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� ψ-ontic view: Quantum states are real, objective properties of

quantum systems, akin to classical fields.

� ψ-epistemic view: Quantum states represent our knowledge or about

quantum systems, akin to a classical probability distribution.

See ML, Quanta 3 pp. 67–155 (2014) for a review.
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� A physical system A is associated with a Hilbert space HA = C
d.

(Pure) states of the system are unit vectors |ψ〉 ∈ HA.

� A (nondegenerate) measurement is associated with an orthonormal

basis

M = {|a1〉 , |a2〉 , · · · , |ad〉}.

The outcome aj occurs with probability

Prob(aj |ψ,M) = |〈aj |ψ〉|
2 .

� A system AB composed of two subsystems A and B is associated

with the Hilbert space

HAB = HA ⊗HB = span (|ψ〉A ⊗ |φ〉B) .
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� More generally, the state of a system A is a positive operator ρ acting

on HA that satisfies Tr (ρ) = 1. The probability of obtaining outcome

aj in a measurement {|a〉j} is 〈aj | ρ |aj〉.

� Examples:

� Pure states: Let ρ = |ψ〉〈ψ|. Then,

|〈aj |ψ〉|
2 = 〈aj |ψ〉 〈ψ|aj〉 = 〈aj | ρ |aj〉 .

� Mixed states: If |ψk〉 is prepared with probability pk then let

ρ =
∑

k pk |ψk〉〈ψk| and then

∑

k

pk |〈aj |ψk〉|
2 =

∑

k

pk 〈aj |ψk〉 〈ψk|aj〉 = 〈aj | ρ |aj〉 .
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� For a joint state ρAB on HAB , define the reduced state on A as

ρA = TrB (ρAB)

where, for an operator,

ρAB =
∑

jklm

αjk;lm |j〉〈k|A ⊗ |l〉〈m|B

TrB (ρAB) =
∑

jkl

αjk;ll |j〉〈k|A .

� Then,

∑

k

〈aj | ⊗ 〈bk| ρAB |aj〉 ⊗ |bk〉 = 〈aj | ρA |aj〉 .
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Classical Quantum

Sample space Hilbert space

ΩA = {a1, a2, . . .} HA = C
d

Probability distribution Density operator

P (A = aj) ≥ 0 ρA ∈ L
+ (HA)

∑

j P (A = aj) = 1 TrA (ρA) = 1

Cartesian product Tensor product

ΩA × ΩB HA ⊗HB

Joint distribution Bipartite state

P (A,B) ρAB

Marginal distribution Reduced state

P (B) =
∑

j P (A = aj , B) ρB = TrA (ρAB)

For more details see ML and R. Spekkens, Phys. Rev. A 88 052130 (2013).
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� Classically, the conditional probability distribution is defined as

P (B = bk|A = aj) =
P (A = aj , B = bk)

P (A = aj)
.

� What should the quantum analog of this be?

� ρB|A = ρABρ
−1
A ?

� ρB|A = ρ−1
A ρAB?

� Neither of these is positive.
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� Define a family of positive products of positive operators

G ⋆(n) H =
(

H
1

2nG
1

nH
1

2n

)n

.

� Two important special cases:

� G⊙H = limn→∞

(

G ⋆(n) H
)

= e(lnG+lnH)

� G ⋆ H = G ⋆(1) H = H
1

2GH
1

2

� Define conditional states:

ρ
(n)
B|A = ρAB ⋆

(n) ρ−1
A .

� Cerf-Adami: ρ
(∞)
B|A = ρAB ⊙ ρ−1

A

� The n = 1 case: ρB|A = ρAB ⋆ ρ
−1
A

ML, Phys. Rev. A 74 042310 (2006). AIP Conference Proceedings 889 pp. 172–186 (2007).

ML & D. Poulin, Ann. Phys. 323 1899 (2008).

N. Cerf & C. Adami, Phys. Rev. Lett. 79 5194 (1997).
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Representation

� Generic probability distribution over N variables: O(dN ) params.

� Generic quantum state on N systems: O(d2N ) params.

