite* if each $T \in \Sigma$ is finite.

Examples

I Quantum test space: $(P(\mathcal{H}), b(\mathcal{H}))$, where

 \square $P(\mathcal{H}) =$ the set of unit vectors in \mathcal{H} (up to global phases).

 \Box $b(\mathcal{H}) =$ the set of orthonormal bases (up to global phases).

Test spaces Test spaces Examples

Introduction

Events

Probability measures

Plausibility measures

Agreement

Archimedean condition

Main results

Proof idea

Conclusion

Definition: An *event* on a test space (X, Σ) is a subset of a test. $E(X, \Sigma)$ denotes the set of events.

Examples:

Classical: An event is any subset of $X = \{x_1, \dots, x_n\}$. $E(X, \{X\}) = 2^X$.

Specker:

$$\begin{split} E(\{x,y,z\},\{\{x,y\},\{y,z\},\{z,x\}\}) = \\ \{\emptyset,\{x\},\{y\},\{z\},\{x,y\},\{y,z\},\{z,x\}\}. \end{split}$$

 Quantum: An event is a subset of the vectors in an orthonormal basis. Each event can be associated with the projector onto their span.

IQSA 13/07/2016 - 9 / 36

Probability measures

Introduction
Test spaces
Test spaces
Examples
Events
Probability measures
Plausibility measures
Agreement
Archimedean condition
Main results
Dreafidee

Conclusion

Definition: A *probability measure* on a (locally finite) test space is a function $\mu : E(X, \Sigma) \rightarrow [0, 1]$ such that,

 $\Box \quad \text{For any test } T \in \Sigma, \qquad \mu(T) = 1.$

 $\Box \quad \mu(\emptyset) = 0.$

 $\Box \quad \text{If } A, B \in E(X, \Sigma) \text{ are disjoint and there exists a test } T \text{ such that } A \subseteq T, B \subseteq T \text{, then}$

 $\mu(A \cup B) = \mu(A) + \mu(B).$

I One implication of this is that, if $A \subseteq B$, then $\mu(A) \leq \mu(B)$.

IQSA 13/07/2016 - 10 / 36

Introduction
Test spaces
Plausibility measures
Plausibility measures
Examples
Agreement
Archimedean condition
Main results
Proof idea

Conclusion

Plausibility measures

Plausibility measures

Introduction	
Test spaces	•
Plausibility measures	• • •
Plausibility measures	•
Examples	•
Agreement	•
Archimedean condition	•
Main results	•
Proof idea	•
Conclusion	•

- A *plausibility measure* on a test space (X, Σ) is a function $PI: E(X, \Sigma) \to D$, where
- $\square \quad (D, \preceq) \text{ is a bounded poset with minimal element } 0 \text{ and maximal element } 1.$
- $\ \ \Box \ \ {\rm For \ any \ test} \ T \in \Sigma, \qquad {\rm Pl}(T) = 1.$

 $\Box \quad \mathsf{PI}(\emptyset) = 0.$

Examples

Introduction
Test spaces
Plausibility measures
Plausibility measures
Examples
Agreement
Archimedean condition
Main results
Proof idea
Conclusion

- A probability measure is a plausibility measure.
- Let $D = \{0, 1\}$ with $0 \prec 1$. A plausibility measure PI such that, for every test $T \in \Sigma$ there exists an $x \in T$ with PI(x) = 1 is called a *possibility measure*.
- Given a set $\{\mu_j\}_{j=1}^n$ of probability measures, let

$$\mathsf{PI}(A) = (\mu_1(A), \mu_2(A), \dots, \mu_n(A))$$

and define the poset:

- $\square D := [0,1]^{\times n}$
- $\Box \quad \text{Ordering:} \ (a_1, a_2, \dots, a_n) \preceq (b_1, b_2, \dots, b_n) \text{ if } a_j \leq b_j \text{ for all } j$
- \Box Minimal element: $0 = (0, 0, \dots, 0)$
- \Box Maximal element $(1, 1, \dots, 1)$

Then, we have a plausibility measure with $PI(A) \leq PI(B)$ iff $\mu_j(A) \leq \mu_j(B)$ for all j.

