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� We normally say that, at a minimum, a physical theory should supply

probabilities for the outcomes of any experiment.

� But it is possible to contemplate weaker predictive structures, e.g.

� Possibilistic/modal/relational theories: For any event A we can say

whether A is possible or impossible, e.g. supports on test

spaces1.

� Comparative theories: For events A and B, it may be possible to

say that A is less likely than B, without giving precise numerical

probabilities, and relative likelihood may only be a partial order.

� Plausibility measures2, unify probabilistic, comparative, and

possibilistic predictions. They have only been developed for classical

theories. We generalize to test spaces.

1
D. Foulis et. al., Found. Phys. 13:813–842 (1983). C. Randall and D. Foulis, Found. Phys.

13:843–857 (1983). D. Foulis et. al., IJTP 31:789–807 (1992).
2
N. Fiedman and J. Halpern, Proc. 11th Conference on Uncertainty in Artificial Intelligence

(UAI1995) (1995). arXiv:1302.4947.
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� Adversarial scenarios:

� Consider a device with n settings that prepares ρj when the

setting is j.

� You want to bet on the outcomes of a quantum experiment

described by a POVM {Ek}. However, the bookmaker gets to

choose the setting after you have placed your bets.

� It does not make sense to assign a prior probability to the setting

because it is chosen adversarialy.

� However, it is still safe to say that Ek is less likely than Em if

Tr (Ekρj) < Tr (Emρj) for all j.
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� Requiring probabilities restricts the possible generalizations of

quantum theory.

� E.g. Cannot have quantum theory with C replaced by a finite field

because vector spaces over finite fields have no inner product.

� Schumacher and Westmoreland constructed a possibilistic

quantum theory over finite fields3.

� More generally, some well-defined operational structures, e.g. test

spaces, quantum logics, contextuality scenarios etc. have no

probabilistic states, but they do have possibilistic and comparative

states.

3
B. Schumacher and M. Westmoreland, Proc. 7th International QPL Workshop (2010).

arXiv:1010.2929
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� Definition: A test space (X,Σ) consits of

� A set X of outcomes.

� A set Σ of subsets of X such that

⋃

T∈Σ

T = X.

� A set T ∈ Σ is called a test.

� A test space is called finite if X is finite (in which case the test space

is a hypergraph).

� It is locally finite if each T ∈ Σ is finite.
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� Classical test space: ({x1, x2, . . . , xn}, {{x1, x2, . . . , xn}})

· · ·

x1 x2 x3 x4 xn

� Specker’s triangle: ({x, y, z}, {{x, y}, {y, z}, {z, x}})

y z

x

� Quantum test space: (P (H), b(H)), where

� P (H) = the set of unit vectors in H (up to global phases).

� b(H) = the set of orthonormal bases (up to global phases).
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� Definition: An event on a test space (X,Σ) is a subset of a test.

E(X,Σ) denotes the set of events.

� Examples:

� Classical: An event is any subset of X = {x1, . . . , xn}.

E(X, {X}) = 2X .

� Specker:

E({x, y, z}, {{x, y}, {y, z}, {z, x}}) =

{∅, {x}, {y}, {z}, {x, y}, {y, z}, {z, x}}.

� Quantum: An event is a subset of the vectors in an orthonormal

basis. Each event can be associated with the projector onto their

span.
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� Definition: A probability measure on a (locally finite) test space is a

function µ : E(X,Σ) → [0, 1] such that,

� For any test T ∈ Σ, µ(T ) = 1.

� µ(∅) = 0.

� If A,B ∈ E(X,Σ) are disjoint and there exists a test T such that

A ⊆ T , B ⊆ T , then

µ(A ∪B) = µ(A) + µ(B).

� One implication of this is that, if A ⊆ B, then µ(A) ≤ µ(B).
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� A plausibility measure on a test space (X,Σ) is a function

Pl : E(X,Σ) → D, where

� (D,�) is a bounded poset with minimal element 0 and maximal

element 1.

� For any test T ∈ Σ, Pl(T ) = 1.

� Pl(∅) = 0.

� If A,B ∈ E(X,Σ) satisfy A ⊆ B, then Pl(A) � Pl(B).
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� A probability measure is a plausibility measure.

� Let D = {0, 1} with 0 ≺ 1. A plausibility measure Pl such that, for

every test T ∈ Σ there exists an x ∈ T with Pl(x) = 1 is called a

possibility measure.

� Given a set {µj}
n
j=1

of probability measures, let

Pl(A) = (µ1(A), µ2(A), . . . , µn(A))

and define the poset:

� D := [0, 1]×n

� Ordering: (a1, a2, . . . , an) � (b1, b2, . . . , bn) if aj ≤ bj for all j
� Minimal element: 0 = (0, 0, . . . , 0)
� Maximal element (1, 1, . . . , 1)

Then, we have a plausibility measure with Pl(A) � Pl(B) iff

µj(A) ≤ µj(B) for all j.
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� Definition: A plausibility measure Pl on a test space (x,Σ) agrees

with a probability measure µ if

Pl(A) � Pl(B) ⇔ µ(A) ≤ µ(B).

