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� Goal: Formulate quantum theory as a generalization of abstract

probability theory.

� This involves removing most of the physics, e.g.

� Background spacetime

� Kinematics vs. dynamics

� Starting from physical symmetry representations

� Motivation: To properly understand quantum information and

computation a qubit should be an abstract probabailistic object.

� Implications:

� Novel algorithms and proof methods.

� Clearer analysis of quantum protocols.

� Apply quantum theory to anything: Quantum Gravity?
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� A physical system A is associated with a Hilbert space HA = C
d.

States of the system are unit vectors |ψ〉 ∈ HA.

� A measurement is associated with a self-adjoint operator M † =M .

By the spectral theorem,

M =
∑

j

mjΠj .

The outcome mj occurs with probability 〈ψ|Πj |ψ〉.

� We can alternatively think of a measurement as a set {Πj} of

orthogonal projection operators with
∑

j Πj = IA.

� A system AB composed of two subsystems A and B is associated

with the Hilbert space

HAB = HA ⊗HB = span (|ψ〉A ⊗ |φ〉B) .
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� More generally, the state of a system A is a positive operator ρ acting

on HA that satisfies Tr (ρ) = 1. The probability of obtaining outcome

Πj in a measurement {Πj} is Tr (Πjρ).

� Examples:

� Pure states: Let ρ = |ψ〉〈ψ|. Then,

〈ψ|Π |ψ〉 =
∑

j

〈ψ|j〉 〈j|Π |ψ〉 =
∑

j

〈j|Π |ψ〉 〈ψ|j〉

= Tr (Πρ) .

� Mixed states: If |ψj〉 is prepared with probability pj then let

ρ =
∑

j pj |ψj〉〈ψj | and then

∑

j

pj 〈ψj |Π |ψj〉 = Tr (Πρ) .
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� For a joint state ρAB on HAB , define the reduced state on A as

ρA = TrB (ρAB)

where, for an operator,

ρAB =
∑

jklm

αjk;lm |j〉〈k|A ⊗ |l〉〈m|B

TrB (ρAB) =
∑

jkl

αjk;ll |j〉〈k|A .

� Then,

TrAB (ΠA ⊗ IBρAB) = TrA (ΠAρA) .
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� For a joint state ρAB on HAB , define the reduced state on A as

ρA = TrB (ρAB)

where, for an operator,

ρAB =
∑

jklm

αjk;lm |j〉〈k|A ⊗ |l〉〈m|B

TrB (ρAB) =
∑

jkl

αjk;ll |j〉〈k|A .

� Then,

TrAB (ΠAρAB) = TrA (ΠAρA) .
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� Restrict attention to a set of density operators and projectors that

commute. Label the eigenbasis {|aj〉} with the possible values

ΩA = {a1, a2, . . .} of a classical variable A. Then,

ρ =
∑

j

P (A = aj) |aj〉〈aj | ΠΛ =
∑

aj∈Λ

|aj〉〈aj | ,

where Λ ⊆ ΩA.

� Hence,

Tr (ΠΛρ) =
∑

aj∈Λ

P (A = aj)

� For a joint system AB, assume diagonality in a product basis

{|aj〉A ⊗ |bk〉B}. Then,

ρAB =
∑

j,k

P (A = aj , B = bk) |aj〉〈aj |A ⊗ |bk〉〈bk|B ,

and partial trace gives the marginals.
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Classical Quantum

Sample space Hilbert space

ΩA = {a1, a2, . . .} HA = C
d

Probability distribution Density operator

P (A = aj) ≥ 0 ρA ∈ L
+ (HA)

∑

j P (A = aj) = 1 TrA (ρA) = 1

Cartesian product Tensor product

ΩA × ΩB HA ⊗HB

Joint distribution Bipartite state

P (A,B) ρAB

Marginal distribution Reduced state

P (B) =
∑

j P (A = aj , B) ρB = TrA (ρAB)
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� Classically, the conditional probability distribution is defined as

P (B = bk|A = aj) =
P (A = aj , B = bk)

P (A = aj)
.

