Unentangled Bit Commitment and the Clifton-Bub-Halvorson (CBH) Theorem

M. S. Leifer
Institute for Quantum Computing
University of Waterloo
Perimeter Institute for Theoretical Physics

Dec. 18th 2007/Pavia Mini-Workshop

Outline

(1) Introduction: The Brassard-Fuchs Speculation and CBH
(2) The Convex Sets Framework
(3) Unentangled Bit Commitment
(4) Broadcasting
(5) Comparison to the CBH Theorem
(6) Conclusions

The Brassard-Fuchs Speculation

In ≈ 2000, Brassard and Fuchs speculated that the basic Hilbert Space structures of quantum theory might be uniquely determined by two cryptographic constraints:

- The Possibility of Secure Key Distribution
- The Impossibility of Bit Commitment

This was to be viewed as analogous to Einstein's derivation of the kinematics for special relativity from the two postulates:

- The laws of physics are invariant under changes of inertia frame.
- The speed of light in vacuo is constant in all inertial frames.

The Brassard-Fuchs Speculation

In ≈ 2000, Brassard and Fuchs speculated that the basic Hilbert Space structures of quantum theory might be uniquely determined by two cryptographic constraints:

- The Possibility of Secure Key Distribution
- The Impossibility of Bit Commitment

This was to be viewed as analogous to Einstein's derivation of the kinematics for special relativity from the two postulates:

- The laws of physics are invariant under changes of inertial frame.
- The speed of light in vacuo is constant in all inertial frames.

The Brassard-Fuchs Speculation

This derivation has to be done within a precise mathematical framework for physical theories, which must be:

- Narrow enough to convert the axioms into precise mathematical constraints.
- Broad enough that the work is being done by the postulates rather than the framework assumptions. We are allowed to imnort definitions and concents from existing physical frameworks, just as Einstein did.

The Brassard-Fuchs Speculation

This derivation has to be done within a precise mathematical framework for physical theories, which must be:

- Narrow enough to convert the axioms into precise mathematical constraints.
- Broad enough that the work is being done by the postulates rather than the framework assumptions.
We are allowed to import definitions and concepts from existing physical frameworks, just as Einstein did

The Brassard-Fuchs Speculation

This derivation has to be done within a precise mathematical framework for physical theories, which must be:

- Narrow enough to convert the axioms into precise mathematical constraints.
- Broad enough that the work is being done by the postulates rather than the framework assumptions.
We are allowed to import definitions and concepts from existing physical frameworks, just as Einstein did.

The CBH Theorem

In 2003, Clifton, Bub and Halvorson "derived quantum theory" from:

- The impossibility of superluminal information transfer between two physical systems by performing measurements on one of them.
- The impossibility of perfectly broadcasting the information contained in an unknown physical state.
- The impossibility of unconditionally secure bit commitment.

The mathematical framework chosen was C^{*}-algebraic theories.

The CBH Theorem

CBH don't arrive exactly at quantum theory, but intend their theorem to be read as follows:
(1) No signalling \Rightarrow Separate systems correspond to commuting algebras of observables.
(2) No broadcasting \Rightarrow Algebras corresponding to individual systems are nonabelian.
(3) No bit commitment \Rightarrow Rinartite systems can occupy entangled states.

There is some debate about whether 3 is independent of 1 and

The CBH Theorem

CBH don't arrive exactly at quantum theory, but intend their theorem to be read as follows:
(1) No signalling \Rightarrow Separate systems correspond to commuting algebras of observables.
(2) No broadcasting \Rightarrow Algebras corresponding to individual systems are nonabelian.
(8) No bit commitment \Rightarrow Bipartite systems can occupy entangled states.
There is some debate about whether 3 is independent of 1 and

The CBH Theorem

CBH don't arrive exactly at quantum theory, but intend their theorem to be read as follows:
(1) No signalling \Rightarrow Separate systems correspond to commuting algebras of observables.
(2) No broadcasting \Rightarrow Algebras corresponding to individual systems are nonabelian.
(3) No bit commitment \Rightarrow Bipartite systems can occupy entangled states.

There is some debate about whether 3 is independent of 1 and

The CBH Theorem

CBH don't arrive exactly at quantum theory, but intend their theorem to be read as follows:
(1) No signalling \Rightarrow Separate systems correspond to commuting algebras of observables.
(2) No broadcasting \Rightarrow Algebras corresponding to individual systems are nonabelian.
(3) No bit commitment \Rightarrow Bipartite systems can occupy entangled states.
There is some debate about whether 3 is independent of 1 and 2.

The Brassard-Fuchs Speculation The CBH-Theorem
C*-algebraic theories
Generalizing CBH

Why C^{*}-algebras?

We are not in the business of rigorous axiomatization, so CBH say:
...it suffices for present purposes simply to observe that all physical theories that have been found empirically successful - not just phase space and Hilbert space theories but also theories based on a manifold - fall under this framework

They should have added: AND THAT'S IT!

Why C^{*}-algebras?

We are not in the business of rigorous axiomatization, so CBH say:
...it suffices for present purposes simply to observe that all physical theories that have been found empirically successful - not just phase space and Hilbert space theories but also theories based on a manifold - fall under this framework

They should have added: AND THAT'S IT!

