Quantum Dynamics as Generalized Conditional Probabilities

M. S. Leifer QS2006, Malta (13th July 2006)

PERIMETER INSTITUTE FOR THEORETICAL PHYSICS

Quantum Theory as a Meta-theory

* The analogy is based on quantum measurement theory....
* ...but QT is not as abstract as PT . Quantization cannot be applied to an arbitrary theory.
* Causal structure is present in QT, but absent from PT.

Classical Probability vs. Quantum Theory

Classical

Quantum

Probability distribution: $P(X)$ Quantum State: ρ_{A}

Joint distribution: $\quad P(X, Y)$ Joint State: $\quad \rho_{A B}$

Transition matrix:
$\Gamma_{Y \mid X} \quad$ TPCP map: $\quad \mathcal{E}_{B \mid A}$

Conditional Prob.: $\quad P(Y \mid X)$
?

Why quantum conditional probability?

* Conditional probabilities allow all types of correlation to be treated on an equal footing, whether timelike, spacelike or completely abstract.
* Causal relations are not primitive in probability theory.
* Some classical probabilistic structures are defined in terms of conditional probability.
* Markov Chains
* Bayesian Networks
* Some Bayesians take conditional probability to be the most fundamental notion.
* See textbook by D. V. Lindley

Outline

1. Introduction
i. The Many faces of conditional probability
ii. Suggestions for a quantum analog of conditional probability
2. Stochastic Dynamics as Conditional Probabilities
3. Choi-Jamiolkowski Isomorphism
4. A New Isomorphism
5. Operational Interpretation
6. Application: Cloning, broadcasting \& monogamy of entanglement
7. Future Directions

1. Introduction

(A) Reconstructing a joint distribution from a marginal

$$
P(X, Y)=P(Y \mid X) P(X)
$$

(B) Bayesian Updating

$$
P(H \mid D)=\frac{P(D \mid H) P(H)}{P(D)}
$$

(C) Stochastic Dynamics

$$
P(Y=i)=\sum_{j}\left(\Gamma_{Y \mid X}\right)_{i j} P(X=j)
$$

(D) Conditional Shannon Entropy

$$
H(Y \mid X)=-\sum_{X, Y} P(X, Y) \log _{2} P(Y \mid X)
$$

(E) Reduction of complexity via conditional independence

$$
P(Y \mid X, Z)=P(Y \mid Z) \Leftrightarrow P(X, Y, Z)=P(X \mid Z) P(Y \mid Z) P(Z)
$$

1. Introduction

(A) Reconstruction of a joint state $\rho_{A B}$ from a marginal ρ_{A}.
(B) Updating quantum states after a measurement

$$
\rho_{\mid M}=\frac{\mathcal{E}^{M}(\rho)}{\operatorname{Tr}(\boldsymbol{M} \rho)}
$$

(C) TPCP dynamics

$$
\rho_{B}=\mathcal{E}_{B \mid A}\left(\rho_{A}\right)
$$

(D) Conditional von Neumann Entropy

$$
S(B \mid A)=-\operatorname{Tr}\left(\rho_{A B} \log _{2} \rho_{B \mid A}\right)
$$

(E) Reduction of complexity via conditional independence

1. Introduction

* Cerf\& Adami ('97-99):

$$
\begin{aligned}
\rho_{B \mid A} & =2^{\log _{2} \rho_{A B}-\log _{2} \rho_{A} \otimes I_{B}} \\
& =\lim _{n \rightarrow \infty}\left[\rho_{A B}^{\frac{1}{n}}\left(\rho_{A} \otimes I_{B}\right)^{\frac{1}{n}}\right]^{n}
\end{aligned}
$$

* (A) Reconstruction:

$$
\rho_{A B}=2^{\log _{2} \rho_{A} \otimes I_{B}+\log _{2} \rho_{B \mid A}}
$$

* (C) Entropy:

$$
S(B \mid A)=S(A, B)-S(A)=-\operatorname{Tr}\left(\rho_{A B} \log _{2} \rho_{B \mid A}\right)
$$

* (E) Complexity Reduction: If $\log _{2} \rho_{B \mid A C}=I_{A} \otimes \log _{2} \rho_{B \mid C}$

$$
\rho_{A B C}=2^{I_{A B} \otimes \log _{2} \rho_{C}+\log _{2} \rho_{A \mid C} \otimes I_{B}+I_{A} \otimes \log _{2} \rho_{B \mid C}}
$$

1. Introduction

* (B) Updating:
* povm:

$$
M=\{M\}, \quad M>0, \quad \sum_{M} M=I
$$

* Probability Rule: $\quad P(M)=\operatorname{Tr}(\boldsymbol{M} \rho)$
* Update CP-map: $\quad \rho_{\mid M}=\frac{\mathcal{E}^{M}(\rho)}{\operatorname{Tr}(\boldsymbol{M} \rho)}$

$$
\mathcal{E}^{M}(\rho)=\sum_{j} A_{j}^{M} \rho A_{j}^{M \dagger} \quad \sum_{j} A_{j}^{M \dagger} A_{j}^{M}=\boldsymbol{M}
$$

* \mathcal{E}^{M} depends on details of system-measuring device interaction.