	Intr	odu	JCti	on	
_					

Test spaces

Plausibility measures

Agreement

Agreement

Disagreeable

Archimedean condition

Main results

Proof idea

Conclusion

Agreement

IQSA 13/07/2016 - 14 / 36

Agreement

 Introduction

 Test spaces

 Plausibility measures

 Agreement

 Agreement

 Disagreeable

 Archimedean condition

 Main results

 Proof idea

 Conclusion

Definition: A plausibility measure PI on a test space (x, Σ) agrees with a probability measure μ if

 $\mathsf{PI}(A) \preceq \mathsf{PI}(B) \qquad \Leftrightarrow \qquad \mu(A) \leq \mu(B).$

It almost agrees with μ if

 $\mathsf{PI}(A) \preceq \mathsf{PI}(B) \qquad \Rightarrow \qquad \mu(A) \leq \mu(B).$

Agreement implies that the image of PI is totally ordered and that

$$\mu(A) = \mu(B) \qquad \Rightarrow \qquad \mathrm{Pl}(A) = \mathrm{Pl}(B).$$

Almost agreement + these two additional conditions is the same as agreement. In general it is weaker.

IQSA 13/07/2016 - 15 / 36

Disagreeable plausibility measures

Introduction		Ν
Test spaces		•
Plausibility measures	•	
Agreement	•	
Agreement	•	
Disagreeable	•	
Archimedean condition	0 0 0	
Main results	• • •	
Proof idea	•	
Conclusion	•	

Not all plausibility measures agree with a probability measure.

Must have

$$\mu(x) + \mu(y) = 1$$
 $\mu(y) + \mu(z) = 1$

but these assignments imply $\mu(x) + \mu(y) = 0 + 1 - \mu(z) < 1$.

There are examples for classical test spaces as well.

Introduction
Testeres
lest spaces
Plausibility measures
Agreement
Archimedean condition
Archimedean condition
Archimedean condition Definition Example

Proof idea

Conclusion

The Archimedean condition

IQSA 13/07/2016 - 17 / 36

The Archimedean condition

Introduction Test spaces Plausibility measures Agreement Archimedean condition

Definition

Example

Main results

Proof idea

Conclusion

Needed: An order theoretic counterpart of additivity.

Two list of events, (A_1, A_2, \ldots, A_n) and (B_1, B_2, \ldots, B_n) are equivalent if every outcome occurs the same number of times in both. \Box Example: $(\{y, z\}, \{x, z\}, \{x\})$ and $(\{x, y\}, \{x, z\}, \{z\})$.

Definition: A plausibility measure is *Archimedean* if, whenever (A_1, A_2, \ldots, A_n) and (B_1, B_2, \ldots, B_n) are equivalent and

 $\mathsf{PI}(A_1) \preceq \mathsf{PI}(B_1), \quad \dots, \quad \mathsf{PI}(A_{n-1}) \preceq \mathsf{PI}(B_{n-1}),$

then $\operatorname{Pl}(A_n) \succeq \operatorname{Pl}(B_n)$.

Example

Introduction Test spaces Plausibility measures Agreement Archimedean condition Definition

Example

Main results

Proof idea

Conclusion

Consider $(\{y,z\},\{x\})$ and $(\{x,y\},\{z\})$. We have,

 $\mathsf{PI}(\{y,z\}) \preceq \mathsf{PI}(\{x,y\}),$

but $PI(x) \prec PI(z)$.

Introduction
Test spaces
Plausibility measures
Agreement
Archimedean condition
Main results
Classical theorems
Finite test spaces
Locally finite test spaces
Quantum counter-example
The strong Archimedean condition
Locally finite test spaces revisited
Proof idea

Main results

Conclusion

Introduction Test spaces Plausibility measures Agreement Archimedean condition Main results Classical theorems Finite test spaces Locally finite test spaces Quantum counter-example The strong Archimedean condition Locally finite test spaces revisited Proof idea Conclusion

- Theorem: A plausibility measure PI on a finite classical test space $(X, \{X\})$ almost agrees with some probability measure μ iff it is Archimedean.
 - Theorem: A plausibility measure PI on a finite classical test space $(X, \{X\})$ agrees with some probability measure μ iff the image of PI is totally ordered and it is Archimedean.