Why C^{*}-algebras?

We are not in the business of rigorous axiomatization, so CBH say:
...it suffices for present purposes simply to observe that all physical theories that have been found empirically successful - not just phase space and Hilbert space theories but also theories based on a manifold - fall under this framework

They should have added: AND THAT'S IT!

Introduction
Framework

Broadcasting
Comparison to CBH Theorem
Conclusions

C^{*}-algebras: Reasons to be skeptical

- C*-algebras were invented to do a Hilbert's 10th job on quantum theory - particularly QFT and quantum stat. mech.
- Every C*-algebra has a faithful Hilbert space representation (GNS theorem).
- In finite dimensions we only have classical probability, quantum theory and quantum theory with superselection rules.
- In infinite dimensions it's essentially the same story.

It is pretty easy to derive quantum theory if you assume
quantum theory at the outset.

Introduction
Framework

C*-algebras: Reasons to be skeptical

- C*-algebras were invented to do a Hilbert's 10th job on quantum theory - particularly QFT and quantum stat. mech.
- Every C^{*}-algebra has a faithful Hilbert space representation (GNS theorem).
- In finite dimensions we only have classical probability, quantum theory and quantum theory with superselection rules.
- In infinite dimensions it's essentially the same story.

It is pretty easy to derive quantum theory if you assume
quantum theory at the outset.

Framework

C*-algebras: Reasons to be skeptical

- C*-algebras were invented to do a Hilbert's 10th job on quantum theory - particularly QFT and quantum stat. mech.
- Every C^{*}-algebra has a faithful Hilbert space representation (GNS theorem).
- In finite dimensions we only have classical probability, quantum theory and quantum theory with superselection rules.
- In infinite dimensions it's essentially the same story.

It is pretty easy to derive quantum theory if you assume
quantum theory at the outset.

Framework

C^{*}-algebras: Reasons to be skeptical

- C*-algebras were invented to do a Hilbert's 10th job on quantum theory - particularly QFT and quantum stat. mech.
- Every C^{*}-algebra has a faithful Hilbert space representation (GNS theorem).
- In finite dimensions we only have classical probability, quantum theory and quantum theory with superselection rules.
- In infinite dimensions it's essentially the same story.

Framework

Broadcasting
Comparison to CBH Theorem
Conclusions

C*-algebras: Reasons to be skeptical

- C*-algebras were invented to do a Hilbert's 10th job on quantum theory - particularly QFT and quantum stat. mech.
- Every C^{*}-algebra has a faithful Hilbert space representation (GNS theorem).
- In finite dimensions we only have classical probability, quantum theory and quantum theory with superselection rules.
- In infinite dimensions it's essentially the same story.

It is pretty easy to derive quantum theory if you assume quantum theory at the outset.

Introduction
Framework
Unentangled Bit Commitment
Broadcasting
Comparison to CBH Theorem
Conclusions

The Brassard-Fuchs Speculation
The CBH-Theorem
C^{*}-algebraic theories
Generalizing CBH

Generalized Probabilistic Frameworks

The End Result

The Convex Sets Framework

- A traditional operational framework.

- Goal: Predict Prob(outcome|Choice of P, T and M)

Preparations \rightarrow States

Definition

The set Ω of normalized states is a compact, closed, convex set.

- Convex: If $\omega, \mu \in \Omega$ and $p \in[0,1]$ then $p \omega+(1-p) \mu \in \Omega$.
- Extreme points of Ω are called pure states.
- Note: Every convex subset of a locally convex topological vector space is affinely homeomorphic to the set of all states on a test space (F. W. Shultz, Journal of Combinatorial Theory A 17, 317 (1974)).

Preparations \rightarrow States

Definition

The set Ω of normalized states is a compact, closed, convex set.

- Convex: If $\omega, \mu \in \Omega$ and $p \in[0,1]$ then $p \omega+(1-p) \mu \in \Omega$.
- Extreme points of Ω are called pure states.
- Note: Every convex subset of a locally convex topological vector space is affinely homeomorphic to the set of all states on a test space (F. W. Shultz, Journal of Combinatorial Theory A 17, 317 (1974)).

Preparations \rightarrow States

Definition

The set Ω of normalized states is a compact, closed, convex set.

- Convex: If $\omega, \mu \in \Omega$ and $p \in[0,1]$ then $p \omega+(1-p) \mu \in \Omega$.
- Extreme points of Ω are called pure states.
- Note: Every convex subset of a locally convex topological vector space is affinely homeomorphic to the set of all states on a test space (F. W. Shultz, Journal of Combinatorial Theory A 17, 317 (1974)).

Examples

- Classical: $\Omega=$ Probability simplex.
- Quantum: $\Omega=\{$ Denisty matrices $\}$.
- Polyhedral.

Measurement Outcomes \rightarrow Effects

Definition

Let $A(\Omega)$ be the set of affine functionals $\Omega \rightarrow \mathbb{R}$ and $V(\Omega)$ be the set of positive affine functionals $\Omega \rightarrow \mathbb{R}^{+}$.

$$
\forall p \in[0,1], f(p \omega+(1-p) \mu)=p f(\omega)+(1-p) f(\mu)
$$

- $A(\Omega)$ is a vector space and $V(\Omega)$ is a convex cone.

$$
(\alpha f+\beta g)(\omega)=\alpha f(\omega)+\beta g(\omega)
$$

- $V(\Omega)$ spans $A(\Omega)$.
- Partial order on $A(\Omega): f \leq g$ iff $\forall \omega \in \Omega, f(\omega) \leq g(\omega)$.

