
Nondeterministic testing of SQL
Propositions on a QC

Matthew Leifer

Perimeter Institute for Theoretical Physics

QICL Workshop 17th-22nd July 2005

Outline

1) Introduction

Logic, complexity and models of Computing

2) Sequential Quantum Logic

3) Testing an SQL proposition: Example

4) Generalizations

Higher dimensions, multiple propositions

6) Open questions

1) Introduction

Classical Computational Complexity

Cook-Levin: SATISFIABILITY is NP complete.

Given a Boolean formula, decide if there are truth value
assignments to the elementary propositions that make the
formula true.

1) Introduction
There is a model of classical computing based directly on Boolean
logic.

1) Introduction
Can we pull off the same trick as in the classical circuit model?

Is there a model of QC in which logic of process = logic of
properties?

• Logic of quantum properties ~ algebra of measurements.

Subspace lattice, OM Lattice/Poset, orthoalgebra, etc.

• Logic of quantum processes ~ algebra of unitaries?

Measurement based models suggest these logics need not be so
distinct.

Bit strings, Revesible
classical logic

Prob. measures on strings,
stochastic operations.

Superpositions of strings,
unitary operations.

Probabilities

Amplitudes

Bit strings, Boolean logic
operations. Prob. measures on strings,

stochastic operations.

Probabilistic model arising
from measures on subspaces.

Probabilities

Subspaces, quantum logic
operations.

Probabilities

Transition from classical
to quantum logic

Traditional view of quantum computing

von-Neumanized view of quantum computing

2) Sequential Quantum Logic
• Developed in late 70’s/early 80’s by Stachow and Mittlestaedt.

• Extended by Isham et. al. in mid 90’s as a possible route to QGravity.

€

X
€

Y

€

Y

Up

Up

Up

Down

Down

Down

€

Ψ

2) SQL: Structure

Not commutative:

Associative:

2) SQL: Hilbert Space Model

Hilbert space:

Elementary propositions: - projection operators on .

Notation: - operator associated to prop. .

Negation: “NOT ”.

Sequential conjunction: “ AND THEN ”.

Note: Usual conjunction can be obtained by including limit propositions

2) SQL: Problems
SQL works well for situations like this

But it does not handle “coarse-grainings” well:

€

a,¬a{ }
€

b,¬b{ }

€

b,¬b{ }€

Ψ

€

Ψ

€

a[] Ψ

€

¬a[] Ψ

3) Testing an SQL Proposition
The algorithm is based on recent QInfo inspired approaches to DMRG.

Cirac, Latorre, Rico Ortega, Verstraete, Vidal, et. al.

It has 3 main steps:

1) Prepare a “history” state that encodes the results of the
underlying sequence of measurements.

2) Apply rounds of “renormalization” (coherent AND and NOT
gates) to get the desired proposition.

3) Measure a qubit to test the proposition.

Note: 2) can only be implemented probablistically.

3) Testing: History state
Suppose we want to test a simple SQL proposition .

,

Notation: ,

Define: ,

History state:

3) Testing: History state
The history state is a kind of PEPS state.

Starting state:

 where

€

Pa

€

Pb

€

Pc

€

′ c

€

f

€

c

€

′ b

€

b

€

′ a

€

a

€

Px = x j[]km
j x km x ′ x j,k,m=0

1
∑ ,

€

j a k b m c cm[]
j,k ,m=0

1
∑ bk[] a j[]Ψ f = Pa ⊗ Pb ⊗ Pc start

3) Testing: History state

How to prepare the history state:

i) Apply to qubits and .

ii) Perform a parity measurement on and .

,

iii) Perform and discard .

iv) If outcome occurred then perform on qubit .

v) Repeat steps i) - iv) for and .

Note: Equivalent to applying operators

€

xi[] jk
i x jk xx'i, j ,k

∑ .

3) Testing: Renormalization

i) Compute by applying “coherent AND” to qubits

€

a and

€

b.

ii) Compute by applying

€

X to qubit .

iii) Compute

€

d by applying .

3) Testing: Implementing AND

is not a directly implementable. Instead, implement measurement:

If , discard 2nd qubit and proceed.

If , abort and restart algorithm from beginning.

Note: Algorithm will succeed with exponentially small probability in no.
 gates.

3) Testing: Complexity
Let

€

n = no. propositions in underlying sequence.
Let

€

m = no. gates in formala.

Count no. 2-qubit gates:

Preparing entangled states

€

n

Preparing history state

€

O n()

Perfoming gates

€

O m()

Generalization to

€

d dimensional H.S.: Let

€

r = log2 d .

Preparing entangled states

€

rn

Preparing history state

€

O n()

Applying

€

Ux
† ⊗Ux

T

€

O n22r()

4) Generalizations

• Testing projectors of arbitrary rank.

• Testing props on d-dimensional Hilbert space.

• Need upper bound on

€

d needed to get correct probs. for all
formulae of length

€

n.

• Testing multiple propositions.

• On disjoint subsets of an underlying sequence of propositions.

• By copying qubits in the computational basis.

6) Open Questions
Can SQL be modified so that all sequential propositions can be tested?

Modify definition of sequential conjunction.

Restrict allowed subspaces.

Is SQL the logic of an interesting model of computing?

c.f. Aaronson’s QC with post-selection.

Renormalization: A new paradigm for irreversible quantum computing?

Which DMRG schemes are universal for classical/quantum
computing?

Is there a natural quantum logic which has SAT problems that are NQP or
QMA complete?