1. Introduction

* Is there one update rule that is more "Bayes' rule like" than the rest?
* Traditionally (see Bub '77 for projective measurements):

$$
\rho_{\mid M}=\frac{\sqrt{\boldsymbol{M}} \rho \sqrt{\boldsymbol{M}}}{\operatorname{Tr}(\boldsymbol{M} \rho)}
$$

* According to Fuchs ('01, '02):

$$
\rho_{\mid M}=\frac{\sqrt{\rho} \boldsymbol{M} \sqrt{\rho}}{\operatorname{Tr}(\boldsymbol{M} \rho)}
$$

* Both reduce to Bayes' rule when the M are projection operators and

$$
[M, \rho]=0
$$

2. Dynamics as conditional probability

(a)

$P(Y)=\sum_{X} \Gamma_{Y \mid X} P(X)$
$P(X, Y)=\Gamma_{Y \mid X} P(X)$
$P(Y \mid X)=\Gamma_{Y \mid X}^{r}$

$$
\begin{gathered}
P(X, Y) \\
P(X)=\sum_{Y} P(X, Y) \\
P(Y \mid X)=\frac{P(X, Y)}{P(X)}
\end{gathered}
$$

Isomorphism: $\left(P(X), \Gamma_{Y \mid X}^{r}\right) \Leftrightarrow P(X, Y)$

2. Dynamics as conditional probability
 (b)

(a)

$\rho_{B}=\mathcal{E}_{B \mid A}\left(\rho_{A}\right)$
$\rho_{A B}=$?
$\rho_{B \mid A}, \mathcal{E}_{B \mid A}^{r}, ?$

3. Choi-Jamiolkowski Isomorphism

* For bipartite pure states and operators:

$$
R_{B \mid A}=\sum_{j k} \alpha_{j k}|j\rangle_{B}\left\langle\left. k\right|_{A} \Leftrightarrow \mid \Psi\right\rangle_{A B}=\sum_{j k} \alpha_{j k}|k\rangle_{A} \otimes|j\rangle_{B}
$$

* For mixed states and CP-maps:

$$
\mathcal{E}_{B \mid A}\left(\rho_{A}\right)=\sum_{\mu} R_{B \mid A}^{(\mu)} \rho_{A} R_{B \mid A}^{(\mu) \dagger} \Rightarrow \tau_{A B}=\sum_{\mu}\left|\Psi^{(\mu)}\right\rangle_{A B}\left\langle\left.\Psi^{(\mu)}\right|_{A B}\right.
$$

3. Choi-Jamiolkowski Isomorphism

$$
* \text { Let }\left|\Phi^{+}\right\rangle_{A A^{\prime}}=\frac{1}{\sqrt{d_{A}}} \sum_{j}|j\rangle_{A} \otimes|j\rangle_{A^{\prime}}
$$

$$
\text { * Then } \tau_{A B}=\mathcal{I}_{A} \otimes \mathcal{E}_{B \mid A^{\prime}}\left(\left|\Phi^{+}\right\rangle_{A A^{\prime}}\left\langle\left.\Phi^{+}\right|_{A A^{\prime}}\right)\right.
$$

$$
\mathcal{E}_{B \mid A}\left(\rho_{A}\right)=d_{A}^{2}\left\langle\left.\Phi^{+}\right|_{A A^{\prime}} \rho_{A} \otimes \tau_{A^{\prime} B} \mid \Phi^{+}\right\rangle_{A A^{\prime}}
$$

* Operational interpretation: Noisy gate teleportation.

3. Choi-Jamiolkowski Isomorphism

* Remarks:
* Isomorphism is basis dependent. A basis must be chosen to define $\left|\Phi^{+}\right\rangle_{A A^{\prime}}$
* If we restrict attention to Trace Preserving CP-maps then

$$
\tau_{A}=\operatorname{Tr}_{B}\left(\tau_{A B}\right)=\frac{1}{d_{A}} I_{A}
$$

* This is a special case of the isomorphism we want to construct

$$
\begin{aligned}
& \qquad\left(\rho_{A}, \mathcal{E}_{B \mid A}^{r}\right) \Leftrightarrow \tau_{A B} \\
& \text { where } \rho_{A}= \\
& \frac{1}{d_{A}} I_{A}
\end{aligned}
$$

