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Quantuwm Theory as a Meta-theory

apply probability
theory

quantize

* |fit’s that simple,

why is it hard fo
quantize GR?

Applies to quantum
measurewment
theory, but
something is
missing.

QT not as abstract
as PT. Causal
structure is still
present in QT.



Classical Probability vs. Quantum Theory

Classical Quantum

Probability distribution: P(X)| Quantum State: 04

Joint distribution: P(X,Y)| Joint State: PAB

Transition matrix: I'yix | TPCP map: EB|A

Conditional Prob.. P(Y|X) 7




Why quantum conditional probability?

* (Conditional probabilities allow all types of correlation to
be treated on an equal footing, whether timelike,
spacelike or completely abstract.

*  (Causal relations are not primitive in probability theory.

* Sowe classical probabilistic structures are defined in
terws of conditional probability.

* Markov Chains

*  Bayesian Networks

* Sowe Bayesians take conditional probability to be the
most fundamental notion.

*  Seetexthook by U, V. Lindley
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1. Introduction

(A) Reconstrueting a joint distribution from a marginal
P(X,Y) = P(Y|X)P(X)
(B) Bayesian Updating

Py — PRI PH)

P(D)

(C) Stochastic Pynamics
P(Y =i)=) (Tyx), P(X =)
(P) Conditional Shannon En’rg'opy

H(Y|X)=-) P(X,Y)log, P(Y|X)
X
(E) Reduction of complexity via conditional independence

P(Y|X,Z)=P(Y|Z) = P(X,Y,Z) = P(X|2)P(Y|Z)P(Z)



1. Introduction

(A) Reconstruction of a joint state pa5 from a marginal pa.

(B) Updating quantum states after a measurement

_ _&%(p)
PM T T (Mp)
(C) TPCP dynamics
pB = Epla (pa)

(P) Conditional von Neumann Entropy

S(B|A) = —Tr (PAB log, PB|A)
(E) Reduction of complexity via conditional independence



1. Introduction

* Cerf & Adawmi ('97-99):

IOBIA = 210g2 paB—logs pa®Ip
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* (A) Reconstruction:

PAB = 9logs pa®Ip+logy pp|a

* (C) Entropy:
S(B|A)=S(A,B) — S(A) = —Tr (pAB log, ,OB|A)
*  (E) Complexity Reduetion: If log, ppjac = Ia ®log, ppic

DABC = 9l aB®log; pctlog; pajc®Ip+1aRlog; pric



1. Introduction

* (B) Updatinag:
x  POVM: M={M}, M>0 Y M=1I
M
*  Probability Rule: P (M) = Tr (M p)

&)
PMCT Ty (M)

*  Update CP-map:

£ (p) = Y AT YT AN = M
J 7

*  £M  depends on details of system-measuring device interaction.



1. Introduction

* s ’rh7ere one update rule that is more “Bayes’ rule like” than the
rest

*  Traditionally (see Bub °77 for projective measurements):
- VMp/M
PIM Tr (Mp)
*  According to Fuchs (01, °02):

M
P (M p)

*  Both reduce to Bayes' rule when the [NV are projection operators and

[M,,O] =0



2. Dynawics as conditional probability

(a) (b) (c)

P(Y]X) =T} x

lsomorphism: (P(X), 'y 1x) & P(X,Y)



2. Dynawics as conditional probability

(a)

E|a

A

PB — 5B|A (,OA)

pAB =

m:
IOB|A7 SB|A7 ?

(c)

A Source: 7Tanp

Isomorphisw: (pA,Eg, A) < TaB !




2. Choi-Jamiolkowski Isomorphism

* For bipartite pure states and operators:

Rpja= D ajlidpglkla & [Wap=D ajlk)s®i)p
ke ik

* For wmixed states and CP-maps:

Cos 02) = S Rhoal] = o= [o) (10



2. Choi-Jamiolkowski Isomorphism

1 . .
* let )CI>+>AA, = \/7: E 194 @ 15) a
J

* Then Tap =14 <X><C/‘B|A’ ( (I)+>AA’ <(I)+|AA’)

Epia(pa) = &4 (@T| , ,, pa®@Tarp |®T), |,

* (Qperational interpretation: Noisy gate teleportation.