- Normalized effects: $[\tilde{0}, \tilde{1}]=\{f \in V(\Omega) \mid \tilde{0} \leq f \leq \tilde{1}\}$.

Measurement Outcomes \rightarrow Effects

Definition

Let $A(\Omega)$ be the set of affine functionals $\Omega \rightarrow \mathbb{R}$ and $V(\Omega)$ be the set of positive affine functionals $\Omega \rightarrow \mathbb{R}^{+}$.

$$
\forall p \in[0,1], f(p \omega+(1-p) \mu)=p f(\omega)+(1-p) f(\mu)
$$

- $A(\Omega)$ is a vector space and $V(\Omega)$ is a convex cone.

$$
(\alpha f+\beta g)(\omega)=\alpha f(\omega)+\beta g(\omega)
$$

- $V(\Omega)$ spans $A(\Omega)$.

Measurement Outcomes \rightarrow Effects

Definition

Let $A(\Omega)$ be the set of affine functionals $\Omega \rightarrow \mathbb{R}$ and $V(\Omega)$ be the set of positive affine functionals $\Omega \rightarrow \mathbb{R}^{+}$.

$$
\forall p \in[0,1], f(p \omega+(1-p) \mu)=p f(\omega)+(1-p) f(\mu)
$$

- $A(\Omega)$ is a vector space and $V(\Omega)$ is a convex cone.

$$
(\alpha f+\beta g)(\omega)=\alpha f(\omega)+\beta g(\omega)
$$

- $V(\Omega)$ spans $A(\Omega)$.

Measurement Outcomes \rightarrow Effects

Definition

Let $A(\Omega)$ be the set of affine functionals $\Omega \rightarrow \mathbb{R}$ and $V(\Omega)$ be the set of positive affine functionals $\Omega \rightarrow \mathbb{R}^{+}$.

$$
\forall p \in[0,1], f(p \omega+(1-p) \mu)=p f(\omega)+(1-p) f(\mu)
$$

- $A(\Omega)$ is a vector space and $V(\Omega)$ is a convex cone.

$$
(\alpha f+\beta g)(\omega)=\alpha f(\omega)+\beta g(\omega)
$$

- $V(\Omega)$ spans $A(\Omega)$.
- Partial order on $A(\Omega): f \leq g$ iff $\forall \omega \in \Omega, f(\omega) \leq g(\omega)$.
- Normalized effects: $[0 ̃, \tilde{1}]=\{f \in V(\Omega) \mid \tilde{0}$

Measurement Outcomes \rightarrow Effects

Definition

Let $A(\Omega)$ be the set of affine functionals $\Omega \rightarrow \mathbb{R}$ and $V(\Omega)$ be the set of positive affine functionals $\Omega \rightarrow \mathbb{R}^{+}$.

$$
\forall p \in[0,1], f(p \omega+(1-p) \mu)=p f(\omega)+(1-p) f(\mu)
$$

- $A(\Omega)$ is a vector space and $V(\Omega)$ is a convex cone.

$$
(\alpha f+\beta g)(\omega)=\alpha f(\omega)+\beta g(\omega)
$$

- $V(\Omega)$ spans $A(\Omega)$.
- Partial order on $A(\Omega): f \leq g$ iff $\forall \omega \in \Omega, f(\omega) \leq g(\omega)$.
- Unit: $\forall \omega \in \Omega, \tilde{1}(\omega)=1$. Zero: $\forall v \in V, \tilde{0}(v)=0$.

Measurement Outcomes \rightarrow Effects

Definition

Let $A(\Omega)$ be the set of affine functionals $\Omega \rightarrow \mathbb{R}$ and $V(\Omega)$ be the set of positive affine functionals $\Omega \rightarrow \mathbb{R}^{+}$.

$$
\forall p \in[0,1], f(p \omega+(1-p) \mu)=p f(\omega)+(1-p) f(\mu)
$$

- $A(\Omega)$ is a vector space and $V(\Omega)$ is a convex cone.

$$
(\alpha f+\beta g)(\omega)=\alpha f(\omega)+\beta g(\omega)
$$

- $V(\Omega)$ spans $A(\Omega)$.
- Partial order on $A(\Omega): f \leq g$ iff $\forall \omega \in \Omega, f(\omega) \leq g(\omega)$.
- Unit: $\forall \omega \in \Omega, \tilde{1}(\omega)=1$. Zero: $\forall v \in V, \tilde{0}(v)=0$.
- Normalized effects: $[\tilde{0}, \tilde{1}]=\{f \in V(\Omega) \mid \tilde{0} \leq f \leq \tilde{1}\}$.