� What should the quantum analog of this be?

� ρB|A = ρABρ
−1
A ?

� ρB|A = ρ−1
A ρAB?

� Neither of these is positive.
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� Define a family of positive products of positive operators

G ⋆(n) H =
(

H
1

2nG
1

nH
1

2n

)n

.

� Two important special cases:

� G⊙H = limn→∞

(

G ⋆(n) H
)

= e(lnG+lnH)

� G ⋆ H = G ⋆(1) H = H
1

2GH
1

2

� Define conditional states:

ρ
(n)
B|A = ρAB ⋆

(n) ρ−1
A .

� Cerf-Adami: ρ
(∞)
B|A = ρAB ⊙ ρ−1

A

� The n = 1 case: ρB|A = ρAB ⋆ ρ
−1
A

ML, Phys. Rev. A 74 042310 (2006). AIP Conference Proceedings 889 pp. 172–186 (2007).

ML & D. Poulin, Ann. Phys. 323 1899 (2008).

N. Cerf & C. Adami, Phys. Rev. Lett. 79 5194 (1997).
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� Classical entropy is given by

H(A) = −
∑

A

P (A) lnP (A),

and conditional entropy by

H(B|A) = H(A,B)−H(A) = −
∑

A,B

P (A,B) lnP (B|A).

� Quantum entropy is given by

S(A) = −Tr (ρA ln ρA) ,

and conditional entropy by

S(B|A) = S(A,B)− S(A) = −Tr

(

ρAB ln ρ
(∞)
B|A

)

.

N. Cerf & C. Adami, Phys. Rev. Lett. 79 5194 (1997).
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� A conditional probability distribution P (B|A) can be defined as a

positive function on ΩA × ΩB that satisfies

∑

B

P (B|A) = 1.

� A quantum conditional state ρB|A with the ⋆-product can be defined

as a positive operator on HA ⊗HB that satisfies

TrB
(

ρB|A

)

= IA.

ML & R. Spekkens, Phys. Rev. A 88 052130 (2013).
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Representation

� Generic probability distribution over N variables: O(dN ) params.

� Generic quantum state on N systems: O(d2N ) params.

Computation of marginals

� P (A1) =
∑

A2,A3,...,AN
P (A1, A2, . . . , AN )

� ρA1
= TrA2A3...AN

(ρA1A2...AN
)

All states

Physically
interesting
states
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Definition. A and B are conditionally independent given C if any of the

following equivalent conditions holds:

� P (A|B,C) = P (A|C)

� P (B|A,C) = P (B|C)

� P (A,B|C) = P (A|C)P (B|C)

� H(A : B|C) = 0,

where

H(A : B|C) = H(A|C)−H(A|B,C)

= H(A,C) +H(B,C)−H(C)−H(A,B,C).
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Definition. A and B are conditionally independent given C if

S(A : B|C) = 0, where

S(A : B|C) = S(A,C) + S(B,C)− S(C)− S(A,B,C). (1)

Theorem. If S(A : B|C) = 0 then

� ρ
(n)
A|BC

= ρ
(n)
A|C

� ρ
(n)
B|AC

= ρ
(n)
B|C

� ρ
(n)
AB|C = ρ

(n)
A|Cρ

(n)
B|C .

� For ⊙ all converse implications hold.

� For ⋆ first two converse implications hold.

ML & D. Poulin, Ann. Phys. 323 1899 (2008).
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� A general state of N systems can be written as

ρA1,A2,...,AN
= ρ

(n)
AN |A1A2...AN−1

⋆(n) . . . ⋆(n) ρ
(n)
A3|A2A1

⋆(n) ρ
(n)
A2|A1

⋆(n) ρA1 .

� Imposing the constraint S(Aj : A1A2 . . . Aj−2|Aj−1) = 0 gives

ρA1,A2,...,AN
= ρ

(n)
AN |AN−1

⋆(n) . . . ρ
(n)
A3|A2

⋆(n) ρA2|A1
⋆(n) ρA1

. . . . . .

