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Quant um Theory as a Meta-t heory

The analogy is 
based on quant um 
measurement 
t heory....

...but QT is not as 
abst ract as PT.  
Quant izat ion 
cannot be applied 
to an arbit rary 
t heory.

Causal st ruct ure is 
present in QT, but 
absent f rom PT.

Classical
Determinist ic

Theory

Quant um
Theory

Probabilist ic
Theory

apply probabilit y
t heory quant ize



Classical Probabilit y vs. Quant um Theory

Classical Quant um

Probabilit y dist r ibut ion:      Quant um State:

Joint dist r ibut ion:      Joint State:

Transit ion mat r ix:      TPCP map:

Condit ional Prob.: ?

P(X )

P(X , Y )

! Y |X

P(Y |X )

! A

! AB

EB |A



Why quant um condit ional probabilit y?

Condit ional probabilit ies allow all t ypes of cor relat ion to 
be treated on an equal foot ing, whether t imelike, 
spacelike or completely abst ract.

Causal relat ions are not pr imit ive in probabilit y theory.

Some classical probabilist ic st ruct ures are deÞned in 
terms of condit ional probabilit y.

M arkov Chains

Bayesian Net works

Some Bayesians take condit ional probabilit y to be the 
most f undamental not ion.

See text book by D. V. Lindley
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1. Int roduct ion

(A)Reconst ruct ing a joint dist r ibut ion from a marginal

(B)Bayesian Updat ing

(C)Stochast ic Dynamics

(D)Condit ional Shannon Ent ropy

(E) Reduct ion of complexit y via condit ional independence

P(X , Y ) = P(Y |X )P(X )

P(H |D) =
P(D |H )P(H )

P(D)

P(Y = i ) =
∑

j

(
! Y |X

)
ij

P(X = j )

H (Y|X ) = !
!

X ,Y

P(X , Y ) log2 P(Y|X )

P(Y|X , Z ) = P(Y|Z ) ! P(X , Y, Z ) = P(X |Z )P(Y|Z )P(Z )



1. Int roduct ion

(A)Reconst ruct ion of a joint state           from a marginal       .

(B)Updat ing quant um states after a measurement

(C)TPCP dynamics

(D)Condit ional von Neumann Ent ropy

(E) Reduct ion of complexit y via condit ional independence

! AB ! A

! B = EB |A (! A )

S(B |A) = ! Tr
!
! AB log2 ! B |A

"

! |M =
EM (! )

Tr (M ! )



1. Int roduct ion

Cerf & Adami (Ô97-Õ99):  

(A) Reconst ruct ion:

(C) Ent ropy:

(E) Complexit y Reduct ion:  If

! AB = 2log2 ρA ! I B +lo g2 ρB | A

S(B |A) = S(A, B ) ! S(A) = ! Tr
!
! AB log2 ! B |A

"

! ABC = 2IAB ! log2 ! C +lo g2 ! A | C ! IB + IA ! log2 ! B | C

log2 ! B |AC = I A ! log2 ! B |C

ρB |A = 2log2 ! AB ! log2 ! A " I B

= lim
n #$

!
ρ

1
n
AB (ρA ! I B )

1
n

" n



1. Int roduct ion

(B) Updat ing:  

POVM: 

Probabilit y Rule:

Update CP-map:

          depends on details of system-measur ing device interact ion.

M = { M } , M > 0,
!

M

M = I

EM (! ) =
!

j

AM
j ! AM  

j

!

j

AM  
j AM

j = M

! |M =
EM (! )

Tr (M ! )

P(M ) = Tr (M ρ)

EM



1. Int roduct ion

Is there one update rule that is more ÒBayesÕ rule likeÓ than the 
rest?

Tradit ionally (see Bub Õ77 for project ive measurements): 

According to Fuchs (Õ01, Õ02):

Both reduce to BayesÕ rule when the         are project ion operators andM

[M , ! ] = 0

! |M =
!

M !
!

M
Tr (M ! )

ρ|M =
!

ρM
!

ρ

Tr (M ρ)



2. Dynamics as condit ional probabilit y
5

X

(c)(b)(a)

YY

X

X

Z

Y

! Y |X ! X |Y ! X |Z ! Y |Z

FIG . 1: Distinct ways in which a general joint probabi lity distri buti on P(X , Y ) may arise. (a) X is the cause of Y . The
generation of Y must be in the temporal future of the generation of X . For example, Y may be the result of sending X through
a noisy channel described by a stochastic matri x ! Y |X . (b) Y is the cause of X . The generation of X must be in the temporal
future of the generati on of Y . For example, X may be the result of sending Y through a noisy channel described by a stochast ic
matri x ! X |Y . (c) X and Y are the result of some common cause, described by a random variable Z . They may be observed at
spacelike separation from one another, provided the points where this happens are both in the forward lightcone of the point
where Z was generated.