States as vectors

- Consider the dual space $A(\Omega)^{*}$ of linear functionals $A(\Omega) \rightarrow \mathbb{R}$ and the dual cone of $V(\Omega)^{*}$ of linear functionals $V(\Omega) \rightarrow \mathbb{R}^{+}$.
- $V(\Omega)^{*}$ can be extended to $A(\Omega)$.
- An element of Ω can be mapped to an element of $V(\Omega)^{*}$ via $\omega^{*}(f)=f(\omega)$.
- $V(\Omega)^{*}$ can be thought of as the set of unnormalized states.

States as vectors

- Consider the dual space $A(\Omega)^{*}$ of linear functionals $A(\Omega) \rightarrow \mathbb{R}$ and the dual cone of $V(\Omega)^{*}$ of linear functionals $V(\Omega) \rightarrow \mathbb{R}^{+}$.
- $V(\Omega)^{*}$ can be extended to $A(\Omega)$.
- An element of Ω can be mapped to an element of $V(\Omega)^{*}$ via $\omega^{*}(f)=f(\omega)$.
- $V(\Omega)^{*}$ can be thought of as the set of unnormalized states.

States as vectors

- Consider the dual space $A(\Omega)^{*}$ of linear functionals $A(\Omega) \rightarrow \mathbb{R}$ and the dual cone of $V(\Omega)^{*}$ of linear functionals $V(\Omega) \rightarrow \mathbb{R}^{+}$.
- $V(\Omega)^{*}$ can be extended to $A(\Omega)$.
- An element of Ω can be mapped to an element of $V(\Omega)^{*}$ via $\omega^{*}(f)=f(\omega)$.
- $V(\Omega)^{*}$ can be thought of as the set of unnormalized states.

States as vectors

- Consider the dual space $A(\Omega)^{*}$ of linear functionals $A(\Omega) \rightarrow \mathbb{R}$ and the dual cone of $V(\Omega)^{*}$ of linear functionals $V(\Omega) \rightarrow \mathbb{R}^{+}$.
- $V(\Omega)^{*}$ can be extended to $A(\Omega)$.
- An element of Ω can be mapped to an element of $V(\Omega)^{*}$ via $\omega^{*}(f)=f(\omega)$.
- $V(\Omega)^{*}$ can be thought of as the set of unnormalized states.

Examples

- Classical:
- $A(\Omega)=\{$ functions $\}$
- $V(\Omega)=\{$ positive functions $\}$
- $[\tilde{0}, \tilde{1}]=\{$ Fuzzy indicator functions $\}$
- $V(\Omega)^{*}=\{$ positive functions $\}$
- $A(\Omega) \cong\{$ Hermitian operators $\}$ via $f(\rho)=\operatorname{Tr}\left(A_{f} \rho\right)$
- $\underset{\sim}{V}(\Omega) \cong\{$ positive operators $\}$
- $[0,1] \cong\{P O V M$ elements $\}$
- $V(\Omega)^{*} \cong\{$ positive operators $\}$

Examples

- Classical:
- $A(\Omega)=\{$ functions $\}$
- $V(\Omega)=$ \{positive functions $\}$
- $[\tilde{0}, \tilde{1}]=\{$ Fuzzy indicator functions $\}$
- $V(\Omega)^{*}=$ \{positive functions $\}$
- Quantum:
- $A(\Omega) \cong\{$ Hermitian operators $\}$ via $f(\rho)=\operatorname{Tr}\left(A_{f} \rho\right)$
- $V(\Omega) \cong$ \{positive operators $\}$
- $[\tilde{0}, \tilde{1}] \cong\{$ POVM elements $\}$
- $V(\Omega)^{*} \cong$ \{positive operators $\}$

States
Effects
States as vectors
Observables
Transformations \rightarrow Affine maps
Tensor Products

Examples

- Polyhedral:

$[0 ̃, \tilde{1}]$

Observables

Definition

An observable is a finite collection $\left(f_{1}, f_{2}, \ldots, f_{N}\right)$ of elements of [$0, \tilde{1}]$ that satisfies $\sum_{j=1}^{N} f_{j}=\tilde{1}$.

- Note: Analogous to a POVM in Quantum Theory.
- Can give more sophisticated measure-theoretic definition.

Observables

Definition

An observable is a finite collection $\left(f_{1}, f_{2}, \ldots, f_{N}\right)$ of elements of $[\tilde{0}, \tilde{1}]$ that satisfies $\sum_{j=1}^{N} f_{j}=\tilde{1}$.

- Note: Analogous to a POVM in Quantum Theory.
- Can give more sophisticated measure-theoretic definition.

Observables

Definition

An observable is a finite collection $\left(f_{1}, f_{2}, \ldots, f_{N}\right)$ of elements of $[0 \tilde{0}, \tilde{1}]$ that satisfies $\sum_{j=1}^{N} f_{j}=\tilde{1}$.

- Note: Analogous to a POVM in Quantum Theory.
- Can give more sophisticated measure-theoretic definition.

Dynamics

Definition

The dynamical maps $\mathfrak{D}_{B \mid A}$ are a convex subset of the affine maps $\phi: V\left(\Omega_{A}\right)^{*} \rightarrow V\left(\Omega_{B}\right)^{*}$.

$$
\forall \alpha, \beta \geq 0, \phi\left(\alpha \omega_{A}+\mu_{B}\right)=\alpha \phi\left(\omega_{A}\right)+\beta \phi\left(\mu_{B}\right)
$$

You might want to require other things, e.g.