CHAPMAN UNIVERSITY

- Theorem: A plausibility measure PI on a finite test space (X, Σ) almost agrees with some probability measure μ iff it is Archimedean.
- Theorem: A plausibility measure PI on a finite test space (X, Σ) agrees with some probability measure μ iff the image of PI is totally ordered and it is Archimedean.

- Introduction Test spaces Plausibility measures Agreement Archimedean condition Main results Classical theorems Finite test spaces Locally finite test spaces Quantum counter-example The strong Archimedean condition Locally finite test spaces revisited Proof idea Conclusion
- Theorem: A plausibility measure PI on a locally finite test space (X, Σ) almost agrees with some probability measure μ iff it is Archimedean.
 - Theorem: There exist locally finite test spaces (X, Σ) on which there are plausibility measures PI that are Archimedean and have totally ordered image, but do not agree with any probability measure μ .

Quantum counter-example

Introduction
Test spaces
Plausibility measures
Agreement
Archimedean condition
Main results
Classical theorems
Finite test spaces
Locally finite test
spaces
Quantum
counter-example
The strong

The strong Archimedean condition Locally finite test spaces revisited

Proof idea

Conclusion

Let $(P(\mathbb{C}^d), b(\mathbb{C}^d))$ be a quantum test space and let $\{\rho_j\}_{j=1}^{d^2}$ be a tomographically complete set of states. Define a plausibility measure via

$$\begin{split} \mathsf{PI}(\Pi) &= \mathsf{PI}(\Pi') & \text{if } \operatorname{Tr} (\Pi \rho_j) = \operatorname{Tr} (\Pi' \rho_j) \text{ for all } \mathbf{j} \\ \mathsf{PI}(\Pi) \prec \mathsf{PI}(\Pi') & \text{if } \operatorname{Tr} (\Pi \rho_k) < \operatorname{Tr} (\Pi' \rho_k) \\ \mathsf{PI}(\Pi) \succ \mathsf{PI}(\Pi') & \text{if } \operatorname{Tr} (\Pi \rho_k) > \operatorname{Tr} (\Pi' \rho_k) , \end{split}$$

where k is the smallest value such that Tr $(\Pi \rho_k) \neq$ Tr $(\Pi' \rho_k)$.

- PI is totally ordered and it can be shown to be Archimedean.
- By Gleason's theorem all probability measures on $(P(\mathbb{C}^d), b(\mathbb{C}^d))$ are quantum states.
- For every quantum state ρ , there are pairs of unit vectors $|\psi\rangle$, $|\phi\rangle$ that get assigned the same probability, e.g. equal superposition of two eigenvectors of ρ with a differing relative phase.
- However, by tomographic completeness of $\{\rho_j\}_{j=1}^{d^2}$, no two unit vectors are assigned the same plausibility.

Introduction Test spaces Plausibility measures Agreement Archimedean condition Main results Classical theorems Finite test spaces Locally finite test spaces Quantum counter-example The strong Archimedean condition Locally finite test spaces revisited

Proof idea

Conclusion

Definition: A plausibility measure PI on a test space (X, Σ) is *strongly Archimedean* if, for every $A, B \in E(X, \Sigma)$, if, for every $n \in \mathbb{N}$, there exists $k \in \mathbb{N}$ and lists of events (A_1, \ldots, A_m) and (B_1, \ldots, B_m) such that $PI(A_j) \preceq PI(B_j)$ and the two lists

 $(kA, A_1, \ldots, A_m), \qquad (kB, B_1, \ldots, B_m)$

differ in a set of outcomes (with multiplicity) that fits into at most k/n tests, then $PI(A) \succeq PI(B)$.

The same condition was used for the measure theoretic classical case to derive countable additivity⁴.

⁴A. Chateauneuf and J. Jaffray, *J. Math. Psychology* 28(2), pp. 191–204 (1984).

Locally finite test spaces revisited

Theorem: A plausibility measure PI on a locally finite test space (X, Σ) with finite dimensional state space agrees with some probability measure μ iff the image of PI is totally ordered and it is strongly Archimedean.