4. A New Isomorphism

* $\left(\rho_{A}, \mathcal{E}_{B \mid A}^{r}\right) \rightarrow \tau_{A B}$ direction:
* Instead of $\left|\Phi^{+}\right\rangle_{A A^{\prime}}$ use $|\Phi\rangle_{A A^{\prime}}=\left(\rho_{A}^{T}\right)^{\frac{1}{2}} \otimes I_{A^{\prime}}\left|\Phi^{+}\right\rangle_{A A^{\prime}}$
* Then $\tau_{A B}=\mathcal{I}_{A} \otimes \mathcal{E}_{B \mid A^{\prime}}^{r}\left(|\Phi\rangle_{A A^{\prime}}\left\langle\left.\Phi\right|_{A A^{\prime}}\right)\right.$
* $\tau_{A B} \rightarrow\left(\rho_{A}, \mathcal{E}_{B \mid A}^{r}\right)$ direction:
* Set $\rho_{A}=\tau_{A}^{T}, \quad \tau_{A}=\operatorname{Tr}_{B}\left(\tau_{A B}\right)$
* Let $\sigma_{B \mid A}=\tau_{A}^{-\frac{1}{2}} \otimes I_{B} \tau_{A B} \tau_{A}^{-\frac{1}{2}} \otimes I_{B}$
* $\quad \sigma_{B \mid A}$ is a density operator, satisfying $\operatorname{Tr}_{B}\left(\sigma_{B \mid A}\right)=\frac{1}{d_{A}^{r}} P_{A}$
* It is uniquely associated to a TPCP map $\mathcal{E}_{B \mid A}^{r}: \mathfrak{L}\left(P_{A} \mathcal{H}_{A}\right) \rightarrow \mathfrak{L}\left(\mathcal{H}_{B}\right)$ via the Choi-Jamiolkowski isomorphism.

4. A New Isomorphism

5. Operational Interpretation

* Reminder about measurements:
* povm: $\quad M=\{\boldsymbol{M}\}, \quad M>0, \quad \sum_{M} M=I$
* Probability Rule: $\quad P(M)=\operatorname{Tr}(\boldsymbol{M} \rho)$
* Update CP-map: $\quad \rho_{\mid M}=\frac{\mathcal{E}^{M}(\rho)}{\operatorname{Tr}(\boldsymbol{M} \rho)}$

$$
\mathcal{E}^{M}(\rho)=\sum_{j} A_{j}^{M} \rho A_{j}^{M \dagger} \quad \sum_{j} A_{j}^{M \dagger} A_{j}^{M}=\boldsymbol{M}
$$

* \mathcal{E}^{M} depends on details of system-measuring device interaction.

5. Operational Interpretation

* Lemma: $\rho=\sum_{M} P(M) \rho_{\mid M}$ is an ensemble decomposition of a density matrix ρ iff there is a POVM $M=\{\boldsymbol{M}\}$ s.t.

$$
P(M)=\operatorname{Tr}(\boldsymbol{M} \rho) \quad \rho_{\mid M}=\frac{\sqrt{\rho} \boldsymbol{M} \sqrt{\rho}}{\operatorname{Tr}(\boldsymbol{M} \rho)}
$$

* Proof sketch: $\boldsymbol{M}=P(M) \rho^{-\frac{1}{2}} \rho_{\mid M} \rho^{-\frac{1}{2}}$

5. Operational Interpretation

* M-measurement of ρ
* Input: ρ
* Measurement probabilities: $P(M)=\operatorname{Tr}(M \rho)$
* Updated state:

$$
\rho_{\mid M}=\frac{\sqrt{\boldsymbol{M}} \rho \sqrt{\boldsymbol{M}}}{\operatorname{Tr}(\boldsymbol{M} \rho)}
$$

* M-preparation of ρ
* Input: Generate a classical rw. with p.d.f

$$
P(M)=\operatorname{Tr}(M \rho)
$$

* Prepare the corresponding state:

$$
\rho_{\mid M}=\frac{\sqrt{\rho} M \sqrt{\rho}}{\operatorname{Tr}(M \rho)}
$$

5. Operational Interpretation

(a)

$P(M, N)$ is the same in (a) and (c) for any POVMs M and N.

