Quantum Pynamics as Generalized Conditional Probabilities

M. S. Leifer QS2006, Malta (13th July 2006)

Quantum Theory as a Meta-theory

- * The analogy is based on quantum measurement theory....
- * ...but QT is not as abstract as PT. Quantization cannot be applied to an arbitrary theory.
- * Causal structure is present in QT, but absent from PT.

Classical Probability vs. Quantum Theory

Classical		Quantum	
Probability distribut	ion: $P(X)$	Quantum State:	$ ho_A$
Joint distribution:	P(X,Y)	Joint State:	$ ho_{AB}$
Transition matrix:	$\Gamma_{Y X}$	TPCP map:	$\mathcal{E}_{B A}$
Conditional Prob.:	P(Y X)	?	

Why quantum conditional probability?

- * Conditional probabilities allow all types of correlation to be treated on an equal footing, whether timelike, spacelike or completely abstract.
 - * Causal relations are not primitive in probability theory.
- * Some classical probabilistic structures are defined in terms of conditional probability.
 - * Markov Chains
 - * Bayesian Networks
- * Some Bayesians take conditional probability to be the most fundamental notion.
 - * See textbook by P. V. Lindley

Outline

- 1. Introduction
 - i. The Many faces of conditional probability
 - ii. Suggestions for a quantum analog of conditional probability
- 2. Stochastic Dynamics as Conditional Probabilities
- 3. Choi-Jamiolkowski Isomorphism
- 4. A New Isomorphism
- 5. Operational Interpretation
- 6. Application: Cloning, broadcasting & monogamy of entanglement
- 7. Future Directions

(A) Reconstructing a joint distribution from a marginal

$$P(X,Y) = P(Y|X)P(X)$$

(B) Bayesian Updating

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

(C) Stochastic Dynamics

$$P(Y = i) = \sum (\Gamma_{Y|X})_{ij} P(X = j)$$

(D) Conditional Shannon Entropy

$$H(Y|X) = -\sum_{X|Y} P(X,Y) \log_2 P(Y|X)$$

X,Y(E) Reduction of complexity via conditional independence

$$P(Y|X,Z) = P(Y|Z) \Leftrightarrow P(X,Y,Z) = P(X|Z)P(Y|Z)P(Z)$$

- (A) Reconstruction of a joint state ho_{AB} from a marginal ho_{A} .
- (B) Updating quantum states after a measurement

$$\rho_{|M} = \frac{\mathcal{E}^{M}(\rho)}{\operatorname{Tr}(\boldsymbol{M}\rho)}$$

(C) TPCP dynamics

$$\rho_B = \mathcal{E}_{B|A} \left(\rho_A \right)$$

(D) Conditional von Neumann Entropy

$$S(B|A) = -\text{Tr}\left(\rho_{AB}\log_2\rho_{B|A}\right)$$

(E) Reduction of complexity via conditional independence

* Cerf & Adami ('97-'99):

$$\rho_{B|A} = 2^{\log_2 \rho_{AB} - \log_2 \rho_A \otimes I_B}$$

$$= \lim_{n \to \infty} \left[\rho_{AB}^{\frac{1}{n}} \left(\rho_A \otimes I_B \right)^{\frac{1}{n}} \right]^n$$

* (A) Reconstruction:

$$\rho_{AB} = 2^{\log_2 \rho_A \otimes I_B + \log_2 \rho_{B|A}}$$

* (C) Entropy:

$$S(B|A) = S(A,B) - S(A) = -\operatorname{Tr}\left(\rho_{AB}\log_2\rho_{B|A}\right)$$

* (E) Complexity Reduction: If $\log_2
ho_{B|AC} = I_A \otimes \log_2
ho_{B|C}$

$$\rho_{ABC} = 2^{I_{AB} \otimes \log_2 \rho_C + \log_2 \rho_{A|C} \otimes I_B + I_A \otimes \log_2 \rho_{B|C}}$$

* (B) Updating:

