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The Brassard-Fuchs Speculation

In ≈2000, Brassard and Fuchs speculated that the basic Hilbert

Space structures of quantum theory might be uniquely

determined by two cryptographic constraints:

The Possibility of Secure Key Distribution

The Impossibility of Bit Commitment

This was to be viewed as analogous to Einstein’s derivation of

the kinematics for special relativity from the two postulates:

The laws of physics are invariant under changes of inertial

frame.

The speed of light in vacuo is constant in all inertial frames.
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The Brassard-Fuchs Speculation

This derivation has to be done within a precise mathematical

framework for physical theories, which must be:

Narrow enough to convert the axioms into precise

mathematical constraints.

Broad enough that the work is being done by the

postulates rather than the framework assumptions.

We are allowed to import definitions and concepts from existing

physical frameworks, just as Einstein did.
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The CBH Theorem

In 2003, Clifton, Bub and Halvorson “derived quantum theory”

from:

The impossibility of superluminal information transfer

between two physical systems by performing

measurements on one of them.

The impossibility of perfectly broadcasting the information

contained in an unknown physical state.

The impossibility of unconditionally secure bit commitment.

The mathematical framework chosen was C∗-algebraic

theories.
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Generalizing CBH

The CBH Theorem

CBH don’t arrive exactly at quantum theory, but intend their

theorem to be read as follows:

1 No signalling⇒ Separate systems correspond to

commuting algebras of observables.

2 No broadcasting⇒ Algebras corresponding to individual

systems are nonabelian.

3 No bit commitment⇒ Bipartite systems can occupy

entangled states.

There is some debate about whether 3 is independent of 1 and

2.
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Generalizing CBH

Why C∗-algebras?

We are not in the business of rigorous axiomatization, so CBH

say:

...it suffices for present purposes simply to observe

that all physical theories that have been found

empirically successful – not just phase space and

Hilbert space theories but also theories based on a

manifold – fall under this framework

They should have added: AND THAT’S IT!
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Generalizing CBH

C∗-algebras: Reasons to be skeptical

C∗-algebras were invented to do a Hilbert’s 10th job on

quantum theory – particularly QFT and quantum stat.

mech.

Every C∗-algebra has a faithful Hilbert space

representation (GNS theorem).

In finite dimensions we only have classical probability,

quantum theory and quantum theory with superselection

rules.

In infinite dimensions it’s essentially the same story.

It is pretty easy to derive quantum theory if you assume

quantum theory at the outset.
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The Convex Sets Framework

A traditional operational framework.

MeasurementTransformationPreparation

Goal: Predict Prob(outcome|Choice of P, T and M)
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Definition

The set Ω of normalized states is a compact, closed, convex

set.

Convex: If ω, µ ∈ Ω and p ∈ [0,1] then pω + (1− p)µ ∈ Ω.

Extreme points of Ω are called pure states.

Note: Every convex subset of a locally convex topological

vector space is affinely homeomorphic to the set of all

states on a test space (F. W. Shultz, Journal of

Combinatorial Theory A 17, 317 (1974)).
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Examples

Classical: Ω = Probability simplex.

Quantum: Ω = {Denisty matrices}.
Polyhedral.
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Measurement Outcomes→ Effects

Definition

Let A(Ω) be the set of affine functionals Ω→ R and V (Ω) be

the set of positive affine functionals Ω→ R+.

∀p ∈ [0,1], f (pω + (1− p)µ) = pf (ω) + (1− p)f (µ)

A(Ω) is a vector space and V (Ω) is a convex cone.

(αf + βg)(ω) = αf (ω) + βg(ω)

V (Ω) spans A(Ω).

Partial order on A(Ω): f ≤ g iff ∀ω ∈ Ω, f (ω) ≤ g(ω).

Unit: ∀ω ∈ Ω, 1̃(ω) = 1. Zero: ∀v ∈ V , 0̃(v) = 0.

Normalized effects: [0̃, 1̃] = {f ∈ V (Ω)|0̃ ≤ f ≤ 1̃}.
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States as vectors

Consider the dual space A(Ω)∗ of linear functionals

A(Ω)→ R and the dual cone of V (Ω)∗ of linear functionals

V (Ω)→ R+.

V (Ω)∗ can be extended to A(Ω).

An element of Ω can be mapped to an element of V (Ω)∗

via ω∗(f ) = f (ω).

V (Ω)∗ can be thought of as the set of unnormalized states.
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Examples

Classical:

A(Ω) = {functions}
V (Ω) = {positive functions}
[0̃, 1̃] = {Fuzzy indicator functions}
V (Ω)∗ = {positive functions}

Quantum:

A(Ω) ∼= {Hermitian operators} via f (ρ) = Tr(Afρ)
V (Ω) ∼= {positive operators}
[0̃, 1̃] ∼= {POVM elements}
V (Ω)∗ ∼= {positive operators}

M. S. Leifer Unentangled Bit Commitment



Introduction

Framework

Unentangled Bit Commitment

Broadcasting

Comparison to CBH Theorem

Conclusions

States

Effects

States as vectors

Observables

Transformations→ Affine maps

Tensor Products

Examples

Classical:

A(Ω) = {functions}
V (Ω) = {positive functions}
[0̃, 1̃] = {Fuzzy indicator functions}
V (Ω)∗ = {positive functions}