- The identity is in $\mathfrak{D}_{A \mid A}$.
- Maps can be composed.
- $\forall f \in V\left(\Omega_{A}\right), \mu_{B} \in V\left(\Omega_{B}\right)^{*}, \phi\left(\omega_{A}\right)=f\left(\omega_{A}\right) \mu_{B}$ is in $\mathscr{D}_{B \mid A}$.

Dynamics

Definition

The dynamical maps $\mathfrak{D}_{B \mid A}$ are a convex subset of the affine maps $\phi: V\left(\Omega_{A}\right)^{*} \rightarrow V\left(\Omega_{B}\right)^{*}$.

$$
\forall \alpha, \beta \geq 0, \phi\left(\alpha \omega_{A}+\mu_{B}\right)=\alpha \phi\left(\omega_{A}\right)+\beta \phi\left(\mu_{B}\right)
$$

You might want to require other things, e.g.

- The identity is in $\mathfrak{D}_{A \mid A}$.
- Maps can be composed.
- $\forall f \in V\left(\Omega_{A}\right), \mu_{B} \in V\left(\Omega_{B}\right)^{*}, \phi\left(\omega_{A}\right)=f\left(\omega_{A}\right) \mu_{B}$ is in $\mathfrak{D}_{B \mid A}$.

Dynamics

Definition

The dynamical maps $\mathfrak{D}_{B \mid A}$ are a convex subset of the affine maps $\phi: V\left(\Omega_{A}\right)^{*} \rightarrow V\left(\Omega_{B}\right)^{*}$.

$$
\forall \alpha, \beta \geq 0, \phi\left(\alpha \omega_{A}+\mu_{B}\right)=\alpha \phi\left(\omega_{A}\right)+\beta \phi\left(\mu_{B}\right)
$$

You might want to require other things, e.g.

- The identity is in $\mathfrak{D}_{A \mid A}$.
- Maps can be composed.

Dynamics

Definition

The dynamical maps $\mathfrak{D}_{B \mid A}$ are a convex subset of the affine maps $\phi: V\left(\Omega_{A}\right)^{*} \rightarrow V\left(\Omega_{B}\right)^{*}$.

$$
\forall \alpha, \beta \geq 0, \phi\left(\alpha \omega_{A}+\mu_{B}\right)=\alpha \phi\left(\omega_{A}\right)+\beta \phi\left(\mu_{B}\right)
$$

You might want to require other things, e.g.

- The identity is in $\mathfrak{D}_{A \mid A}$.
- Maps can be composed.
- $\forall f \in V\left(\Omega_{A}\right), \mu_{B} \in V\left(\Omega_{B}\right)^{*}, \phi\left(\omega_{A}\right)=f\left(\omega_{A}\right) \mu_{B}$ is in $\mathfrak{D}_{B \mid A}$.

States
Effects
States as vectors
Observables
Transformations \rightarrow Affine maps
Tensor Products

Combining Systems: Tensor Products

- Given Ω_{A} and Ω_{B}, what is the joint space $\Omega_{A B}$?
- We assume:
- A joint state must assign joint probabilities to
$f_{A} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right], f_{B} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right]$.
- No-signaling.
- States are uniquely determined by probability assignments to pairs f_{A}, f_{B}.
- This does not give a unique tensor product, but a range of possibilities.
- Direct products: $\omega_{A} \otimes \omega_{B}\left(f_{A}, f_{B}\right)=\omega_{A}\left(f_{A}\right) \omega_{B}\left(f_{B}\right)$

States
Effects
States as vectors
Observables
Transformations \rightarrow Affine maps
Tensor Products

Combining Systems: Tensor Products

- Given Ω_{A} and Ω_{B}, what is the joint space $\Omega_{A B}$?
- We assume:
- A joint state must assign joint probabilities to $f_{A} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right], f_{B} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right]$.
- No-signaling.
- States are uniquely determined by probability assignments to pairs f_{A}, f_{B}.
- This does not aive a unique tensor product, but a range of possibilities.
- Direct products: $\omega_{A} \otimes \omega_{B}\left(f_{A}, f_{B}\right)=\omega_{A}\left(f_{A}\right) \omega_{B}\left(f_{B}\right)$

States
Effects
States as vectors
Observables
Transformations \rightarrow Affine maps
Tensor Products

Combining Systems: Tensor Products

- Given Ω_{A} and Ω_{B}, what is the joint space $\Omega_{A B}$?
- We assume:
- A joint state must assign joint probabilities to $f_{A} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right], f_{B} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right]$.
- No-signaling.
- States are uniquely determined by probability assignments to pairs f_{A}, f_{B}.
- This does not give a unique tensor product, but a range of possibilities.
- Direct products: $\omega_{A} \otimes \omega_{B}\left(f_{A}, f_{B}\right)=\omega_{A}\left(f_{A}\right) \omega_{B}\left(f_{B}\right)$