It almost agrees with µ if

Pl(A) � Pl(B) ⇒ µ(A) ≤ µ(B).

� Agreement implies that the image of Pl is totally ordered and that

µ(A) = µ(B) ⇒ Pl(A) = Pl(B).

� Almost agreement + these two additional conditions is the same as

agreement. In general it is weaker.



Disagreeable plausibility measures

Introduction

Test spaces

Plausibility measures

Agreement

Agreement

Disagreeable

Archimedean condition

Main results

Proof idea

Conclusion

IQSA 13/07/2016 – 16 / 36

� Not all plausibility measures agree with a probability measure.

y z

x
0

1 1

� Must have

µ(x) + µ(y) = 1 µ(y) + µ(z) = 1

but these assignments imply µ(x) + µ(y) = 0 + 1− µ(z) < 1.

� There are examples for classical test spaces as well.
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� Needed: An order theoretic counterpart of additivity.

� Two list of events, (A1, A2, . . . , An) and (B1, B2, . . . , Bn) are

equivalent if every outcome occurs the same number of times in both.

� Example: ({y, z}, {x, z}, {x}) and ({x, y}, {x, z}, {z}).

� Definition: A plausibility measure is Archimedean if, whenever

(A1, A2, . . . , An) and (B1, B2, . . . , Bn) are equivalent and

Pl(A1) � Pl(B1), . . . , Pl(An−1) � Pl(Bn−1),

then Pl(An) � Pl(Bn).
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y z

x
0

1 1

� Consider ({y, z}, {x}) and ({x, y}, {z}). We have,

Pl({y, z}) � Pl({x, y}),

but Pl(x) ≺ Pl(z).
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� Theorem: A plausibility measure Pl on a finite classical test space

(X, {X}) almost agrees with some probability measure µ iff it is

Archimedean.

� Theorem: A plausibility measure Pl on a finite classical test space

(X, {X}) agrees with some probability measure µ iff the image of Pl

is totally ordered and it is Archimedean.
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� Theorem: A plausibility measure Pl on a finite test space (X,Σ)
almost agrees with some probability measure µ iff it is Archimedean.

� Theorem: A plausibility measure Pl on a finite test space (X,Σ)
agrees with some probability measure µ iff the image of Pl is totally

ordered and it is Archimedean.
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� Theorem: A plausibility measure Pl on a locally finite test space

(X,Σ) almost agrees with some probability measure µ iff it is

Archimedean.

� Theorem: There exist locally finite test spaces (X,Σ) on which there

are plausibility measures Pl that are Archimedean and have totally

ordered image, but do not agree with any probability measure µ.
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� Let (P (Cd), b(Cd)) be a quantum test space and let {ρj}
d2

j=1
be a

tomographically complete set of states. Define a plausibility measure via

Pl(Π) = Pl(Π′) if Tr (Πρj) = Tr (Π′ρj) for all j

Pl(Π) ≺ Pl(Π′) if Tr (Πρk) < Tr (Π′ρk)

Pl(Π) ≻ Pl(Π′) if Tr (Πρk) > Tr (Π′ρk) ,

where k is the smallest value such that Tr (Πρk) 6= Tr (Π′ρk).

� Pl is totally ordered and it can be shown to be Archimedean.

� By Gleason’s theorem all probability measures on (P (Cd), b(Cd)) are

quantum states.

� For every quantum state ρ, there are pairs of unit vectors |ψ〉, |φ〉 that get

assigned the same probability, e.g. equal superposition of two eigenvectors of

ρ with a differing relative phase.

� However, by tomographic completeness of {ρj}
d2

j=1
, no two unit vectors are

assigned the same plausibility.
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� Definition: A plausibility measure Pl on a test space (X,Σ) is strongly

Archimedean if, for every A,B ∈ E(X,Σ), if, for every n ∈ N, there

exists k ∈ N and lists of events (A1, . . . , Am) and (B1, . . . , Bm)
such that Pl(Aj) � Pl(Bj) and the two lists

(kA,A1, . . . , Am), (kB,B1, . . . , Bm)

differ in a set of outcomes (with multiplicity) that fits into at most k/n
tests, then Pl(A) � Pl(B).

� The same condition was used for the measure theoretic classical case

to derive countable additivity4.