A1 A2 A3 AN

� This decomposition and the one that follows can be used in a quantum

generalization of belief propagation algorithms.

ML & D. Poulin, Ann. Phys. 323 1899 (2008).
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Definition. A Quantum Markov Network (G, ρ) is an undirected graph

G = (V,E), where the vertices are quantum systems, and a density

operator ρV that satisfies S(A : B|C) = 0 for all disjoint A,B,C ⊆ V

such that every path from A to B intersects C .

A C B

ML & D. Poulin, Ann. Phys. 323 1899 (2008).
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Theorem. If (G, ρ) is a Quantum Markov Network and ρ is strictly

positive then

ρV =
1

Z
⊙C∈C νC ,

where C is the set of cliques in G.

� Alternatively,

ρV =
1

Z
e−β

∑
C∈C

HC ,

where HC = − 1
β
ln νC .

A1 A2

HA1
HA2

HA1A2

A3 A4

HA2A4
HA1A3

HA3,A4

HA3
HA4

� Converse does not hold: there are extra constraints on the local

Hamiltonians.

ML & D. Poulin, Ann. Phys. 323 1899 (2008).
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� Applications of Quantum Belief Propagation:

� Statistical mechanics of quantum Ising spin chains and spin glasses:

� E. Bilgin and D. Poulin, Phys. Rev. B 81 054106 (2010).

� C. Laumann, A. Scardicchio and S. L. Sondhi, Phys. Rev. B 78 134424

(2008).

� D. Nagaj, E. Farhi, J. Goldstone, P. Shor and I. Sylvester, Phys. Rev. B 77

214431 (2008).

� Study of the connection between the quantum generalization of

satisfiability and phase transitions:

� C. Laumann, R. Moessner, A. Scardicchio and S. L. Sondhi, Quant. Inf. and

Comp. vol. 10(1) pp. 1–15 (2010).

� Markov entropy decomposition (dual to belief propagation):

� Used to obtain lower bounds on the free energy.

� D. Poulin and M. Hastings, Phys. Rev. Lett. 106 080403 (2011).

� A. J. Ferris and D. Poulin, Phys. Rev. B 87 205126 (2013).
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� Classical probability uses the same formulas for inference regardless

of causal structure.

A B

P (A,B) = P (B|A)P (A)

P (B) =
∑

A

P (B|A)P (A)

A

B

P (B) =
∑

A

P (B|A)P (A)

P (A,B) = P (B|A)P (A)
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� By analogy, we would expect:

A B

ρAB = ρB|A ⋆ ρA

ρB = TrA
(

ρB|AρA
)

B

A

ρB = TrA
(

ρB|AρA
)

?

ρAB = ρB|A ⋆ ρA?
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� The (discrete time) dynamics of a closed system is given by a the

adjoint action of a unitary operator U †U = I .

ρ→ UρU †

� More generally, dynamics is given by a Completely-Positive

Trace-Preserving (CPT) map EB|A : L(HA) → L(HB).

U

B

A E

E′

ρB = EB|A(ρA)

ρA ⊗ ρE

ρBE′

HA ⊗HE = HB ⊗HE′

= TrE′

(

UρA ⊗ ρEU
†
)
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� The (discrete time) dynamics of a closed system is given by a the

adjoint action of a unitary operator U †U = I .

ρ→ UρU †

� More generally, dynamics is given by a Completely-Positive

Trace-Preserving (CPT) map EB|A : L(HA) → L(HB).

� A CP map is a linear map such that

EB|A ⊗ IE : L(HA ⊗HE) → L(HB ⊗HE)

is positive for any HE .

� A map is trace preserving if

TrB
(

EB|A(MA)
)

= TrA (MA) .
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� The (discrete time) dynamics of a closed system is given by a the

adjoint action of a unitary operator U †U = I .

ρ→ UρU †

� More generally, dynamics is given by a Completely-Positive

Trace-Preserving (CPT) map EB|A : L(HA) → L(HB).

� A CP map is a map that can be written as

EB|A(ρA) =
∑

j

MjρAM
†
j

for some linear operators Mj : HA → HB .