States
Effects
States as vectors

Combining Systems: Tensor Products

- Given Ω_{A} and Ω_{B}, what is the joint space $\Omega_{A B}$?
- We assume:
- A joint state must assign joint probabilities to $f_{A} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right], f_{B} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right]$.
- No-signaling.
- States are uniquely determined by probability assignments to pairs f_{A}, f_{B}.
- This does not give a unique tensor product, but a range of possibilities.
- Direct products: $\omega_{A} \otimes \omega_{B}\left(f_{A}, f_{B}\right)=\omega_{A}\left(f_{A}\right) \omega_{B}\left(f_{B}\right)$

States

Combining Systems: Tensor Products

- Given Ω_{A} and Ω_{B}, what is the joint space $\Omega_{A B}$?
- We assume:
- A joint state must assign joint probabilities to $f_{A} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right], f_{B} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right]$.
- No-signaling.
- States are uniquely determined by probability assignments to pairs f_{A}, f_{B}.
- This does not give a unique tensor product, but a range of possibilities.
- Direct products: $\omega_{A} \otimes \omega_{B}\left(f_{A}, f_{B}\right)=\omega_{A}\left(f_{A}\right) \omega_{B}\left(f_{B}\right)$

Combining Systems: Tensor Products

- Given Ω_{A} and Ω_{B}, what is the joint space $\Omega_{A B}$?
- We assume:
- A joint state must assign joint probabilities to $f_{A} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right], f_{B} \in\left[\tilde{0}_{A}, \tilde{1}_{B}\right]$.
- No-signaling.
- States are uniquely determined by probability assignments to pairs f_{A}, f_{B}.
- This does not give a unique tensor product, but a range of possibilities.
- Direct products: $\omega_{A} \otimes \omega_{B}\left(f_{A}, f_{B}\right)=\omega_{A}\left(f_{A}\right) \omega_{B}\left(f_{B}\right)$

Introduction
Framework

States
Effects
States as vectors
Observables
Transformations \rightarrow Affine maps
Tensor Products

Combining Systems: Tensor Products

Definition

Separable TP: $V\left(\Omega_{A}\right)^{*} \otimes_{\text {sep }} V\left(\Omega_{B}\right)^{*}=$ $\operatorname{conv}\left\{\omega_{A} \otimes \omega_{B} \mid \omega_{A} \in V\left(\Omega_{A}\right)^{*}, \omega_{B} \in V\left(\Omega_{B}\right)^{*}\right\}$

Definition

Maximal TP: $V\left(\Omega_{A}\right)^{*} \otimes_{\max } V\left(\Omega_{B}\right)^{*}=\left(V\left(\Omega_{A}\right) \otimes_{\text {sep }} V\left(\Omega_{B}\right)\right)^{*}$
Definition
A tensor product $V\left(\Omega_{A}\right)^{*} \otimes V\left(\Omega_{B}\right)^{*}$ is a convex cone that
satisfies

Introduction
Framework

States
Effects
States as vectors
Observables
Transformations \rightarrow Affine maps
Tensor Products

Combining Systems: Tensor Products

Definition

Separable TP: $V\left(\Omega_{A}\right)^{*} \otimes_{\text {sep }} V\left(\Omega_{B}\right)^{*}=$ $\operatorname{conv}\left\{\omega_{A} \otimes \omega_{B} \mid \omega_{A} \in V\left(\Omega_{A}\right)^{*}, \omega_{B} \in V\left(\Omega_{B}\right)^{*}\right\}$

Definition

Maximal TP: $V\left(\Omega_{A}\right)^{*} \otimes_{\max } V\left(\Omega_{B}\right)^{*}=\left(V\left(\Omega_{A}\right) \otimes_{\text {sep }} V\left(\Omega_{B}\right)\right)^{*}$
Definition
A tensor product $V\left(\Omega_{A}\right)^{*} \otimes V\left(\Omega_{B}\right)^{*}$ is a convex cone that satisfies
\square

Introduction
Framework
Broadcasting
Comparison to CBH Theorem
Conclusions

States
Effects
States as vectors
Observables
Transformations \rightarrow Affine maps
Tensor Products

Combining Systems: Tensor Products

Definition

Separable TP: $V\left(\Omega_{A}\right)^{*} \otimes_{\text {sep }} V\left(\Omega_{B}\right)^{*}=$ $\operatorname{conv}\left\{\omega_{A} \otimes \omega_{B} \mid \omega_{A} \in V\left(\Omega_{A}\right)^{*}, \omega_{B} \in V\left(\Omega_{B}\right)^{*}\right\}$

Definition

Maximal TP: $V\left(\Omega_{A}\right)^{*} \otimes_{\max } V\left(\Omega_{B}\right)^{*}=\left(V\left(\Omega_{A}\right) \otimes_{\text {sep }} V\left(\Omega_{B}\right)\right)^{*}$

Definition

A tensor product $V\left(\Omega_{A}\right)^{*} \otimes V\left(\Omega_{B}\right)^{*}$ is a convex cone that satisfies

$$
V\left(\Omega_{A}\right)^{*} \otimes_{\text {sep }} V\left(\Omega_{B}\right)^{*} \subseteq V\left(\Omega_{A}\right)^{*} \otimes V\left(\Omega_{B}\right)^{*} \subseteq V\left(\Omega_{A}\right)^{*} \otimes_{\max } V\left(\Omega_{B}\right)^{*}
$$

Distinguishability

Definition

A set of states $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right\}, \omega_{j} \in \Omega$, is jointly distinguishable if \exists an observable $\left(f_{1}, f_{2}, \ldots, f_{N}\right)$ s.t.

$$
f_{j}\left(\omega_{k}\right)=\delta_{j k}
$$

Fact
The set of pure states of Ω is jointly distinguishable iff Ω is a simplex.