Computation of marginals

� P (A1) =
∑

A2,A3,...,AN
P (A1, A2, . . . , AN )

� ρA1
= TrA2A3...AN (ρA1A2...AN )

All states

Physically
interesting
states
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Definition. A and B are conditionally independent given C if any of the

following equivalent conditions holds:

� P (A|B,C) = P (A|C)

� P (B|A,C) = P (B|C)

� P (A,B|C) = P (A|C)P (B|C)

� H(A : B|C) = 0,

where

H(A : B|C) = H(A|C)−H(A|B,C)

= H(A,C) +H(B,C)−H(C)−H(A,B,C).

and

H(X) = −
∑

X

P (X) logP (X).
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Definition. A and B are conditionally independent given C if

S(A : B|C) = 0, where

S(A : B|C) = S(A,C) + S(B,C)− S(C)− S(A,B,C)

S(X) = −TrX (ρX log ρX) .

Theorem. If S(A : B|C) = 0 then

� ρ
(n)
A|BC = ρ

(n)
A|C

� ρ
(n)
B|AC = ρ

(n)
B|C

� ρ
(n)
AB|C = ρ

(n)
A|Cρ

(n)
B|C .

� For ⊙ all converse implications hold.

� For ⋆ first two converse implications hold.

ML & D. Poulin, Ann. Phys. 323 1899 (2008).
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� A general state of N systems can be written as

ρA1,A2,...,AN
= ρ

(n)
AN |A1A2...AN−1

⋆(n) . . . ⋆(n) ρ
(n)
A3|A2A1

⋆(n) ρ
(n)
A2|A1

⋆(n) ρA1 .

� Imposing the constraint S(Aj : A1A2 . . . Aj−2|Aj−1) = 0 gives

ρA1,A2,...,AN
= ρ

(n)
AN |AN−1

⋆(n) . . . ρ
(n)
A3|A2

⋆(n) ρA2|A1
⋆(n) ρA1

. . . . . .

A1 A2 A3 AN

� This decomposition and the one that follows can be used in a quantum

generalization of belief propagation algorithms.

ML & D. Poulin, Ann. Phys. 323 1899 (2008).
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Definition. A Quantum Markov Network (G, ρ) is an undirected graph

G = (V,E), where the vertices are quantum systems, and a density

operator ρV that satisfies S(A : B|C) = 0 for all disjoint A,B,C ⊆ V

such that every path from A to B intersects C .

A C B

ML & D. Poulin, Ann. Phys. 323 1899 (2008).
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Theorem. If (G, ρ) is a Quantum Markov Network and ρ is strictly

positive then

ρV =
1

Z
⊙C∈C νC ,

where C is the set of cliques in G.

� Alternatively,

ρV =
1

Z
e−β

∑
C∈C

HC ,

where HC = − 1
β
ln νC .

A1 A2

HA1
HA2

HA1A2

A3 A4

HA2A4
HA1A3

HA3,A4

HA3
HA4

� Converse does not hold: there are extra constraints on the local

Hamiltonians.

ML & D. Poulin, Ann. Phys. 323 1899 (2008).
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� Applications of Quantum Belief Propagation:

� Statistical mechanics of quantum Ising spin chains and spin glasses:

� E. Bilgin and D. Poulin, Phys. Rev. B 81 054106 (2010).

� C. Laumann, A. Scardicchio and S. L. Sondhi, Phys. Rev. B 78 134424

(2008).

� D. Nagaj, E. Farhi, J. Goldstone, P. Shor and I. Sylvester, Phys. Rev. B 77

214431 (2008).

� Study of the connection between the quantum generalization of

satisfiability and phase transitions:

� C. Laumann, R. Moessner, A. Scardicchio and S. L. Sondhi, Quant. Inf. and

Comp. vol. 10(1) pp. 1–15 (2010).

� Markov entropy decomposition (dual to belief propagation):

� Used to obtain lower bounds on the free energy.

� D. Poulin and M. Hastings, Phys. Rev. Lett. 106 080403 (2011).

� A. J. Ferris and D. Poulin, Phys. Rev. B 87 205126 (2013).
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� ML and R. Spekkens, Phys. Rev. A 88 052130 (2013).