6. Application: Broadcasting \& Monogamy

* For any TPCP map $\mathcal{E}_{B C \mid A}: \mathfrak{L}\left(\mathcal{H}_{A}\right) \rightarrow \mathfrak{L}\left(\mathcal{H}_{B} \otimes \mathcal{H}_{C}\right)$ the reduced maps are:

$$
\mathcal{E}_{B \mid A}=\operatorname{Tr}_{C} \circ \mathcal{E}_{B C \mid A} \quad \mathcal{E}_{C \mid A}=\operatorname{Tr}_{B} \circ \mathcal{E}_{B C \mid A}
$$

* The following commutativity properties hold:

$$
\begin{aligned}
\rho_{A B C} & \rightleftharpoons\left(\rho_{A}, \mathcal{E}_{B C \mid A}^{r}\right) \\
\operatorname{Tr}_{C} \downarrow & \downarrow^{\operatorname{Tr}_{C}} \\
\rho_{A B} & \rightleftharpoons\left(\rho_{A}, \mathcal{E}_{B \mid A}^{r}\right)
\end{aligned}
$$

* Therefore, 2 states $\rho_{A B}, \rho_{A C}$ incompatible with being the reduced states of a global state $\rho_{A B C}$.
* 2 reduced maps $\mathcal{E}_{B \mid A}^{r}, \mathcal{E}_{C \mid A}^{r}$ incompatible with being the reduced maps of a global map $\mathcal{E}_{B C \mid A}^{r}$.

6. Application: Broadeasting \& Monogamy

* ATPCP-map $\mathcal{E}_{A^{\prime} A^{\prime \prime} \mid A}: \mathfrak{L}\left(\mathcal{H}_{A}\right) \rightarrow \mathfrak{L}\left(\mathcal{H}_{A^{\prime}} \otimes \mathcal{H}_{\mathcal{A}^{\prime \prime}}\right)$ is broadcasting for a state ρ_{A} if

$$
\mathcal{E}_{A^{\prime} \mid A}\left(\rho_{A}\right)=\rho_{A^{\prime}} \quad \mathcal{E}_{A^{\prime \prime} \mid A}\left(\rho_{A}\right)=\rho_{A^{\prime \prime}}
$$

* A TPCP-map $\mathcal{E}_{A^{\prime} A^{\prime \prime} \mid A}: \mathfrak{L}\left(\mathcal{H}_{A}\right) \rightarrow \mathfrak{L}\left(\mathcal{H}_{A^{\prime}} \otimes \mathcal{H}_{\mathcal{A}^{\prime \prime}}\right)$ is cloning for a state ρ_{A} if

$$
\mathcal{E}_{A^{\prime} A^{\prime \prime} \mid A}\left(\rho_{A}\right)=\rho_{A^{\prime}} \otimes \rho_{A^{\prime \prime}}
$$

* Note: For pure states cloning = broadcasting.
* A TPCP-map is universal broadcasting if it is hroadcasting for every state.

6. Application: Broadcasting \& Monogamy

* No cloning theorem (Dieks'82, Wootters \& Zurek '82):
* There is no map that is cloning for two nonorthogonal and nonidentical pure states.
* No broadcasting theorem (Barnum et. al. '96):
* There is no map that is broadeasting for two noncommuting density operators.
* Clearly, this implies no universal broadcasting as well.
* Note that the maps $\mathcal{E}_{A^{\prime} \mid A}, \mathcal{E}_{A^{\prime \prime} \mid A}$ are valid individually, but they cannot be the reduced maps of a global map $\mathcal{E}_{A^{\prime} A^{\prime \prime} \mid A}$.

6. Application: Broadcasting \& Monogamy

* The maps $\mathcal{E}_{A^{\prime} \mid A}, \mathcal{E}_{A^{\prime \prime} \mid A}$ must be related to incompatible states $\tau_{A A^{\prime}}, \tau_{A A^{\prime \prime}}$
* Theorem: If $\mathcal{E}_{A^{\prime} A^{\prime \prime} \mid A}$ is universal broadcasting, then both $\tau_{A A^{\prime}}, \tau_{A A^{\prime \prime}}$ must be pure and maximally entangled.
* Ensemble broadcasting $\left\{\left(p, \rho_{1}\right),\left((1-p), \rho_{2}\right)\right\}$ s.t. $\left[\rho_{1}, \rho_{2}\right] \neq 0$

$$
\left(p \rho_{1}+(1-p) \rho_{2}, \mathcal{E}_{A^{\prime} A^{\prime \prime} \mid A}^{r}\right) \Leftrightarrow \tau_{A A^{\prime} A^{\prime \prime}}
$$

* Theorem: There is a local operation on A that transforms both $\tau_{A A^{\prime}}$ and $\tau_{A A^{\prime \prime}}$ into pure, entangled states with nonzero probability of success.

7. Future Directions

* Quantitative relations between approximate ensemble broadcasting and monogamy inequalities for entanglement.
* More generally, useful in analyzing any qinfo protocol involving the action of a TPCP-map on a particular ensemble rather than the whole Hilbert space.
* Can the various analogs of conditional probability be unified?
* Can quantum theory be developed using an analog of conditional probability as the fundamental notion?
* Can we eliminate background causal structures entirely from the formalism of quantum theory?