Introduction
Test spaces
Plausibility measures
Agreement
Archimedean conditior
Main results
Proof idea

Order unit spaces

Hahn-Banach extension theorem

Proof strategy

Order unit space from a plausibility measure Checking that u is an

order unit

Conclusion

Proof idea

Order unit spaces

Introduction Test spaces Plausibility measures Agreement Archimedean condition Main results

Proof idea

Order unit spaces

Hahn-Banach extension theorem

Proof strategy

Order unit space from a plausibility measure Checking that u is an order unit

Conclusion

Let V be a vector space over an ordered subfield \mathbb{F} of the real numbers (e.g. the rationals).

Definition: A subset $C \subseteq V$ is a *convex cone if*

 $a \in C, b \in C \Rightarrow a + b \in C \quad \lambda \in \mathbb{F}_{>0}, a \in C \Rightarrow \lambda a \in C.$

 $a \leq b$ is used to denote $b - a \in C$.

- Definition: An *order unit space* is a triple (V, C, u), where $C \subseteq V$ is a convex cone, $u \ge 0$ is a distinguished element called the *order unit* such that
 - 1. $-u \not\geq 0$, 2. For any $a \in V$, there is a $\lambda \in \mathbb{F}$ such that $\lambda u + a \geq \lambda u$.
- Definition: A *probability measure* ω on (V, C, u) is an \mathbb{F} -linear functional $\omega : V \to \mathbb{R}$ with $\omega(a) \ge 0$ for $a \ge 0$ and $\omega(u) = 1$.

Introduction Test spaces Plausibility measures Agreement Archimedean condition

Main results

Proof idea

Order unit spaces

Hahn-Banach extension theorem

Proof strategy

Order unit space from a plausibility measure Checking that u is an order unit

Conclusion

Theorem: Let (V, C, u) be an order unit space. If $U \subseteq V$ is a subspace with $u \in U$, then $(U, C \cap U, u)$ is again an order unit space. Any probability measure σ on U can be extended to a probability measure ω on V, i.e. there is a probability measure $\omega : V \to \mathbb{R}$ such that $\omega_{|U} = \sigma$.

Corollary: There is at least one probability measure on every order unit space.

Because there is always a probability measure on the one-dimensional subspace $U = \mathbb{F}u$, i.e. $\sigma(\lambda u) = \lambda$.

Proof strategy

Introduction
Test spaces
Plausibility measures
Agreement
Archimedean condition

Main results

Proof idea

Order unit spaces

Hahn-Banach extension theorem

Proof strategy

Order unit space from a plausibility measure Checking that u is an order unit

Conclusion

- Theorem: A plausibility measure PI on a test space (X, Σ) almost agrees with some probability measure μ iff it is Archimedean.
- Proof strategy: Construct an order unit space (V, C, u) containing a vector v_A representing each $A \in E(X, \Sigma)$ such that the cone ordering agrees with PI, i.e.

$$\mathsf{PI}(A) \preceq \mathsf{PI}(B) \qquad \Rightarrow \qquad v_A \leq v_B.$$

Use the existence of a probability measure on (V, C, u) to infer the existence of an almost agreeing probability measure on (X, Σ) .

Order unit space from a plausibility measure

Introduction
Test spaces
Plausibility measures
Agreement
Archimedean condition
Main results

Proof idea

Order unit spaces

Hahn-Banach extension theorem

Proof strategy

Order unit space from a plausibility measure

Checking that u is an order unit

Conclusion

Let V be the vector space over \mathbb{Q} with orthonormal basis $\{e_x\}_{x \in X}$. The vector corresponding to $A \in E(X, \Sigma)$ is then $e_A = \sum_{x \in A} e_x$. In particular $e_{\emptyset} = 0$.

Define the convex cone C to be the set of all finite, non-negative linear combinations of vectors of the form

 $e_A - e_B$

for all $A, B \in E(X, \Sigma)$ such that $PI(A) \succeq PI(B)$.