In the quantum case, this is analogous to preparing a density operator ! A at t1 and then subjecting the system to
a dynamical evolution according to a TPCP map EB |A to obtain a density operator ! B = EB |A (! A ) at t2.

Classically, there is no reason not to consider the two-time joint probability distribution P (X, Y ) that results from
combining the preparation P (X) with the dynamics ! Y |X . To do this, we need only define the conditional distributions
P (Y |X), since the joint is then given by eq. (10). Comparing eq. (11) with eqs. (8) and (10), we see that setting

P (Y = i|X = j) = (! Y |X )ij , (12)

for all i, j such that P (X = j) != 0 gives the desired result. In the quantum case, we do not ordinarily construct a
joint density operator on L(HA " HB ), which would be the analog of the joint probability P (X, Y ).

Note that, for a fixed preparation P (X), we may vary the dynamics arbitrarily for all values of X that have no
support in P (X), without a" ecting the conditional distribution P (Y |X), or the joint P (X, Y ). Conversely, knowing
P (Y |X) or P (X, Y ) only specifies the dynamics on the support of P (X).

The set of joint probability distributions obtainable in cases (a) and (c) are precisely the same, so we can define
an isomorphism between the pair of objects consisting of a preparation and a dynamics and the joint state of two
subsystems

(P (X), ! r
Y |X ) # P (X, Y ). (13)

Here, ! r
Y |X refers to the restriction of the dynamics ! Y |X to the support of P (X), and is in one-to-one correspondence

with the conditional probability P (Y |X). The left-hand side of eq. (13) can be thought of as arising from scenario
(a), and the right-hand side from scenario (c). This may seem like an unnecessarily complicated restatement of what
is essentially the definition of conditional probability, but it is worth remarking upon because the new isomorphism
of §IV is the quantum analog of this. That is, we construct an isomorphism between the pair of objects consisting of
a preparation and a dynamics, and the joint state of two subsystems:

(! A , E r
B |A ) # "AB , (14)

where E r
B |A denotes the restriction of a TPCP map EB |A to the support of ! A . The object E r

B |A is to be thought of as
a quantum analog of conditional probability, playing the same role in the theory as ! r

Y |X does in classical probability.

IV. A NEW VARIAN T OF TH E JAM I O !LK OWSKI IS OM ORPHI SM

In this section, the new isomorphism is described. It is constructed and shown to be an an isomorphism in §IV A.
§IV B gives the operational interpretation of the isomorphism. Finally, §IV C and §IV D describe some properties of
the isomorphism that are exploited in the applications that follow.

P (Y ) =
!

X

! Y |X P (X)

P(X , Y ) = ! Y |X P(X )

P(Y |X ) = ! r
Y |X

P(X , Y )

P(Y |X ) =
P(X , Y )

P(X )

(P(X ), ! r
Y |X ) ! P(X , Y )Isomorphism:

P(X ) =
!

Y

P(X , Y )



2. Dynamics as condit ional probabilit y

Isomorphism:                                             ?

Source:

B

A

B

(c)(b)(a)

A

BA

EB |A
EA |B

ρB = EB |A (ρA )

! AB =?

! B |A , Er
B |A , ?

! A = TrB (! AB )

τAB

! AB

! B |A =?

!
! A , Er

B |A

"
! "AB



3. Choi-Jamiolkowski Isomorphism

For bipart ite pure states and operators:

For mixed states and CP-maps:

RB |A =
∑

j k

! j k |j ! B "k|A # |! !AB =
∑

j k

! j k |k!A $ |j ! B

EB |A (! A ) =
!

µ

R(µ )
B |A ! A R(µ )†

B |A ! "AB =
!

µ

"
"
"! (µ )

#

AB

$
! (µ )

"
"
"
AB



3. Choi-Jamiolkowski Isomorphism

Let 

Then

Operat ional interpretat ion: Noisy gate teleportat ion.

!
!! +

"
AA ! =

1
!

dA

#

j

|j "A # |j "A !

EB |A (! A ) = d2
A

!
! +

"
"
AA ! ! A ! "A ! B

"
"! + #

AA !

! AB = I A ! EB|A!

(∣∣! + 〉
AA!

〈
! +

∣∣
AA!