� Unified formalism for preparations, measurements and dynamics

� Quantum Bayes theorem

� Retrodictive quantum theory

� Quantum steering

� ML and R. Spekkens, J. Phys. A 47 275301 (2014).

� Quantum sufficient statistics

� Quantum state compatibility

� Quantum state improvement and pooling

� B. Coecke & R. Spekkens, Synthese 186 651 (2012).

� Category theoretic version of quantum Bayesian inference.

� E. G. Cavalcanti & R. Lal (2013). arXiv:1311.6852.

� Used to analyse quantum generalization of Bell’s locality condition.

� J. Norton (2014). http://bit.ly/1km1Q4L.

� Quantum inductive logic

http://bit.ly/1km1Q4L
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x

p1 p2
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Preparation Measurement

|ψ〉 ∈ C
d M = {|a〉 , |b〉 , . . .}

Prob(a|ψ,M ) = |〈a|ψ〉|2
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Preparation Measurement

|ψ〉 ∈ C
d M = {|a〉 , |b〉 , . . .}

Prob(a|ψ,M ) = |〈a|ψ〉|2

λ

µψ

λ λ

1 P (b|M,λ)P (a|M,λ)

Prob(a|ψ,M ) =
∫
P (a|M,λ)dµψ
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� |ψ〉 and |φ〉 are ontologically distinct in an ontological model if there

exists Ω ∈ Σ s.t.

µψ(Ω) = 1 µφ(Ω) = 0.

µψ µφ µφµψ

Ω

λ λ

� An ontological model is ψ-ontic if every pair of states is ontologically

distinct. Otherwise it is ψ-epistemic.
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� The Colbeck-Renner theorem: R. Colbeck and R. Renner,

arXiv:1312.7353 (2013).

� Hardy’s theorem: L. Hardy, Int. J. Mod. Phys. B, 27:1345012 (2013)

arXiv:1205.1439

� The Pusey-Barrett-Rudolph theorem: M. Pusey et. al., Nature Physics,

8:475–478 (2012) arXiv:1111.3328
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|z+〉

~λ

ϕ

ϑ

p(θ)

S. Kochen and E. Specker, J. Math. Mech., 17:59–87 (1967)

µz+(Ω) =

∫

Ω
p(ϑ) sinϑdϑdϕ

p(ϑ) =

{

1
π
cosϑ, 0 ≤ ϑ ≤ π

2

0, π
2 < ϑ ≤ π

|ψ〉
|φ〉
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� Lewis et. al. provided a ψ-epistemic model for all finite d.

� P. G. Lewis et. al., Phys. Rev. Lett. 109:150404 (2012)

arXiv:1201.6554

� Aaronson et. al. provided a similar model in which every pair of

nonorthogonal states is ontologically indistinct.

� S. Aaronson et. al., Phys. Rev. A 88:032111 (2013)

arXiv:1303.2834

� These models have the feature that, for a fixed inner product, the

amount of overlap decreases with d.
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� Classical asymmetric overlap:

Ac(ψ, φ) := inf
{Ω∈Σ|µφ(Ω)=1}

µψ(Ω)

µφµψ

λAc(ψ, φ)

� An ontological model is maximally ψ-epistemic if

Ac(ψ, φ) = |〈φ|ψ〉|2
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� Let D = {|φj〉}
N
j=1 be a set of quantum states and let |ψ〉 be any

other quantum state. Define:

k̄D(ψ) =

∑N
j=1Ac(ψ, φj)

∑N
j=1 |〈φj |ψ〉|

2
.

� We can construct a set of states in C
d such that

kD(ψ) ≤ 2de−cd.

ML, Phys. Rev. Lett. 112:160404 (2014)
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� Review articles:

� ML, Quanta 3 pp. 67–155 (2014).

� D. Jennings and ML, arXiv:501.03202, to appear in Contemp.

Phys. (2015).

� Contextuality and overlap bounds:

� ML and O. Maroney, Phys. Rev. Lett. 110:120401 (2013).

� ML, Phys. Rev. Lett. 112:160404 (2014).
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� Quantum states are most fruitfully understood as states of knowledge,

akin to classical probability distributions.