Quantum:

A(Ω) ∼= {Hermitian operators} via f (ρ) = Tr(Afρ)
V (Ω) ∼= {positive operators}
[0̃, 1̃] ∼= {POVM elements}
V (Ω)∗ ∼= {positive operators}

M. S. Leifer Unentangled Bit Commitment



Introduction

Framework

Unentangled Bit Commitment

Broadcasting

Comparison to CBH Theorem

Conclusions

States

Effects

States as vectors

Observables

Transformations→ Affine maps

Tensor Products

Examples

Polyhedral:

Ω

V (Ω)∗

V (Ω) [0̃, 1̃]

1̃

0̃
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States as vectors
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Transformations→ Affine maps
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Observables

Definition

An observable is a finite collection (f1, f2, . . . , fN) of elements of

[0̃, 1̃] that satisfies
∑N

j=1 fj = 1̃.

Note: Analogous to a POVM in Quantum Theory.

Can give more sophisticated measure-theoretic definition.
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Dynamics

Definition

The dynamical maps DB|A are a convex subset of the affine

maps φ : V (ΩA)∗ → V (ΩB)∗.

∀α, β ≥ 0, φ(αωA + µB) = αφ(ωA) + βφ(µB)

You might want to require other things, e.g.

The identity is in DA|A.

Maps can be composed.

∀f ∈ V (ΩA), µB ∈ V (ΩB)∗, φ(ωA) = f (ωA)µB is in DB|A.
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Combining Systems: Tensor Products

Given ΩA and ΩB, what is the joint space ΩAB?

We assume:

A joint state must assign joint probabilities to

fA ∈ [0̃A, 1̃B], fB ∈ [0̃A, 1̃B].
No-signaling.

States are uniquely determined by probability assignments

to pairs fA, fB.

This does not give a unique tensor product, but a range of

possibilities.

Direct products: ωA ⊗ ωB(fA, fB) = ωA(fA)ωB(fB)
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Combining Systems: Tensor Products

Definition

Separable TP: V (ΩA)∗ ⊗sep V (ΩB)∗ =
conv {ωA ⊗ ωB|ωA ∈ V (ΩA)∗, ωB ∈ V (ΩB)∗}

Definition

Maximal TP: V (ΩA)∗ ⊗max V (ΩB)∗ = (V (ΩA)⊗sep V (ΩB))∗

Definition

A tensor product V (ΩA)∗ ⊗ V (ΩB)∗ is a convex cone that

satisfies

V (ΩA)∗⊗sepV (ΩB)∗ ⊆ V (ΩA)∗⊗V (ΩB)∗ ⊆ V (ΩA)∗⊗maxV (ΩB)∗.
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Distinguishability

Definition

A set of states {ω1, ω2, . . . , ωN}, ωj ∈ Ω, is jointly distinguishable

if ∃ an observable (f1, f2, . . . , fN) s.t.

fj(ωk ) = δjk .

Fact

The set of pure states of Ω is jointly distinguishable iff Ω is a

simplex.
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Broadcasting

Reduced States and Maps

Definition

Given a state vAB ∈ VA ⊗ VB, the marginal state on VA is

defined by

∀fA ∈ V ∗A, fA(vA) = fA ⊗ 1̃B(ωAB).

Definition

Given an affine map φBC|A : VA → VB ⊗ VC , the reduced map

φ : VA → VB is defined by

∀fB ∈ V ∗B, vA ∈ VA, fB(φB|A(vA)) = fB ⊗ 1̃C

(
φBC|A(vA)

)
.
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Broadcasting

Definition

A state ω ∈ Ω is broadcast by a NPA map

φA′A′′|A : VA → VA′ ⊗ VA′′ if φA′|A(ω) = φA′′|A(ω) = ω.

Cloning is a special case where outputs must be

uncorrelated.

Definition

A set of states is co-broadcastable if there exists an NPA map

that broadcasts all of them.
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Broadcasting

The No-Broadcasting Theorem

Theorem

A set of states is co-broadcastable iff it is contained in a

simplex that has jointly distinguishable vertices.

Quantum theory: states must commute.

Universal broadcasting only possible in classical theories.

Theorem

The set of states broadcast by any affine map is a simplex that

has jointly distinguishable vertices.
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Comparison to CBH Theorem

Like CBH we have:

No broadcasting⇒ State spaces of individual systems are

nonclassical.

No bit commitment⇒ Entangled states must exist.

Unlike CBH:

No signaling has become a framework assumption.

Postulates are genuinely independent.

We are not particularly close to quantum theory.
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Open Questions

Are all qualitative QCrypto results, e.g. key distribution,

generic?

Can other qinfo constraints, e.g. teleportation, get us

closer to quantum theory?

Is bit commitment possible in any theories with

entanglement?
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Conjecture

Weak version: If the set of joint probabilities that Alice and

Bob can obtain in a “prepare and measure” setup is the

same as when those they can obtain from making

measurements on joint states then bit commitment is

impossible

Strong version: In all other theories there is a secure bit

commitment protocol.

Note:

Applies to C∗-theories, i.e. classical and quantum, due to

Choi-Jamiołkowski isomorphism, but it’s weaker than this.

But not unentangled nonclassical theories.

Implies some sort of isomorphism between ⊗ and DB|A.
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