Consider a test $T \in \Sigma$ and let $u = e_T$. We need to show that u is an order unit. This means checking

- 1. $-u \not\geq 0$,
- 2. For any $a \in V$, there is a $\lambda \in \mathbb{F}$ such that $\lambda u + a \ge 0$.
- 2 is fairly straightforward, so we focus on 1. This is where the Archimedean condition comes in.

Checking that u is an order unit

Introduction Test spaces Plausibility measures Agreement Archimedean condition Main results Proof idea Order unit spaces Hahn-Banach extension theorem Proof strategy

Order unit space from a plausibility measure Checking that u is an

order unit

Conclusion

- Need to show that $-e_T$ is not a positive linear combination of vectors of the form $e_A e_B$ for $PI(A) \succeq PI(B)$.
- I This is a special case of: If $PI(A) \prec PI(B)$ then $e_A e_B \notin C$.

$$\Box$$
 Take $A = \emptyset$ and $B = T$.

Assume $e_A - e_B \in C$. Then, there are events (A_1, \ldots, A_n) and (B_1, \ldots, B_n) such that

$$e_A - e_B = \sum_j \lambda_j (e_{A_j} - e_{B_j}),$$

where $\lambda_j \in \mathbb{Q}$ and $\mathsf{Pl}(A_j) \succeq \mathsf{Pl}(B_j)$.

IQSA 13/07/2016 - 32 / 36

Checking that u is an order unit

Introduction Test spaces Plausibility measures Agreement

Archimedean condition

Main results

Proof idea

Order unit spaces

Hahn-Banach extension theorem

Proof strategy

Order unit space from a plausibility measure

Checking that u is an order unit

Conclusion

$$e_A - e_B = \sum_j \lambda_j (e_{A_j} - e_{B_j})$$

Because everything is rational, there is a positive integer k such that,

$$ke_A - ke_B = \sum_j r_j (e_{A_j} - e_{B_j}),$$

where the r_j 's are positive integers.

Define (A'_1, \ldots, A'_m) where the first r_1 elements are A_1 , q the next r_2 are A_2 , etc. and similarly for (B'_1, \ldots, B'_m) . Then

$$ke_A - ke_B = \sum_{j} (e_{A'_j} - e_{b'_j}),$$

$$\Rightarrow \sum_{j} e_{B'_{j}} + ke_{A} = \sum_{j} e_{A'_{j}} + ke_{B}.$$

IQSA 13/07/2016 - 33 / 36

Checking that u is an order unit

Introduction Test spaces Plausibility measures Agreement

Archimedean condition

Main results

Proof idea

Order unit spaces

Hahn-Banach extension theorem

Proof strategy

Order unit space from a plausibility measure

Checking that u is an order unit

Conclusion

$$\sum_{j} e_{B'_j} + ke_A = \sum_{j} e_{A'_j} + ke_B$$

Now construct the lists

 $(A'_1, \ldots, A'_m, B, \ldots, B)$ $(B'_1, \ldots, B'_m, A, \ldots, A),$

by appending k copies of B or A respectively. Then, each $x \in X$ occurs the same number of times in these lists.

- By construction, $PI(A'_i) \succeq PI(B'_i)$ and $PI(B) \succ PI(A)$.
- I The Archimedean condition then gives $PI(B) \leq PI(A)$, which is a contradiction.

Introduction
Test spaces
Plausibility measures
Agreement
Archimedean condition

Main results

Proof idea

Conclusion

Summary and Future Work

Conclusion

IQSA 13/07/2016 - 35 / 36

Summary and Future Work

Introduction Test spaces Plausibility measures Agreement Archimedean condition Main results Proof idea

Conclusion

Summary and Future Work

Summary:

- □ Plausibility measures can be defined for test spaces.
- The conditions for almost agreement are the same as in the classical case.
- The conditions for agreement are the same as the classical case for finite test spaces and more complicated for locally finite test spaces (including quantum).
- Future directions:
 - □ Is there an efficient algorithm for determining agreement?
 - Develop plausibilistic generalizations of quantum theory, e.g. is there a natural quantum theory on vector spaces over finite fields that makes more detailed predictions than Schumacher-Westmoreland theory?
 - □ Operational axioms for plausibilistic quantum theory.
 - □ Algorithms for plausibilistic inference in general theories.