Distinguishability

Definition

A set of states $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right\}, \omega_{j} \in \Omega$, is jointly distinguishable if \exists an observable $\left(f_{1}, f_{2}, \ldots, f_{N}\right)$ s.t.

$$
f_{j}\left(\omega_{k}\right)=\delta_{j k}
$$

Fact

The set of pure states of Ω is jointly distinguishable iff Ω is a simplex.

Reduced States and Maps

Definition

Given a state $v_{A B} \in V_{A} \otimes V_{B}$, the marginal state on V_{A} is defined by

$$
\forall f_{A} \in V_{A}^{*}, \quad f_{A}\left(v_{A}\right)=f_{A} \otimes \tilde{1}_{B}\left(\omega_{A B}\right)
$$

Definition
Given an affine map $\phi_{B C \mid A}: V_{A} \rightarrow V_{B} \otimes V_{C}$, the reduced map $\phi: V_{A} \rightarrow V_{B}$ is defined by

Reduced States and Maps

Definition

Given a state $v_{A B} \in V_{A} \otimes V_{B}$, the marginal state on V_{A} is defined by

$$
\forall f_{A} \in V_{A}^{*}, \quad f_{A}\left(v_{A}\right)=f_{A} \otimes \tilde{1}_{B}\left(\omega_{A B}\right)
$$

Definition

Given an affine map $\phi_{B C \mid A}: V_{A} \rightarrow V_{B} \otimes V_{C}$, the reduced map $\phi: V_{A} \rightarrow V_{B}$ is defined by

$$
\forall f_{B} \in V_{B}^{*}, v_{A} \in V_{A}, \quad f_{B}\left(\phi_{B \mid A}\left(v_{A}\right)\right)=f_{B} \otimes \tilde{1}_{C}\left(\phi_{B C \mid A}\left(v_{A}\right)\right) .
$$

Broadcasting

Definition

A state $\omega \in \Omega$ is broadcast by a NPA map
$\phi_{A^{\prime} A^{\prime \prime} \mid A}: V_{A} \rightarrow V_{A^{\prime}} \otimes V_{A^{\prime \prime}}$ if $\phi_{A^{\prime} \mid A}(\omega)=\phi_{A^{\prime \prime} \mid A}(\omega)=\omega$.

- Cloning is a special case where outputs must be uncorrelated.

Definition

A set of states is co-broadcastable if there exists an NPA map
that broadcasts all of them.

Broadcasting

Definition

A state $\omega \in \Omega$ is broadcast by a NPA map
$\phi_{A^{\prime} A^{\prime \prime} \mid A}: V_{A} \rightarrow V_{A^{\prime}} \otimes V_{A^{\prime \prime}}$ if $\phi_{A^{\prime} \mid A}(\omega)=\phi_{A^{\prime \prime} \mid A}(\omega)=\omega$.

- Cloning is a special case where outputs must be uncorrelated.

Definition
A set of states is co-broadcastable if there exists an NPA map
that broadcasts all of them.

Broadcasting

Definition

A state $\omega \in \Omega$ is broadcast by a NPA map
$\phi_{A^{\prime} A^{\prime \prime} \mid A}: V_{A} \rightarrow V_{A^{\prime}} \otimes V_{A^{\prime \prime}}$ if $\phi_{A^{\prime} \mid A}(\omega)=\phi_{A^{\prime \prime} \mid A}(\omega)=\omega$.

- Cloning is a special case where outputs must be uncorrelated.

Definition

A set of states is co-broadcastable if there exists an NPA map that broadcasts all of them.

The No-Broadcasting Theorem

Theorem

A set of states is co-broadcastable iff it is contained in a simplex that has jointly distinguishable vertices.

- Quantum theory: states must commute.
- Universal broadcasting only possible in classical theories.

Theorem
The set of siates broadcast by any affine map is a simplex that has jointly distinguishable vertices.

The No-Broadcasting Theorem

Theorem

A set of states is co-broadcastable iff it is contained in a simplex that has jointly distinguishable vertices.

- Quantum theory: states must commute.
- Universal broadcasting only possible in classical theories.

Theorem
 The set of states broadcast by any affine map is a simplex that has jointly distinguishable vertices.

The No-Broadcasting Theorem

Theorem

A set of states is co-broadcastable iff it is contained in a simplex that has jointly distinguishable vertices.

- Quantum theory: states must commute.
- Universal broadcasting only possible in classical theories.

Theorem

The set of states broadcast by any affine map is a simplex that has jointly distinguishable vertices.

The No-Broadcasting Theorem

Comparison to CBH Theorem

Like CBH we have:

- No broadcasting \Rightarrow State spaces of individual systems are nonclassical.
- No bit commitment \Rightarrow Entangled states must exist.

Unlike CBH:

- No signaling has become a framework assumption.
- Postulates are genuinely independent.
- We are not particularly close to quantum theory.