4
A. Chateauneuf and J. Jaffray, J. Math. Psychology 28(2), pp. 191–204 (1984).
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� Theorem: A plausibility measure Pl on a locally finite test space

(X,Σ) with finite dimensional state space agrees with some

probability measure µ iff the image of Pl is totally ordered and it is

strongly Archimedean.
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� Let V be a vector space over an ordered subfield F of the real

numbers (e.g. the rationals).

� Definition: A subset C ⊆ V is a convex cone if

a ∈ C, b ∈ C ⇒ a+ b ∈ C λ ∈ F≥0, a ∈ C ⇒ λa ∈ C.

a ≤ b is used to denote b− a ∈ C .

� Definition: An order unit space is a triple (V,C, u), where C ⊆ V is a

convex cone, u ≥ 0 is a distinguished element called the order unit

such that

1. −u � 0,

2. For any a ∈ V , there is a λ ∈ F such that λu+ a ≥ λu.

� Definition: A probability measure ω on (V,C, u) is an F-linear

functional ω : V → R with ω(a) ≥ 0 for a ≥ 0 and ω(u) = 1.
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� Theorem: Let (V,C, u) be an order unit space. If U ⊆ V is a

subspace with u ∈ U , then (U,C ∩ U, u) is again an order unit

space. Any probability measure σ on U can be extended to a

probability measure ω on V , i.e. there is a probability measure

ω : V → R such that ω|U = σ.

� Corollary: There is at least one probability measure on every order

unit space.

� Because there is always a probability measure on the

one-dimensional subspace U = Fu, i.e. σ(λu) = λ.
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� Theorem: A plausibility measure Pl on a test space (X,Σ) almost

agrees with some probability measure µ iff it is Archimedean.

� Proof strategy: Construct an order unit space (V,C, u) containing a

vector vA representing each A ∈ E(X,Σ) such that the cone

ordering agrees with Pl, i.e.

Pl(A) � Pl(B) ⇒ vA ≤ vB.

� Use the existence of a probability measure on (V,C, u) to infer the

existence of an almost agreeing probability measure on (X,Σ).
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� Let V be the vector space over Q with orthonormal basis {ex}x∈X .

The vector corresponding to A ∈ E(X,Σ) is then eA =
∑

x∈A ex.

In particular e∅ = 0.

� Define the convex cone C to be the set of all finite, non-negative linear

combinations of vectors of the form

eA − eB

for all A,B ∈ E(X,Σ) such that Pl(A) � Pl(B).

� Consider a test T ∈ Σ and let u = eT . We need to show that u is an

order unit. This means checking

1. −u � 0,

2. For any a ∈ V , there is a λ ∈ F such that λu+ a ≥ 0.

� 2 is fairly straightforward, so we focus on 1. This is where the

Archimedean condition comes in.
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� Need to show that −eT is not a positive linear combination of vectors

ofr the form eA − eB for Pl(A) � Pl(B).

� This is a special case of: If Pl(A) ≺ Pl(B) then eA − eB /∈ C .

� Take A = ∅ and B = T .

� Assume eA − eB ∈ C . Then, there are events (A1, . . . , An) and

(B1, . . . , Bn) such that

eA − eB =
∑

j

λj(eAj
− eBj

),

where λj ∈ Q and Pl(Aj) � Pl(Bj).
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eA − eB =
∑

j

λj(eAj
− eBj

)

� Because everything is rational, there is a positive integer k such that,

keA − keB =
∑

j

rj(eAj
− eBj

),

where the rj ’s are positive integers.

� Define (A′
1
, . . . , A′

m) where the first r1 elements are A1,q the next

r2 are A2, etc. and similarly for (B′
1
, . . . , B′

m). Then

keA − keB =
∑

j

(eA′

j
− eb′

j
),

⇒
∑

j

eB′

j
+ keA =

∑

j

eA′

j
+ keB.
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∑

j

eB′

j
+ keA =

∑

j

eA′

j
+ keB

� Now construct the lists

(A′
1, . . . , A

′
m, B, . . . , B) (B′

1, . . . , B
′
m, A, . . . , A),

by appending k copies of B or A respectively. Then, each x ∈ X
occurs the same number of times in these lists.

� By construction, Pl(A′
j) � Pl(B′

j) and Pl(B) ≻ Pl(A).

� The Archimedean condition then gives Pl(B) � Pl(A), which is a

contradiction.
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� Summary:

� Plausibility measures can be defined for test spaces.

� The conditions for almost agreement are the same as in the

classical case.

� The conditions for agreement are the same as the classical case

for finite test spaces and more complicated for locally finite test

spaces (including quantum).

� Future directions:

� Is there an efficient algorithm for determining agreement?

� Develop plausibilistic generalizations of quantum theory, e.g. is

there a natural quantum theory on vector spaces over finite fields

that makes more detailed predictions than

Schumacher-Westmoreland theory?

� Operational axioms for plausibilistic quantum theory.

� Algorithms for plausibilistic inference in general theories.
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