� However, we cannot straightforwardly understand quantum states as

representing classical uncertainty about some true underlying state of

reality.

� This suggests exploring more exotic ontologies that support a

nonclassical probability theory, e.g.

� Retrocausality

� Relationalism

� Many-worlds

� Nonclassical logic
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� Quantum probability:

� Develop a quantum theory of Bayesian inference without a priori causal

structure.

� Develop quantum generalizations of probabilistic machine learning

structures and algorithms.

� Investigate monogamy of conditional states and applications, e.g. to

simulation of many-body systems.

� Ontological models:

� Find experimentally testable overlap bounds with low kD(ψ).

� Develop qinfo. applications, e.g. to communication complexity.

� Investigate exotic ontologies that may close the explanatory gaps

demonstrated by no-go theorems, e.g. retrocausality.
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� Classical entropy is given by

H(A) = −
∑

A

P (A) lnP (A),

and conditional entropy by

H(B|A) = H(A,B)−H(A) = −
∑

A,B

P (A,B) lnP (B|A).

� Quantum entropy is given by

S(A) = −Tr (ρA ln ρA) ,

and conditional entropy by

S(B|A) = S(A,B)− S(A) = −Tr

(

ρAB ln ρ
(∞)
B|A

)

.

N. Cerf & C. Adami, Phys. Rev. Lett. 79 5194 (1997).



What is special about ⋆ and ρB|A?

What are quantum

states?

Overview

Review of quantum

theory

Quantum Probability

Reality of the Quantum

State

Conclusion

Additional slides

⊙ and ρ
(∞)
B|A

⋆ and ρB|A

Classical states

Bohr and Einstein:

ψ-epistemicists

Penrose: ψ-ontologist

Interpretations

Experiments

Convex Operational

Theories

Applications of COTs

Supremacy of the

Second Law

The Theory of

Nonuniformity
Chapman University 1/28/2015 – 36 / 48

� A conditional probability distribution P (B|A) can be defined as a

positive function on ΩA × ΩB that satisfies

∑

B

P (B|A) = 1.

� A quantum conditional state ρB|A with the ⋆-product can be defined

as a positive operator on HA ⊗HB that satisfies

TrB
(

ρB|A

)

= IA.

ML & R. Spekkens, Phys. Rev. A 88 052130 (2013).
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Source: http://en.wikipedia.org/

There is no quantum world. There is only

an abstract quantum physical description. It is

wrong to think that the task of physics is to

find out how nature is. Physics concerns what

we can say about nature. — Niels Bohra

[t]he ψ-function is to be understood as

the description not of a single system but of

an ensemble of systems. — Albert Einsteinb

a
Quoted in A. Petersen, “The philosophy of Niels Bohr”, Bulletin of the

Atomic Scientists Vol. 19, No. 7 (1963)
b
P. A. Schilpp, ed., Albert Einstein: Philosopher Scientist (Open Court,

1949)
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It is often asserted that the state-vector is merely a convenient description

of ‘our knowledge’ concerning a physical system—or, perhaps, that the

state-vector does not really describe a single system but merely provides

probability information about an ‘ensemble’ of a large number of similarly

prepared systems. Such sentiments strike me as unreasonably timid

concerning what quantum mechanics has to tell us about the actuality of the

physical world. — Sir Roger Penrose1

Photo author: Festival della Scienza, License: Creative Commons generic 2.0 BY SA
1
R. Penrose, The Emperor’s New Mind pp. 268–269 (Oxford, 1989)
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ψ-epistemic ψ-ontic

Copenhagen

Copenhagenish neo-Copenhagen

(e.g. QBism, Peres,

Zeilinger, Healey)

Einstein Dirac-von Neumann

Ballentine? Many worlds

Realist Spekkens Bohmian mechanics

Spontaneous collapse

? Modal interpretations
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� Ringbauer et. al. obtained

kD(ψ) ≤ 0.690± 0.001

in an optical system for d = 4.

� Ringbauer et. al. experiments required a fair sampling assumption and

estimated ≈ 98% detector efficiency required to do with out.

� Values close to zero are needed to convincingly rule out ψ-epistemic

theories.