Comparison to CBH Theorem

Like CBH we have:

- No broadcasting \Rightarrow State spaces of individual systems are nonclassical.
- No bit commitment \Rightarrow Entangled states must exist.

Unlike CBH:

- No signaling has become a framework assumption.
- Postulates are genuinely independent.
- We are not particularly close to quantum theory.

Comparison to CBH Theorem

Like CBH we have:

- No broadcasting \Rightarrow State spaces of individual systems are nonclassical.
- No bit commitment \Rightarrow Entangled states must exist.

Unlike CBH:

- No signaling has become a framework assumption.
- Postulates are genuinely independent.
- We are not particularly close to quantum theory.

Comparison to CBH Theorem

Like CBH we have:

- No broadcasting \Rightarrow State spaces of individual systems are nonclassical.
- No bit commitment \Rightarrow Entangled states must exist.

Unlike CBH:

- No signaling has become a framework assumption.
- Postulates are genuinely independent.
- We are not particularly close to quantum theory.

Comparison to CBH Theorem

Like CBH we have:

- No broadcasting \Rightarrow State spaces of individual systems are nonclassical.
- No bit commitment \Rightarrow Entangled states must exist.

Unlike CBH:

- No signaling has become a framework assumption.
- Postulates are genuinely independent.
- We are not particularly close to quantum theory.

Open Questions

- Are all qualitative QCrypto results, e.g. key distribution, generic?
- Can other qinfo constraints, e.g. teleportation, get us closer to quantum theory?
- Is bit commitment possible in any theories with entanglement?

Open Questions

- Are all qualitative QCrypto results, e.g. key distribution, generic?
- Can other qinfo constraints, e.g. teleportation, get us closer to quantum theory?
- Is bit commitment possible in any theories with entanglement?

Open Questions

- Are all qualitative QCrypto results, e.g. key distribution, generic?
- Can other qinfo constraints, e.g. teleportation, get us closer to quantum theory?
- Is bit commitment possible in any theories with entanglement?

Conjecture

- Weak version: If the set of joint probabilities that Alice and Bob can obtain in a "prepare and measure" setup is the same as when those they can obtain from making measurements on joint states then bit commitment is impossible
- Strong version: In all other theories there is a secure bit commitment protocol.

Note:

- Applies to C^{*}-theories, i.e. classical and quantum, due to Choi-Jamiołkowski isomorphism, but it's weaker than this.
- But not unentangled nonclassical theories.
- Implies some sort of isomorphism between

Conjecture

- Weak version: If the set of joint probabilities that Alice and Bob can obtain in a "prepare and measure" setup is the same as when those they can obtain from making measurements on joint states then bit commitment is impossible
- Strong version: In all other theories there is a secure bit commitment protocol.
Note:
- Applies to C^{*}-theories, i.e. classical and quantum, due to

Choi-Jamiołkowski isomorphism, but it's weaker than this.

- But not unentangled nonclassical theories.
- Implies some sort of isomorphism between

Conjecture

- Weak version: If the set of joint probabilities that Alice and Bob can obtain in a "prepare and measure" setup is the same as when those they can obtain from making measurements on joint states then bit commitment is impossible
- Strong version: In all other theories there is a secure bit commitment protocol.
Note:
- Applies to C^{*}-theories, i.e. classical and quantum, due to Choi-Jamiołkowski isomorphism, but it's weaker than this.
- But not unentangled nonclassical theories.
- Implies some sort of isomorphism between

Conjecture

- Weak version: If the set of joint probabilities that Alice and Bob can obtain in a "prepare and measure" setup is the same as when those they can obtain from making measurements on joint states then bit commitment is impossible
- Strong version: In all other theories there is a secure bit commitment protocol.
Note:
- Applies to C^{*}-theories, i.e. classical and quantum, due to Choi-Jamiołkowski isomorphism, but it's weaker than this.
- But not unentangled nonclassical theories.
- Implies some sort of isomorphism between

Conjecture

- Weak version: If the set of joint probabilities that Alice and Bob can obtain in a "prepare and measure" setup is the same as when those they can obtain from making measurements on joint states then bit commitment is impossible
- Strong version: In all other theories there is a secure bit commitment protocol.
Note:
- Applies to C^{*}-theories, i.e. classical and quantum, due to Choi-Jamiołkowski isomorphism, but it's weaker than this.
- But not unentangled nonclassical theories.
- Implies some sort of isomorphism between \otimes and $\mathfrak{D}_{B \mid A}$.

Acknowledgments

- This work is supported by:
- The Foundational Questions Institute (http://www.fqxi.org)
- MITACS (http://www.mitacs.math.ca)
- NSERC (http://nserc.ca/)
- The Province of Ontario: ORDCF/MRI

References

- H. Barnum, O. Dahlsten, M. Leifer and B. Toner, "Nonclassicality without entanglement enables bit commitment", arXiv soon.
- H. Barnum, J. Barrett, M. Leifer and A. Wilce, "Generalized No Broadcasting Theorem", arXiv:0707.0620.
- H. Barnum, J. Barrett, M. Leifer and A. Wilce, "Cloning and Broadcasting in Generic Probabilistic Theories", quant-ph/0611295.