)



3. Choi-Jamiolkowski Isomorphism

Remarks:

Isomorphism is basis dependent.  A basis must be chosen to deÞne                       .

If we rest r ict at tent ion to Trace Preser ving CP-maps then 

This is a special case of t he isomorphism we want t o const ruct

where                               .

!
!! + "

AA !

! A = TrB (! AB ) =
1

dA
IA

(
! A , Er

B |A

)
! "AB

! A =
1

dA
I A



4. A New Isomorphism

                                    direct ion:

Instead of                        use 

Then

                                     direct ion:

Set 

Let

              is a densit y operator, sat isf ying

It is uniquely associated to a TPCP map

via the Choi-Jamiolkowski isomorphism. 

!
! A , Er

B |A

"
! "AB

!
!! + "

AA ! |! !AA ! =
!
! T

A

" 1
2 " I A !

#
#! + $

AA !

! AB = I A ⊗ Er
B |A ! (|! 〉AA ! 〈! |AA ! )

! AB !
!

" A , Er
B |A

"

! A = " T
A , "A = TrB ("AB )

! B |A = "
! 1

2
A ! I B "AB "

! 1
2

A ! I B

TrB
(
! B |A

)
=

1
dr

A
PA! B |A

Er
B |A : L (PA H A ) → L (H B )



4. A New Isomorphism 7

(b)

(a)

BA

B

AA

B

(c)

Source: τAB

τA

τAB

τA

Er
B |A

ρA = τT
A

FIG . 2: In these diagrams, ti me ßows up the page. Starti ng from (a), the spaceand ti me axes are interchanged and the diagram
is Òstretched outÓto arri ve at (b) . This does not descri be a possible experiment, since we cannot send system A backwards in
the ti me direction. In order to arri ve at a feasible experiment, some arrows must be reversed, giving ri se to (c). The tra nspose
on τA is an arti fact of thi s ti me reversal.

has support on the subspacethat PA projects onto, so the state |Φ!AA ! obtained will be the same. The act ion of
E r

B |A ! is well deÞned on |Φ+ ! r
AA ! and the two steps of the constr uction commute, so that the CP-map can be applied

to |Φ+ ! r
AA ! , followed by conjugation wit h

(
! T

A

) 1
2 , with out affecting the resultin g state "AB . The stat e |Φ+ ! r

AA ! is
maximally entangled on the subspacePA HA " PA HA , and so the state #AB = IA " E r

B |A ! (|Φ+ ! r #Φ+ |rAA ! ) is the stat e
one would have obtained from applying the standard Jamio#lkowski isomorphism to E r

B |A . On applying the reverse
construction, the samestate #AB is obtained in eq. (18), and becausestat es and maps are uniquely related by the
standard isomorphism, the map E r

B |A that we started with is recovered from th is procedure.

B. Op era tio nal In terp retation

Unlike the standard Jamio#lkowski isomorphism, the new isomorphism does not have an immediate operational
interpretation in terms of noisy gate teleportati on. However, there is a sensein which "AB and the pair (! A , E r

B |A )
are operationally indistinguishable. To understand this, we need to recall the role of Positive Operator Valued
Measures(POVMs) in describing generalizedquantum measurements [1], and explain their correspondenceto ensemble
preparations of density operators.

A POVM is a set of positive operators that sum to the identit y. Here, POVMs are denoted by upper-case letters
M , N , . . .. The operators within a POVM are denotedby the corresponding boldface letter, e.g. M = {M (m )}, where
the superscript m is a positiv e integer used to distinguish the operators with in POVM.

POVMs are normally used to compute the probabilities for the possible outcomesof generalized measurements. Let
the possible outcomes be labeled by the same integers as the POVM elements, so that the generalized Born rule is

P(M = m) = Tr
(

M (m ) !
)

. (22)

Note that the symbol M , which stands for a collecti on of operators, is also being used to denote the random variable
generatedby the measurement. It should be clear from the context which of the two meanings is being referred to.



5. Operat ional Interpretat ion

Reminder about measurements:  

POVM: 

Probabilit y Rule:

Update CP-map:

          depends on details of system-measur ing device interact ion.

M = { M } , M > 0,
!

M

M = I

EM (! ) =
!

j

AM
j ! AM  

j

!

j

AM  
j AM

j = M

! |M =
EM (! )

Tr (M ! )

P(M ) = Tr (M ρ)

EM



5. Operat ional Interpretat ion

Lemma:                                        is an ensemble decomposit ion of a 

densit y mat r ix     if f t here is a POVM                         s.t.