* POVM:
$$M = \{M\}, \quad M > 0, \quad \sum_{M} M = I$$

- * Probability Rule: $P(M) = \operatorname{Tr}\left(oldsymbol{M}
 ho
 ight)$
- * Update CP-map: $ho_{|M} = rac{\mathcal{E}^M(
 ho)}{\mathrm{Tr}\left(oldsymbol{M}
 ho
 ight)}$

$$\mathcal{E}^{M}(
ho) = \sum_{j} A_{j}^{M}
ho A_{j}^{M\dagger} \qquad \sum_{j} A_{j}^{M\dagger} A_{j}^{M} = M$$

* \mathcal{E}^M depends on details of system-measuring device interaction.

- * Is there one update rule that is more "Bayes' rule like" than the rest?
 - * Traditionally (see Bub '77 for projective measurements):

$$\rho_{|M} = \frac{\sqrt{M}\rho\sqrt{M}}{\mathrm{Tr}(M\rho)}$$

* According to Fuchs ('01, '02):

$$\rho_{|M} = \frac{\sqrt{\rho} \boldsymbol{M} \sqrt{\rho}}{\operatorname{Tr}(\boldsymbol{M}\rho)}$$

st Both reduce to Bayes' rule when the M are projection operators and

$$[\boldsymbol{M}, \rho] = 0$$

2. Dynamics as conditional probability

Isomorphism: $(P(X), \Gamma^r_{Y|X}) \Leftrightarrow P(X, Y)$

2. Dynamics as conditional probability

(a) (b) (c)

$$\rho_B = \mathcal{E}_{B|A} (\rho_A)$$

$$\rho_{AB} = ?$$

$$\rho_{B|A}, \mathcal{E}_{B|A}^r, ?$$

$$au_{AB}$$

$$au_{A} = \operatorname{Tr}_{B} (au_{AB})$$

$$au_{B|A} = ?$$

Isomorphism:
$$\left(
ho_A, \mathcal{E}^r_{B|A}
ight) \Leftrightarrow au_{AB}$$
 ?

3. Choi-Jamiolkowski Isomorphism

* For bipartite pure states and operators:

$$R_{B|A} = \sum_{jk} \alpha_{jk} |j\rangle_B \langle k|_A \Leftrightarrow |\Psi\rangle_{AB} = \sum_{jk} \alpha_{jk} |k\rangle_A \otimes |j\rangle_B$$

* For mixed states and CP-maps:

$$\mathcal{E}_{B|A}(\rho_A) = \sum_{\mu} R_{B|A}^{(\mu)} \rho_A R_{B|A}^{(\mu)\dagger} \Rightarrow \tau_{AB} = \sum_{\mu} \left| \Psi^{(\mu)} \right\rangle_{AB} \left\langle \Psi^{(\mu)} \right|_{AB}$$

3. Choi-Jamiolkowski Isomorphism

* Let
$$|\Phi^+
angle_{AA'}=rac{1}{\sqrt{d_A}}\sum_j|j
angle_A\otimes|j
angle_{A'}$$

* Then
$$au_{AB}=\mathcal{I}_A\otimes\mathcal{E}_{B|A'}\left(\left|\Phi^+\right\rangle_{AA'}\left\langle\Phi^+\right|_{AA'}\right)$$

$$\mathcal{E}_{B|A}(\rho_A) = d_A^2 \left\langle \Phi^+ \big|_{AA'} \rho_A \otimes \tau_{A'B} \left| \Phi^+ \right\rangle_{AA'}\right$$

* Operational interpretation: Noisy gate teleportation.

3. Choi-Jamiolkowski Isomorphism

* Remarks:

- * Isomorphism is basis dependent. A basis must be chosen to define $\ket{\Phi^+}_{AA'}$.
- * If we restrict attention to Trace Preserving CP-maps then

$$\tau_A = \operatorname{Tr}_B(\tau_{AB}) = \frac{1}{d_A} I_A$$

* This is a special case of the isomorphism we want to construct

$$\left(\rho_A, \mathcal{E}^r_{B|A}\right) \Leftrightarrow \tau_{AB}$$

where
$$ho_A=rac{1}{d_A}I_A$$
.