� It is trace preserving if

∑

j

M
†
jMj = IA.
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� Given a map EB|A : L(HA) → L(HB), define an operator on

HA ⊗HB via

̺B|A =
∑

jk

|j〉〈k|A ⊗ EB|A′ (|k〉〈j|A′) .

� Then, EB|A(ρA) = TrA
(

̺B|AρA
)

.

Theorem. EB|A is CPT iff ̺
TA

B|A is a valid conditional state, where, for

̺B|A =
∑

jklm

αjk;lm |j〉〈k|A ⊗ |l〉〈m|B

̺
TA

B|A =
∑

jklm

αkj;lm |j〉〈k|A ⊗ |l〉〈m|B .

A. Jamiołkowski, Rep. Math. Phys. 3 pp. 275–278 (1972)

ML & R. Spekkens, Phys. Rev. A 88 052130 (2013).
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Definition. An Acausal Conditional State of B given A is a positive

operator ρB|A on HA ⊗HB such that

TrB
(

ρB|A

)

= IA.

Definition. A Causal conditional state of B given A is an operator ̺B|A

on HA ⊗HB such that ̺
TA

B|A is an acausal conditional state.

Definition. A Causal joint state on AB is an operator ̺AB on HA ⊗HB

that can be written as

̺AB = ̺B|A ⋆ ρA

for some causal conditional state ̺B|A and marginal state ρA.

Alternatively ̺
TA

AB is an acausal joint state.

ML & R. Spekkens, Phys. Rev. A 88 052130 (2013).
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A B

ρAB = ρB|A ⋆ ρA

ρB = TrA
(

ρB|AρA
)

B

A

ρB = TrA
(

̺B|AρA
)

̺AB = ̺B|A ⋆ ρA

ML & R. Spekkens, Phys. Rev. A 88 052130 (2013).
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S

A B

S

B

A A

S

B

Time reversal
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� ML and R. Spekkens, Phys. Rev. A 88 052130 (2013).

� Unified formalism for preparations, measurements and dynamics

� Quantum Bayes theorem

� Retrodictive quantum theory

� Quantum steering

� ML and R. Spekkens, to appear in J. Phys. A (2014).

� Quantum sufficient statistics

� Quantum state compatibility

� Quantum state improvement and pooling

� B. Coecke & R. Spekkens, Synthese 186 651 (2012).

� Category theoretic version of quantum Bayesian inference.

� E. G. Cavalcanti & R. Lal (2013). arXiv:1311.6852.

� Used to analyse quantum generalization of Bell’s locality condition.

� J. Norton (2014). http://bit.ly/1km1Q4L.

� Quantum inductive logic

http://bit.ly/1km1Q4L
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� Recall, in deriving CPT maps from unitary dynamics, it is assumed

that the system is initially uncorrelated from the environment.

U

B

A E

E′

ρB = EB|A(ρA)

ρA ⊗ ρE

ρBE′

HA ⊗HE = HB ⊗HE′

= TrE′

(

UρA ⊗ ρEU
†
)

� Not a good approximation for multi-timestep dynamics with small

environments, strongly correlated systems, correlated error models

etc.
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� Some have suggested using non CPT dynamics:

� see e.g. T. Jordan, A. Shaji & E. Sudarshan, Phys.Rev. A 70 052110

(2004).

� More general situations in which CPT dynamics works have also been

found:

� C. Rodriguez-Rosario et. al., J. Phys. A 41 205301 (2008).

� A. Brodutch et. al., Phys. Rev. A 87 042301 (2013).

� F. Buscemi (2013). arXiv:1307.0363.

