Quantuwm Pynawics as
Generalized Conditional
Probabilities

M. S. Leifer
Q52006, Malta (13th July 2006)

g |

PI

PERIMETER INSTITUTE
FOR THEORETICAL PHYSICS




Quantuwm Theory as a Meta-theory

* The analogy is
based on quantum
measurewment
theory....

* ..but QT is not as
abstract as PT.
Quantization
cannot be applied
to an arbitrary
theory.

apply probability

theory quantize

* (Cavsal structureis
present in QT, but
absent from PT.



Classical Probability vs. Quantum Theory

Classical Quantum

Probability distribution: P(X)| Quantum State: 04

Joint distribution: P(X,Y)| Joint State: PAB

Transition matrix: I'yix | TPCP map: EB|A

Conditional Prob.. P(Y|X) 7




Why quantum conditional probability?

* (Conditional probabilities allow all types of correlation to
be treated on an equal footing, whether timelike,
spacelike or completely abstract.

*  (Causal relations are not primitive in probability theory.

* Sowe classical probabilistic structures are defined in
terws of conditional probability.

* Markov Chains

*  Bayesian Networks

* Sowe Bayesians take conditional probability to be the
most fundamental notion.

*  Seetexthook by U, V. Lindley
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1. Introduction

(A) Reconstrueting a joint distribution from a marginal
P(X,Y) = P(Y|X)P(X)
(B) Bayesian Updating

Py — PRI PH)

P(D)

(C) Stochastic Pynamics
P(Y =i)=) (Tyx), P(X =)
(P) Conditional Shannon En’rg'opy

H(Y|X)=-) P(X,Y)log, P(Y|X)
X
(E) Reduction of complexity via conditional independence

P(Y|X,Z)=P(Y|Z) = P(X,Y,Z) = P(X|2)P(Y|Z)P(Z)



1. Introduction

(A) Reconstruction of a joint state pa5 from a marginal pa.

(B) Updating quantum states after a measurement

_ _&%(p)
PM T T (Mp)
(C) TPCP dynamics
pB = Epla (pa)

(P) Conditional von Neumann Entropy

S(B|A) = —Tr (PAB log, PB|A)
(E) Reduction of complexity via conditional independence



1. Introduction

* Cerf & Adawmi ('97-99):

IOBIA = 210g2 paB—logs pa®Ip
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* (A) Reconstruction:

PAB = 9logs pa®Ip+logy pp|a

* (C) Entropy:
S(B|A)=S(A,B) — S(A) = —Tr (pAB log, ,OB|A)
*  (E) Complexity Reduetion: If log, ppjac = Ia ®log, ppic

DABC = 9l aB®log; pctlog; pajc®Ip+1aRlog; pric



1. Introduction

* (B) Updatinag:
x  POVM: M={M}, M>0 Y M=1I
M
*  Probability Rule: P (M) = Tr (M p)

&)
PMCT Ty (M)

*  Update CP-map:

£ (p) = Y AT YT AN = M
J 7

*  £M  depends on details of system-measuring device interaction.



1. Introduction

* s ’rh7ere one update rule that is more “Bayes’ rule like” than the
rest

*  Traditionally (see Bub °77 for projective measurements):
- VMp/M
PIM Tr (Mp)
*  According to Fuchs (01, °02):

M
P (M p)

*  Both reduce to Bayes' rule when the [NV are projection operators and

[M,,O] =0



2. Dynawics as conditional probability

(a) (b) (c)

P(Y]X) =T} x

lsomorphism: (P(X), 'y 1x) & P(X,Y)



2. Dynawics as conditional probability

(a)

E|a

A

PB — 5B|A (,OA)

pAB =

m:
IOB|A7 SB|A7 ?

(c)

A Source: 7Tanp

Isomorphisw: (pA,Eg, A) < TaB !




2. Choi-Jamiolkowski Isomorphism

* For bipartite pure states and operators:

Rpja= D ajlidpglkla & [Wap=D ajlk)s®i)p
ke ik

* For wmixed states and CP-maps:

Cos 02) = S Rhoal] = o= [o) (10



2. Choi-Jamiolkowski Isomorphism

1 . .
* let )CI>+>AA, = \/7: E 194 @ 15) a
J

* Then Tap =14 <X><C/‘B|A’ ( (I)+>AA’ <(I)+|AA’)

Epia(pa) = &4 (@T| , ,, pa®@Tarp |®T), |,

* (Qperational interpretation: Noisy gate teleportation.



