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� In 1993, Aharonov, Anandan and Vaidman introduced a method of

determining the quantum state of a single copy of a quantum system,

provided the system is protected during the course of measurement1.

� Protection is a procedure for preventing the quantum state from

changing during the course of a measurement. Two types:

� Protection via the quantum Zeno effect.

� Hamiltonian protection.

1
Y. Aharonov, J. Anandan and L. Vaidman, Phys. Rev. A 47:6 4616–4626 (1993).
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� In 1993, Aharonov, Anandan and Vaidman introduced a method of

determining the quantum state of a single copy of a quantum system,

provided the system is protected during the course of measurement3.

� Protection is a procedure for preventing the quantum state from

changing during the course of a measurement. Two types:

� Protection via the quantum Zeno effect.

� Hamiltonian protection.

� Does this imply the reality of the quantum state?

3
Y. Aharonov, J. Anandan and L. Vaidman, Phys. Rev. A 47:6 4616–4626 (1993).
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Alice Person trying to determine the quantum state

Bob Person who protects the quantum system.

� Bob sends Alice a quantum system prepared in a state |ψ〉.

� The protection: Every ∆t Bob performs a measurement in a basis

{|ψj〉} that includes |ψ〉 as an eigenstate.

� To measure an observable, Alice couples it to a pointer system with

wavefunction φ(q, t) and initial state φ(q, 0) = δ(q).

q

φ(q, 0)

0
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� To measure A, Alice couples the pointer to the system via a

Hamiltonian H = gAp for time 1/g s.t. ∆t≪ 1/g.

1/g

∆t ∆t ∆t ∆t ∆t

g

t

Coupling
constant

� When ∆t→ 0, the pointer ends up pointing to 〈A〉 = 〈ψ|A |ψ〉 and

the system remains in state |ψ〉.

q

φ(q, 1/g)φ(q, 0)

0 〈A〉
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� Since the state of the system is unchanged, Alice can perform as

many protective measurements of different observables as she likes.

� If she measures a tomographically complete set, she can determine

the quantum state.

� So does this imply the reality of the quantum state?

� If we can do the same thing with classical probability distributions then

the answer is no.
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� System described by two classical random variables, X and Y , that

take values ±1 (or ± for short).

� (x, y) denotes state in which X = x and Y = y.

� Example: Ball in a box:

x

y

(−,−)

(−,+) (+,+)

(+,−)
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� Assume Bob can prepare the system in four different probability

distributions:

|x+) |x−) |y+) |y−)

Distribution 〈X〉 〈Y 〉
|x+) +1 0

|x−) -1 0

|y+) 0 +1

|y−) 0 -1
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� X-measurement:

(−,−)

(−,+) (+,+)

(+,−)

(−,+)

(−,−)

(+,+)

(+,−) (−,−)

(−,+) (+,+)

(+,−)

?
Split Shake

� Y -measurement:

(−,−)

(−,+) (+,+)

(+,−)

(−,+)

(−,−)

(+,+)

(+,−)
(−,−)

(−,+) (+,+)

(+,−)?

Split Shake
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� System is coupled to a classical pointer prepared in state q = p = 0
with Hamiltonian H = gXp or H = gY p for a time 1/g.

� Without protection, for system prepared in |x+), with H = gXp:

q

P (q, 1/g)P (q, 0)

0 1−1

� and with H = gY p:

q

P (q, 1/g)P (q, 0)

0 1−1

Prob =
1
2 Prob =

1
2
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� Now do the same thing whilst at the same time Bob is measuring X
every ∆t = 1/gN .

� For H = gXp, the pointer moves as before. The pointer is coupled to

X , but Bob’s measurement only affects Y .

q

P (q, 1/g)P (q, 0)

0 1−1

� For H = gY p, every ∆t the y-coordinate is randomized, so the

pointer will keep going in the same direction or switch direction with

probability 1/2 each.

� Pointer executes an N -step random walk with step size 1/N .
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� For large N , distribution of final pointer position is ≈ N (0, 1/N).

� Tends to δ(q) as N → ∞.
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� Implicit assumption that if a measurement does not change a quantum

state then the measurement does nothing to the system when it is

prepared in that state:

� Not true in our model: Measuring X randomizes the y-coordinate

even though distribution |x+) is unchanged.

� Protective measurement is more like measuring N independently

prepared systems than measuring just a single copy.
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� Adding back-action to the Zeno toy model.

� Toy model for Hamiltonian protective measurements.

� Operational arguments for why protective measurement does not

imply the reality of the quantum state:

� Resource counting.

� Protective measurement just implements an ordinary projective

measurement in a basis for which the prepared state is an

eigenstate.
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