� Since we now know these results can be derived from noncontextuality

inequalities, we can now search for optimal experiments.
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� General framework for probabilistic theories that includes classical

probability, quantum theory, PR-boxes, . . . as special cases.

� State space of a system is an arbitary compact convex set.

cbit

rebit

ctrit

qubit

blob-bitgbit
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� Identifying the logical structure of information processing

� Connection between cloning, broadcasting and distinguishability2.

� Nonclassicality + No entanglement ⇒ Bit commitment3.

� de Finetti theorem4.

� Requirements for teleportation5.

� Axiomatic reconstructions of quantum theory

� L. Hardy, arXiv:quant-ph/0101012, arXiv:1104.2066.

� B. Dakic, C. Brukner, in H. Halvorson (ed.) Deep Beauty, pp. 365–392

(CUP, 2011).

� L. Masanes, M. Müller, New. J. Phys. 13:063001 (2011).

� G. Chiribella, G. M. D’Ariano, P. Perinotti, Phys. Rev. A. 84:012311

(2011).

2
H. Barnum, J. Barrett, ML, A. Wilce, Phys. Rev. Lett. 99:240501 (2007).

3
H. Barnum, O. Dahlsten, ML, B. Toner, Proc. IEEE Info. Theory Workshop, 2008, pp.

386–390.
4
J. Barrett, ML, New J. Phys. 11:033024 (2009).

5
H. Barnum, J. Barrett, ML, A. Wilce, Proc. Clifford Lectures 2008 (2012).
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George Grantham Bain

Collection (Library of

Congress)

The law that entropy always

increases, holds, I think, the supreme

position among the laws of Nature. If

someone points out to you that your

pet theory of the universe is in

disagreement with Maxwell’s

equations then so much the worse for

Maxwell’s equations. If it is found to be

contradicted by observation well,

these experimentalists do bungle

things sometimes. But if your theory is

found to be against the second law of

thermodynamics I can give you no

hope; there is nothing for it but to

collapse in deepest humiliation. — Sir

Arthur Eddingtona

a
The Nature of the Physical World (Cambridge University

Press, 1929) p. 74.
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� Thermodynamics can be formulated as a resource theory. If

H = const. then this reduces to the theory of nonuniformity6 .

� States: Probability distributions p.

� Free operations:

� Reversible transformations

� Adding uniform ancillas (1
d
, 1
d
, . . . , 1

d
).

� Discarding subsystems.

� Second law: If p → p
′ is possible under free operations (with p, p′

defined on the same space) then

S(p′) ≥ S(p).

6
G. Gour, M. Müller, V. Narasimachar, R. Spekkens, N. Halpern, arXiv:1309.6586.
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� For an arbitrary COT, this cannot be formulated so easily.

� States: Elements ω of a convex set.

� Free operations:

� Reversible transformations (automorphism group)

� Adding maximally mixed ancillas?

� Generally there is no unique notion of a uniform state.

� Discarding subsystems.

� Second law?

� Although some entropy functions have been proposed7, it is not clear

whether they are relevant to thermodynamics, or indeed if there is a

unique thermodynamic entropy at all.

7
H. Barnum, J. Barrett, L. Clark, ML, R. Spekkens, N. Stepanik, A. Wilce, R. Wilke, New J.

Phys. 12:033024 (2010). A. Short, S. Wehner, New J. Phys. 12:033023 (2010).
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� We can consider hybrid theories in which we can have both classical

and COT systems.

� States: Elements p⊗ ω of the joint state space.

� Free operations:

� Reversible transformations (automorphism group)

� At least, we should be able to add uniform classical ancillas

(1
d
, 1
d
, . . . , 1

d
).

� Discarding subsystems.

� Second Law: At least we expect that if p⊗ ω → p
′ ⊗ ω is possible

under free operations (with p, p′ defined on the same space) then

S(p′) ≥ S(p).
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1. Automorphism group is transitive.

2. von Neumann’s assumption.

3. Second Law for classical systems.

� What I know so far:

� Rules out polygons with even number of sides in 2D.

� There are non-classical and non-quantum theories that satisfy the

axioms, e.g. hyperspheres.

� Conjecture: Axioms single out state spaces of Jordan algebras.
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