Proof sketch: 

! =
!

M

P (M )! |M

M = { M }!

P(M ) = Tr (M ! )

M = P(M )! ! 1
2 ! |M ! ! 1

2

! |M =
!

! M
!

!
Tr (M ! )



5. Operat ional Interpretat ion

      -measurement of  

Input :               

Measurement probabilit ies: 

Updated state:

      -preparat ion of

Input :  Generate a classical r.v. wit h p.d.f

Prepare the cor responding state:

M

!

!

M

M !

!

M !

P(M ) = Tr (M ! )

P(M ) = Tr (M ! )

! |M =

!
M !

!
M

Tr (M ! )

! |M =
!

! M
!

!
Tr (M ! )



5. Operat ional Interpretat ion 9

(a)

A B

NM
B

A

M

N

(b) (c)

M

B

A

N

M -measurement N -measurement

! AB

! A

M -measurement

! A

! AB

N -measurement

M T -preparat ion

" A = ! T
A

Er
B|A

N -measurement

FIG . 3: Thi s Þgure represents the same experiments as Þg. 2, with the additi on of measurements and preparati ons. (a) is
obtained by simply adding M and N -measurements to Þg. 2(a). In (b), the space and t ime axes have been swapped and
the diagram has been Òstretched outÓ. As with Þg. 2(b) thi s does not represent a possible experiment . To obtain a feasible
experiment, in addit ion to the transform ati ons of Þg. 2, the M -measurement must be transform ed into a preparati on, leading
to (c). The tra nspose is an art ifact of thi s t ime-reversal.

where ! AB is the state deÞned in eq. (18). Since ! AB = I A ! Er
B |A ′

!
|Ψ+ "r #Ψ+ |rAA ′

"
, thi s gives

P(M , N ) = Tr

#

$ "
1
2

A MA "
1
2

A ! NB
1

dr
A

dr
A%

j ,k =1

|j " #k|A ! Er
B |A (|j " #k|A )

&

' . (27)

Rearranging then gives

P(M , N ) =
dr

A%

j ,k =1

#k| "
1
2

A MA "
1
2

A |j " #k| R(µ )  
B |A NB R(µ )

B |A |j " (28)

=
dr

A%

j =1

#j | ("
1
2

A )T MT
A ("

1
2

A )T
dr

A%

k=1

|k" #k| R(µ )  
B |A NB R(µ )

B |A |j " . (29)

Now, " T
A = #A and

( dr
A

k=1 |k" #k| = PA , where PA is the projector onto the support of #A , so

P(M , N ) =
dr

A%

j =1

#j | #
1
2
A MT

A #
1
2
A PA R(µ )  

B |A NB R(µ )
B |A |j " . (30)

is the same in (a) and (c) for 
any POVMs       and      .

P(M , N )
M N



6. Applicat ion: Broadcast ing & Monogamy

For any TPCP map                                                                   the 
reduced maps are:

The following commutat ivit y propert ies hold:

Therefore, 2 states                     incompat ible wit h being the 
reduced states of a global state            .

2 reduced maps                        incompat ible wit h being the reduced 
maps of a global map              .

EB C |A : L (H A ) ! L (H B " H C )

EB |A = TrC ! EB C |A EC |A = TrB ! EB C |A

10

However, !
1
2
A PA R(µ )†

B |A = !
1
2
A R(µ )†

B |A , since R(µ )
B |A is only deÞned on the support of ! A . Substitu tin g th is and rearranging

gives

P(M , N ) = TrB

!

" N B R(µ )
B |A

dr
A#

j =1

|j ! "j |A !
1
2
A M T

A !
1
2
A R(µ )†

B |A

$

% . (31)

Now again
& dr

A
j =1 |j ! "j |A = PA and R(µ )

B |A PA !
1
2
A = R(µ )

B |A !
1
2
A , so

P(M , N ) = TrB

'
N B Er

B |A

'
!

1
2
A M T

A !
1
2
A

((
(32)

= Q(M , N ). (33)

C. Comm utat ivit y prop er ti es of t he isomo r phism

Two commutativ it y of the isomorphism are useful for the applications that follow. Firstly, the isomorphism com-
mutes with the parti al tr ace for trip artit e states. To describe thi s, it is useful to intro duce the concept of a reduced
map.

DeÞniti on I V.4. For a linear map EB C |A : L(H A ) # L(H B $ H C ). The reduced map EB |A : L(H A ) # L(H B ) is
given by composing the map with the partial trace, i.e. EB |A = TrC %EB |A .