4. A New Isomorphism

- * $\left(
 ho_A, \mathcal{E}^r_{B|A}
 ight)
 ightarrow au_{AB}$ direction:
 - * Instead of $\ket{\Phi^+}_{AA'}$ use $\ket{\Phi}_{AA'}=\left(
 ho_A^T\right)^{rac{1}{2}}\otimes I_{A'}\ket{\Phi^+}_{AA'}$
 - * Then $au_{AB}=\mathcal{I}_A\otimes\mathcal{E}^r_{B|A'}\left(\ket{\Phi}_{AA'}ra{\Phi}_{AA'}\right)$
- * $au_{AB}
 ightarrow \left(
 ho_A, \mathcal{E}^r_{B|A}
 ight)$ direction:
 - * Set $ho_A = au_A^T, \qquad au_A = \operatorname{Tr}_B\left(au_{AB}\right)$
 - * Let $\sigma_{B|A}= au_A^{-rac{1}{2}}\otimes I_B au_{AB} au_A^{-rac{1}{2}}\otimes I_B$
 - * $\sigma_{B|A}$ is a density operator, satisfying $\operatorname{Tr}_B\left(\sigma_{B|A}
 ight)=rac{1}{d_A^r}P_A$
 - * It is uniquely associated to a TPCP map $\mathcal{E}^r_{B|A}:\mathfrak{L}(P_A\mathcal{H}_A) o\mathfrak{L}(\mathcal{H}_B)$ via the Choi-Jamiolkowski isomorphism.

4. A New Isomorphism

* Reminder about measurements:

* POVM:
$$M = \{M\}, \quad M > 0, \quad \sum_{M} M = I$$

- * Probability Rule: $P(M) = \operatorname{Tr}\left(oldsymbol{M}
 ho
 ight)$
- * Update CP-map: $ho_{|M} = rac{\mathcal{E}^M(
 ho)}{\mathrm{Tr}\left(oldsymbol{M}
 ho
 ight)}$

$$\mathcal{E}^{M}(
ho) = \sum_{j} A_{j}^{M}
ho A_{j}^{M\dagger} \qquad \sum_{j} A_{j}^{M\dagger} A_{j}^{M} = M$$

* \mathcal{E}^M depends on details of system-measuring device interaction.

* Lemma: $ho = \sum_{M} P(M)
ho_{|M}$ is an ensemble decomposition of a

density matrix ho iff there is a POVM $M=\{M\}$ s.t.

$$P(M) = \text{Tr}(\mathbf{M}\rho)$$
 $\rho_{|M} = \frac{\sqrt{\rho M} \sqrt{\rho}}{\text{Tr}(\mathbf{M}\rho)}$

* Proof sketch: $M=P(M)\rho^{-\frac{1}{2}}\rho_{|M}\rho^{-\frac{1}{2}}$

- * M-measurement of ρ
 - * Input: ρ
 - * Measurement probabilities: $P(M) = {
 m Tr}\,(oldsymbol{M}
 ho)$
 - * Updated state: $ho_{|M} = rac{\sqrt{M}
 ho\sqrt{M}}{\mathrm{Tr}\left(M
 ho
 ight)}$

- * M-preparation of ρ
 - * Input: Generate a classical r.v. with p.d.f

$$P(M) = \operatorname{Tr}(\boldsymbol{M}\rho)$$

* Prepare the corresponding state:

$$ho_{|M} = rac{\sqrt{
ho} M \sqrt{
ho}}{\mathrm{Tr}\left(M
ho
ight)}$$

P(M,N) is the same in (a) and (c) for any POVMs M and N.