2. Choi-Jamiolkowski Isomorphism

* Rewmarks:
*  |somorphiswm is basis dependent. A basis must be chosen to define | o > AA

*  If werestrict attention to Trace Preserving CP-maps then

1

TA:TrB(TAB):aIA

*  This is a special case of the isomorphism we want to construet

(IOA7 E|A) <~ TAB

1

where 0 A — d—IA.
A



4. A New Isomorphism

* (,OA,517§| A) — TAB direction:

i EERARguNE +
*  Instead of |<I> >AA’ use ‘(I)>AA/ - (/)A)2 Q I |® >AA'
n . .
- ARG R (,OA,EB‘A> direction:
T
* Set pag = Ty, 7A = Irp (TAB)
mmE: Ht
* lLet UB|A :TA2 ®IBTABTA2 ®IB
1
* OPB|A isadensity operator, satisfying 1T (O’ B| A) = d_TPA
A

*  Itis uniquely associated to a TPCP map 5g|A : £ (PaHA) — £(HpB)

via the Choi-Jamiolkowski isomorphism.



4. A New lsomorphism

(b)
B
e A
A B
|
|
N\
S TeERae: Y

TA

(c)

+
€B|a

15
PA = TA



5. Operational Inferpretation

* Rewinder about measurements:
x  POVM: M={M}, M>0 Y M=1I
M
*  Probability Rule: P ( M ) — Tr ( M p)

maa=md (0]
PIM T T (M)

*  Update CP-map:

£ (p) = Y AT YT AN = M
J 7

* &M depends on details of system-measuring device interaction.



5. Operational Inferpretation

* lemma: p= Y P(M)p|y isan ensemble decomposition of a
M

density matrix p iff thereisa POVM M = {M } st.

P(M)=Te(Mp)  p = ﬁ‘]@pff

*  Proof sketch: M:P(M)p_%pwp—%



5. Operational Inferpretation

% )\/[-wmeasurement of P
% Input: P

% Measurement probabilities: P (M) = Tr (M p)

P %k Updated state: \/Mp \/M
P T (M)

- % )\ -preparation of O

%k Input: Generate a classical rv. with p.d.f

P(M)=Tr(Mp)

5k Prepare the corresponding state:

_VPM\/p
PMT T (M)




5. Operational Inferpretation

(a)

@ M-measurement N-measurement @

A |

x TAB/

B

P(M, N) is the same in (a) and (¢) for

any POVMs M and N.

TA

M-measurement

N-measurement N-measurement
(b) (c)

e

A

i

T
PA =T4

M? -preparation



5. Application: Broadcasting & Monogamy

*  Forany TPCP map Epcya : £(Ha) — £(Hp @ He) the
reduced maps are:

Epla =Trcoépeia Ecja =Trpolpela

* The following commutativity properties hold:

PABC (/OAa EC|A)
Trcl lTrC
PAB (IOA7 E|A)

* Therefore, 2 states PAB; PAC incompatible with being the
reduced states of a global state pa .

* 2 reduced maps <B4 §E|A incompatible with being the reduced

maps of a global map & BC|A:



5. Application: Broadcasting & Monogamy

S ATPCP’WIap SA/A// HA —> £(HA’ ®H.A”) .
broadcasting for a s1La’re pA if

Earga(pa) =par Eamalpa) =par

2k ATPCP’WIap EA/A//|A £ (HA) — £ (HA’ X H.A”) is
cloning for a state p4 if

8A’A”|A (pA) =[P ®;0A”

* Note: For pure states cloning = broadeasting.

* A TPCP-wmap is universal broadcasting if it is broadcasting for
every state.



5. Application: Broadcasting & Monogamy

*  No cloning theorem (Dieks ‘82, Wootters & Zurek '8 2):

*  Thereis no map that is cloning for two nonorthogonal and nonidentical pure
states.

* No broadcasting theorem (Barnum et. al. ‘96):

*  Thereis no map that is broadcasting for fwo noncomwmuting density operators.

* (learly, this implies no universal broadcasting as well.

* Note that the maps £ 4/ 4, € 41| 4 are valid individually, but they
cannot be the reduced maps of a global map £ 4/ 4,/ 4.



5. Application: Broadcasting & Monogamy

* Thewmaps Ea/14,E 474 must be related to incompatible states
TAA", TAA"

* Theorem: If £4/ 4714 is universal broadcasting, then both 744/, 744"
must be pure and maximally entangled.

*  Ensemble broadeasting{ (p, p1), (1 — p), p2)} 8. [p1, p2] # O

(pm =+ (1 == p)pg, ngquA) < TAA'A

* Theorem: Thereis a local operation on A that fransforms both 744’
a?d Ta A" into pure, entangled states with nonzero probability
of success.



7. Future Directions

* Quantitative relations between approximate ensemble
broadcasting and monogawmy inequalities for entanglement.

* More generally, useful in analyzing any ginfo protocol involving
the action of a TPCP-map on a particular ensemble rather than
the whole Hilbert space.

* (an the various analogs of conditional probability be unified?

* (an quantum theory be developed using an analog of conditional
probability as the fundamental notion?

* (Can we eliminate background cavsal structures entirely from the
formalism of quantum theory?