Startin g with a pair (! A , Er
B C |A ), the isomorphism can be used to arrive at a t ripartite state "AB C , and then the

partial trace over C gives the biparti te reduced state "AB . This is the same biparti te state that one obtains by
applyi ng the isomorphism to the pair (! A , Er

B |A ). This is summarized in the following diagram:

! AB C (! A , Er
B C |A )

TrC

)
)
*

)
)
* TrC

! AB (! A , Er
B |A ).

(34)

The second commutativ it y property concerns M -measurements. Startin g with a pair (! A , Er
B |A ), the isomorphism

can be used to arrive at a biparti te state "AB , and then an M -measurement can be applied to system A, giving a
bipartite state

&
M A $ I B "AB

&
M A $ I B , wherethenormalization factor hasbeenadmitted. This is thesamebipartite

state that one obtains by Þrst performing an M T -measurement on ! A to obtain the pair (
&

M
T
A ! A

&
M

T
A , Er

B |A ), and
then applying the isomorphism. Thi s is summarized in the following diagram:

"AB (! A , Er
B |A )

M A -measur ement

)
)
*

)
)
* M T

A -measur ement

&
M A $ I B "AB

&
M A $ I B (

&
M

T
A ! A

&
M

T
A , Er

B |A )

(35)

These commutat ivit y properties are str aightf orward to prove from the deÞniti on of the isomorphism, and so the
proofs are omitt ed here.

D. Remarks

As with the standard isomorphism, the new constr uction depends on the basis chosen for |Φ+ !AA ! . The forward
directi on takesa particular ly simple form if th is is chosen to be an eigenbasis of ! A , sincethis basisis then a Schmidt
basis for |Φ!AA ! . Let ! A =

&
j #j |j ! "j |A be an eigendecomposition of ! A . Then eq. (15) can be writ ten as

|Φ!AA ! =
#

j

+
#j |j ! A $ |j !A ! , (36)

! AB , ! AC
! ABC

Er
B |A , Er

C |A
Er

B C |A



6. Applicat ion: Broadcast ing & Monogamy

A TPCP-map                                                                          is 
broadcast ing for a state        if

A TPCP-map                                                                          is 
cloning for a state        if

Note: For pure states cloning = broadcast ing.

A TPCP-map is universal broadcast ing if i t is broadcast ing for 
every state.

EA ! A !! |A : L (H A ) ! L (H A ! " H A !! )

EA ! |A (! A ) = ! A ! EA !! |A (! A ) = ! A !!

EA ! A !! |A (! A ) = ! A ! ! ! A !!

! A
EA ! A !! |A : L (H A ) ! L (H A ! " H A !! )

! A



6. Applicat ion: Broadcast ing & Monogamy

No cloning theorem (Dieks Õ82, Woot ters & Zurek Ô82):

There is no map that is cloning for t wo nonorthogonal and nonident ical pure 
states.

No broadcast ing theorem (Barnum et. al. Ô96):

There is no map that is broadcast ing for t wo noncommut ing densit y operators.

Clear ly, this implies no universal broadcast ing as well.

Note that t he maps                          are valid individually, but t hey 
cannot be the reduced maps of a global map                 .

EA ! |A , EA !! |A
EA ! A !! |A



6. Applicat ion: Broadcast ing & Monogamy

The maps                           must be related to incompat ible states         

Theorem: If                   is universal broadcast ing, then both                      
must be pure and maximally entangled.

Ensemble broadcast ing                                            s.t. 

Theorem: There is a local operat ion on      that t ransforms both     
and            into pure, entangled states wit h nonzero probabilit y 
of success.   

EA ! |A , EA !! |A
! AA ! , ! AA !!

EA! A!! |A ! AA ! , ! AA !!

{ (p, ! 1), ((1 − p), ! 2)} [! 1, ! 2] != 0
!

p! 1 + (1 ! p)! 2, Er
A ! A !! |A

"
" "AA ! A !!

A ! AA !

! AA!!



7. Fut ure Direct ions

Quant it at ive relat ions bet ween approximate ensemble 
broadcast ing and monogamy inequalit ies for entanglement. 

More generally, usef ul in analyzing any qinfo protocol involving 
t he act ion of a TPCP-map on a part icular ensemble rather t han 
t he whole Hilbert space.

Can the var ious analogs of condit ional probabilit y be uniÞed?

Can quant um theory be developed using an analog of condit ional 
probabilit y as the fundamental not ion?

Can we eliminate background causal st ruct ures ent irely f rom the 
formalism of quant um theory?