2. Choi-Jamiolkowski Isomorphism

* Rewmarks:
*  |somorphiswm is basis dependent. A basis must be chosen to define | o > AA

*  If werestrict attention to Trace Preserving CP-maps then

1

TA:TrB(TAB):aIA

*  This is a special case of the isomorphism we want to construet

(IOA7 E|A) <~ TAB

1

where 0 A — d—IA.
A



4. A New Isomorphism

* (,OA,517§| A) — TAB direction:

i EERARguNE +
*  Instead of |<I> >AA’ use ‘(I)>AA/ - (/)A)2 Q I |® >AA'
n . .
- ARG R (,OA,EB‘A> direction:
T
* Set pag = Ty, 7A = Irp (TAB)
mmE: Ht
* lLet UB|A :TA2 ®IBTABTA2 ®IB
1
* OPB|A isadensity operator, satisfying 1T (O’ B| A) = d_TPA
A

*  Itis uniquely associated to a TPCP map 5g|A : £ (PaHA) — £(HpB)

via the Choi-Jamiolkowski isomorphism.



4. A New lsomorphism

(b)
B
e A
A B
|
|
N\
S TeERae: Y

TA

(c)

+
€B|a

15
PA = TA



5. Operational Inferpretation

* Rewinder about measurements:
x  POVM: M={M}, M>0 Y M=1I
M
*  Probability Rule: P ( M ) — Tr ( M p)

maa=md (0]
PIM T T (M)

*  Update CP-map:

£ (p) = Y AT YT AN = M
J 7

* &M depends on details of system-measuring device interaction.



5. Operational Inferpretation

* lemma: p= Y P(M)p|y isan ensemble decomposition of a
M

density matrix p iff thereisa POVM M = {M } st.

P(M)=Te(Mp)  p = ﬁ‘]@pff

*  Proof sketch: M:P(M)p_%pwp—%



5. Operational Inferpretation

% )\/[-wmeasurement of P
% Input: P

% Measurement probabilities: P (M) = Tr (M p)

P %k Updated state: \/Mp \/M
P T (M)

- % )\ -preparation of O

%k Input: Generate a classical rv. with p.d.f

P(M)=Tr(Mp)

5k Prepare the corresponding state:

_VPM\/p
PMT T (M)




5. Operational Inferpretation

(a)

@ M-measurement N-measurement @

A |

x TAB/

B

P(M, N) is the same in (a) and (¢) for

any POVMs M and N.

TA

M-measurement

N-measurement N-measurement
(b) (c)

e

A

i

T
PA =T4

M? -preparation



6. Application: Broadcasting & Monogamy

*  Forany TPCP map Epcya : £(Ha) — £(Hp @ He) the
reduced maps are:

Epla =Trcoépeia Ecja =Trpolpela

* The following commutativity properties hold:

PABC (/OAa EC|A)
Trcl lTrC
PAB (IOA7 E|A)

* Therefore, 2 states PAB; PAC incompatible with being the
reduced states of a global state pa .

* 2 reduced maps <B4 §E|A incompatible with being the reduced

maps of a global map & BC|A:



6. Application: Broadcasting & Monogamy

S ATPCP’WIap SA/A// HA —> £(HA’ ®H.A”) .
broadcasting for a s1La’re pA if

Earga(pa) =par Eamalpa) =par

2k ATPCP’WIap EA/A//|A £ (HA) — £ (HA’ X H.A”) is
cloning for a state p4 if

8A’A”|A (pA) =[P ®;0A”

* Note: For pure states cloning = broadeasting.

* A TPCP-wmap is universal broadcasting if it is broadcasting for
every state.



6. Application: Broadcasting & Monogamy

*  No cloning theorem (Dieks ‘82, Wootters & Zurek '8 2):

*  Thereis no map that is cloning for two nonorthogonal and nonidentical pure
states.

* No broadcasting theorem (Barnum et. al. ‘96):

*  Thereis no map that is broadcasting for fwo noncomwmuting density operators.

* (learly, this implies no universal broadcasting as well.

* Note that the maps £ 4/ 4, € 41| 4 are valid individually, but they
cannot be the reduced maps of a global map £ 4/ 4,/ 4.



6. Application: Broadcasting & Monogamy

* Thewmaps Ea/14,E 474 must be related to incompatible states
TAA", TAA"

* Theorem: If £4/ 4714 is universal broadcasting, then both 744/, 744"
must be pure and maximally entangled.

*  Ensemble broadeasting{ (p, p1), (1 — p), p2)} 8. [p1, p2] # O

(pm =+ (1 == p)pg, ngquA) < TAA'A

* Theorem: Thereis a local operation on A that fransforms both 744’
a?d Ta A" into pure, entangled states with nonzero probability
of success.



7. Future Directions

* Quantitative relations between approximate ensemble
broadcasting and monogawmy inequalities for entanglement.

* More generally, useful in analyzing any ginfo protocol involving
the action of a TPCP-map on a particular ensemble rather than
the whole Hilbert space.

* (an the various analogs of conditional probability be unified?

* (an quantum theory be developed using an analog of conditional
probability as the fundamental notion?

* (Can we eliminate background cavsal structures entirely from the
formalism of quantum theory?