� From conditional states perspective, suggestion to abandon CPT is puzzling

due to the analogy:

P (B) =
∑

A

P (B|A)P (A) ρB = TrA
(

̺B|AρA
)
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̺BE′|AE

B

A E

E′

ρAE

ρBE′

ρB = TrAEE′

(

̺BE′|AEρAE

)

= TrA,E

(

̺B|AEρAE

)

̺ABE = ̺B|AE ⋆ ρAE

̺AB = TrE (̺ABE)

ρA = TrB (̺AB)

̺B|A = ̺AB ⋆ ρ
−1
A

ρB = TrA
(

̺B|AρA
)
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̺BE′|AE

B

A E

E′

ρAE|X

ρBE′|X

X

ρB|X = TrAEE′

(

̺BE′|AEρAE|X

)

= TrAE

(

̺B|AEρAE|X

)

̺ABE|X = ̺B|AE ⋆ ρAE|X

̺AB|X = TrE
(

̺ABE|X

)

ρA|X = TrB
(

̺AB|X

)

̺B|AX = ̺AB|X ⋆ ρ−1
A|X

ρB|X = TrA
(

̺B|AXρA|X

)
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� Fundamentals:

� Quantum conditionals problem.

� Joint states for more general causal scenarios, e.g. multiple

time-steps, pre- and post-selection.

� General conditional independence.

� Applications:

� Generalize other inference algorithms, e.g. MCMC. Applications in

many-body physics and quantum error correction.

� Learning algorithms.

� Quantum master equations.



References

Research program

goal

Overview of talk

Introduction

Characterizing Quantum

States

Dynamics

Dynamics with intial

correlations

Conclusion

Future work

References

UWO Applied Mathematics – 42 / 54

� Markov networks and belief propagation algorithms:

� M. Leifer & D. Poulin, Ann. Phys. 323 1899 (2008).

� Conditional states formalism:

� M. Leifer & R. Spekkens, Phys. Rev. A 88 052130 (2013).

� M. Leifer & R. Spekkens, to appear in J. Phys. A (2014).

� Earlier uses of n = 1 conditional states:

� M. Leifer, Phys. Rev. A 74 042310 (2006).

� M. Leifer, AIP Conference Proceedings 889 pp. 172–186 (2007).
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� Classically, given any valid P (R), P (S|R), P (T |S,R) there is a

joint probability distribution

P (R,S, T ) = P (T |S,R)P (S|R)P (R)

that has those conditionals and marginal.

� Quantum mechanically, given any valid ρA, ρ
(n)
B|A, ρ

(n)
C|BA

we can

certainly form

ρABC = ρC|AB ⋆
(n)

(

ρ
(n)
B|A ⋆

(n) ρA

)

,

but this will not necessarily have the right conditionals.

� Why? Monogamy of entanglement.
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� For a pure state ρAB = |ψ〉〈ψ|AB with

|ψ〉AB =
∑

j

αj |j〉A ⊗ |j〉B ,

the conditional state is ρB|A = |ψ〉〈ψ|B|A, where

|ψ〉B|A =
∑

j

|j〉A ⊗ |j〉B .

� Therefore, for a 3-system Markov Chain

A B C

cannot have both ρA|B = |ψ〉〈ψ|A|B and ρC|B = |ψ〉〈ψ|C|B .
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A B C

� For a 3-system Markov chain, ρB , ρA|B and ρC|B are compatilbe with

a joint state iff

1. [ρA|B, ρC|B] = 0. Note: this is equivalent to the existence of a

decomposition of HB of the form

HB = ⊕jHBA
j
⊗HBC

j
,

such that

ρA|B =
∑

j

ρA|BA
j

ρC|BC
j
=

∑

j

ρC|Bj
.

2. ρB =
∑

j pjρABA
j
⊗ ρBC

j C .
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� A measurement is described by a set {Πx} of orthogonal projectors

satisfying
∑

xΠx = I .

� More generally, a measurement is described by a set {Ex} of positive

operators satisfying
∑

xEx = I .

� This is called a Positive Operator Valued Measure (POVM).