* For any TPCP map $\mathcal{E}_{BC|A}: \mathfrak{L}(\mathcal{H}_A) \to \mathfrak{L}(\mathcal{H}_B \otimes \mathcal{H}_C)$ the reduced maps are:

$$\mathcal{E}_{B|A} = \operatorname{Tr}_{C} \circ \mathcal{E}_{BC|A}$$
 $\mathcal{E}_{C|A} = \operatorname{Tr}_{B} \circ \mathcal{E}_{BC|A}$

* The following commutativity properties hold:

$$\rho_{ABC} = (\rho_A, \mathcal{E}_{BC|A}^r)$$

$$\operatorname{Tr}_C \downarrow \qquad \qquad \downarrow \operatorname{Tr}_C$$

$$\rho_{AB} = (\rho_A, \mathcal{E}_{B|A}^r).$$

- * Therefore, 2 states ρ_{AB}, ρ_{AC} incompatible with being the reduced states of a global state ρ_{ABC} .
- * 2 reduced maps $\mathcal{E}^r_{B|A}$, $\mathcal{E}^r_{C|A}$ incompatible with being the reduced maps of a global map $\mathcal{E}^r_{BC|A}$.

* A TPCP-map $\mathcal{E}_{A'A''|A}: \mathfrak{L}(\mathcal{H}_A) \to \mathfrak{L}(\mathcal{H}_{A'} \otimes \mathcal{H}_{\mathcal{A}''})$ is broadcasting for a state ρ_A if

$$\mathcal{E}_{A'|A}(\rho_A) = \rho_{A'}$$
 $\mathcal{E}_{A''|A}(\rho_A) = \rho_{A''}$

* A TPCP-map $\mathcal{E}_{A'A''|A}: \mathfrak{L}(\mathcal{H}_A) \to \mathfrak{L}(\mathcal{H}_{A'}\otimes\mathcal{H}_{\mathcal{A}''})$ is cloning for a state ρ_A if

$$\mathcal{E}_{A'A''|A}(\rho_A) = \rho_{A'} \otimes \rho_{A''}$$

- * Note: For pure states cloning = broadcasting.
- * A TPCP-map is universal broadcasting if it is broadcasting for every state.

- * No cloning theorem (Dieks '82, Wootters & Zurek '82):
 - There is no map that is cloning for two nonorthogonal and nonidentical pure states.

- * No broadcasting theorem (Barnum et. al. '96):
 - * There is no map that is broadcasting for two noncommuting density operators.

- * Clearly, this implies no universal broadcasting as well.
- * Note that the maps $\mathcal{E}_{A'|A}, \mathcal{E}_{A''|A}$ are valid individually, but they cannot be the reduced maps of a global map $\mathcal{E}_{A'A''|A}$.

- * The maps $\mathcal{E}_{A'|A}, \mathcal{E}_{A''|A}$ must be related to incompatible states $\tau_{AA'}, \tau_{AA''}$
- * Theorem: If $\mathcal{E}_{A'A''|A}$ is universal broadcasting, then both $\tau_{AA'}, \tau_{AA''}$ must be pure and maximally entangled.

- * Ensemble broadcasting $\{(p,\rho_1),((1-p),\rho_2)\}$ s.t. $[\rho_1,\rho_2]\neq 0$ $\left(p\rho_1+(1-p)\rho_2,\mathcal{E}^r_{A'A''|A}\right)\Leftrightarrow \tau_{AA'A''}$
- * Theorem: There is a local operation on A that transforms both $\tau_{AA'}$ and $\tau_{AA''}$ into pure, entangled states with nonzero probability of success.

7. Future Directions

- * Quantitative relations between approximate ensemble broadcasting and monogamy inequalities for entanglement.
- * More generally, useful in analyzing any qinfo protocol involving the action of a TPCP-map on a particular ensemble rather than the whole Hilbert space.

- * Can the various analogs of conditional probability be unified?
- Can quantum theory be developed using an analog of conditional probability as the fundamental notion?
- Can we eliminate background causal structures entirely from the formalism of quantum theory?