U

A M

TrA(E
A
x ρA) = TrAM

(

ΠM
x UρA ⊗ ρMU †

)

ρA ⊗ ρM

X
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X

A

ρA =
∑

x

P (X = x)ρAx

ρA = TrX
(

̺A|XρX
)

A

X

P (X = x) = TrA
(

EA
x ρA

)

ρX = TrA
(

̺X|AρA
)

ML & R. Spekkens, Phys. Rev. A 88 052130 (2013).
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Definition. A hybrid operator on a classical-quantum system HX ⊗HA is any

operator of the form

MXA =
∑

x

|x〉〈x|X ⊗MA
x

Theorem. A hybrid (acausal or causal) conditional state of a quantum system

given a classical system is any operator of the form

ρA|X =
∑

x

|x〉〈x|X ⊗ ρAx ,

where {ρAx } is a set of density operators on HA.

Theorem. A hybrid (acausal or causal) conditional state of a classical system

given a quantum system is any operator of the form

ρX|A =
∑

x

|x〉〈x|X ⊗ EA
x ,

where {EA
x } is a POVM on HA.

ML & R. Spekkens, Phys. Rev. A 88 052130 (2013).
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Conventional Conditional

notation states

Probability P (X) ρX
distribution of X

Set of states on A
{

ρAx
}

ρA|X

POVM on A {EA
x } ρX|A

CPT map EB|A ̺B|A

from A to B

Ensemble averaging ρA =
∑

x P (X = x)ρAx ρA = TrX
(

ρA|XρX
)

Born rule P (X = x) = TrA
(

EA
x ρA

)

ρX = TrA
(

ρX|AρA
)

Action of a CPT map ρB = EB|A(ρA) ρB = TrA
(

̺B|AρA
)
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� For acausal states we have

ρAB = ρB|A ⋆ ρA

= ρA|B ⋆ ρB,

and hence

ρA|B = ρB|A ⋆
(

ρA ⊗ ρ−1
B

)

� In the causal case, we can define

̺A|B = ̺B|A ⋆
(

ρA ⊗ ρ−1
B

)

,

so that

̺AB = ̺B|A ⋆ ρA

= ̺A|B ⋆ ρB.

ML & R. Spekkens, Phys. Rev. A 88 052130 (2013).
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� The “pretty good” measurement:

ρX|A = ρA|X ⋆
(

ρX ⊗ ρ−1
A

)

EA
x = P (X = x)ρ

− 1

2

A ρAx ρ
− 1

2

A

� Remote state collapse:

ρA|X = ρX|A ⋆
(

ρA ⊗ ρ−1
X

)

ρAx =
ρ

1

2

AE
A
x ρ

1

2

A

TrA (EA
x ρA)

� Barnum-Knill approximate error correction:

̺A|B = ̺B|A ⋆
(

ρA ⊗ ρ−1
B

)

EA|B(·) = ρ
1

2

A ⊗ ρ
− 1

2

B EB|A(·)ρ
1

2

A ⊗ ρ
− 1

2

B

P. Hausladen & W. Wootters, J. Mod. Opt. 41 2385 (1994).

C. Fuchs, J. Mod. Opt. 50 987 (2003).

H. Barnum & E. Knill, J. Math. Phys. 43 2097 (2002).

ML & R. Spekkens, Phys. Rev. A 88 052130 (2013).
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X

Y

B

A

� Predictive expression:

P (X,Y ) = TrAB

(

ρY |B̺B|AρA|XρX
)

� Retrodictive expression:

P (X,Y ) = TrAB

(

ρX|A̺A|BρB|Y ρY
)

� Converted into conventional notation, this

generalizes S. Barnett, D. Pegg & J. Jeffers, J.

Mod. Opt. 47 1779 (2000).

ML & R. Spekkens, Phys. Rev. A 88 052130 (2013).
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� Classically, P (E|A,X) = P (E|A) is sufficient for

P (B|A,X) = P (A|X).

� In quantum theory, ρE|AX = ρE|A is not sufficient for ̺B|AX = ̺B|A

due to nonlinearity and noncommutativity of conditional states.

� Instead one obtains

ρB|X = TrAE

(

̺B|AEρ
1

2

A|XρE|Aρ
1

2

A|X

)

,

which is nonlinear in ρA|X .

� Suggests nonlinear maps may have physically relevant applications.
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