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Disclaimer!

The author of this presentation makes no claims as to the

accuracy of any speculations about quantum gravity contained

within. Such speculations do not necessarily represent the

views of the author, or indeed any sane person, living or dead.

Any similarity to existing formalisms for theories of quantum

gravity is purely coincidental. The finiteness of all Hilbert

spaces in this presentation does not reflect any views about the

discreteness of spacetime. You can probably do everything with

C∗-algebras if you prefer. This is a work in progress.
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The Church of The Smaller Hilbert Space
Core Beliefs

A preference for density operators, CP-maps and POVMs
over state-vectors, unitary evolution and projective
measurements.

The latter turn out to be fairly boring in the present

framework.

States belong to agents, not to systems.

“Other authors introduce a wave function for the whole

Universe. In this book, I shall refrain from using

concepts that I do not understand.” Peres.
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Three lessons from Quantum Information

1 Quantum Theory is a noncommutative, operator-valued,

generalization of probability theory.

2 We don’t have to invoke gravity in order to encounter

scenarios with unusual causal structures.

3 Causal ordering of events matters a lot less than you might

think for describing quantum processes.
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Irrelevance of Causal Ordering
The “small miracle” of time in quantum information

C

B

A

B A B

A

In all three causal scenarios the predictions can be

calculated from the formula Tr (MA ⊗MBρAB).

This follows from the Choi-Jamiołkowski isomorphism and

is very useful in qinfo, e.g. crypto security proofs.

c.f. P(X,Y) - I want a formalism in which it is that obvious.
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Related Formalisms

Hardy’s Causaloid gr-qc/0509120, arXiv:gr-qc/0608043.

Consistent/Decoherent Histories - particularly Isham’s

version quant-ph/9506028.

Aharonov et. al.’s mutli-time states arXiv:0712.0320.

Markopoulou’s Quantum Causal Histories hep-th/9904009,

hep-th/0302111.
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Comparison to Quantum Causal Histories

I don’t require global unitarity.

I only deal with finite causal structures.

No free choice of initial conditions.

No free entanglement in the initial state.

Note: Quantum Causal Histories could have been called

Quantum Causal Networks or Quantum Bayesian Networks.
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Conditional Density Operators

Definition

A Conditional Density Operator (CDO) ρB|A ∈ L (HA ⊗HB) is a

positive operator that satisfies TrB

(
ρB|A

)
= IA, where IA is the

identity operator on HA.

c.f.
∑

Y P(Y |X ) = 1

Note: A density operator determines a CDO via

ρB|A = ρ
− 1

2

A ρABρ
− 1

2

A .

Notation: M ∗ N = M
1
2 NM

1
2

ρB|A = ρ−1
A ∗ ρAB and ρAB = ρA ∗ ρAB.

c.f. P(Y |X ) = P(X ,Y )/P(X ) and P(X ,Y ) = P(X )P(Y |X ).
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The Partial Transpose

Definition

Given a basis {|j〉A} of HA and an operator

MAB =
∑

jklm Mjk ;lm |jk〉 〈lm|AB ∈ L (HA ⊗HB), the partial

transpose map on system A is given by

M
TA

AB =
∑
jklm

Mjk ;lm |lk〉 〈jm|AB . (1)

Notation: For a CDO ρB|A = ρTA

B|A

M. S. Leifer Quantum Causal Networks
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The Markov Evolution Law

Theorem

Let EB|A : L (HA)→ L (HB) be a TPCP map and let be a

density operator. Then for any ρAC ∈ L (HA ⊗HC),

EB|A ⊗ IC (ρAC) = TrA

(
ρB|AρAC

)
, (2)

for some fixed CDO ρB|A.

c.f. Classical stochastic dynamics

P(Y ,Z ) =
∑

X P(Y |X )P(X ,Z ).
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The Markov Evolution Law

This is just a restatement of the Choi-Jamiołkowski

isomorphism.

Let
∣∣Φ+

〉
A′A

=
∑

j

|jj〉A′A .

Then, ρB|A = EB|A′ ⊗ IA

(∣∣Φ+
〉 〈

Φ+
∣∣
A′A

)
Unitaries correspond to maximally entangled CDOs.
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Markov Equivalence

Directed Acyclic Graphs (DAGs)

A DAG G = (V ,E) models causal structure.

ED

CB

A

It is isomorphic to the Hasse diagram of a finite poset.

Parents: p(v) = {u ∈ V : (u, v) ∈ E}.
Children: c(v) = {u ∈ V : (v ,u) ∈ E}.
p(D) = {B,C}, c(D) = ∅,
p(C) = {A}, c(C) = {D,E}
Ancestral ordering, e.g. (A,B,C,D,E) or (A,C,E ,B,D)
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Markov Equivalence

Classical Causal Networks

A Classical Causal Network is a DAG G = (V ,E) together

with a probability distribution P(V ) that factorizes

according to

P(V ) =
∏
v∈V

P(v |p(v))

ED

CB

A

P(A,B,C,D,E) = P(A)P(B|A)P(C|A)P(D|B,C)P(E |C)
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Markov Equivalence

Quantum Causal Networks

In the quantum case we have to deal with

no-cloning/no-broadcasting.

We cannot set CDOs independently of each other.

This can be solved by putting Hilbert spaces on the edges.

(CE)
(CD)(BD)

(AC)(AB)

ED

CB

A

Each vertex is associated with two TPCP maps

A fission isometry, e.g. E(CE)(CD)|C
A fusion map, e.g. FC|(AC)

M. S. Leifer Quantum Causal Networks
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This can be solved by putting Hilbert spaces on the edges.

(CE)
(CD)(BD)

(AC)(AB)

ED

CB

A

Each vertex is associated with two TPCP maps

A fission isometry, e.g. E(CE)(CD)|C
A fusion map, e.g. FC|(AC)
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States on Quantum Causal Networks

The state on any “spacelike slice” can be found by

composing fusion and fission maps.

(CE)
(CD)(BD)

(AC)(AB)

ED

CB

A

ρA = FA|∅(1)

ρBC = FB|(AB) ⊗FC|(AC)

(
E(AB)(AC)|A (ρA)

)
ρDE = FD|(BD)(CD) ⊗FE |(CE)

(
E(BD)|B ⊗ E(CD)(CE)|C (ρBC)

)
The states are consistent on any “foliation”.
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CDOs to the rescue!

This is a complete mess!

Define CDOs ρv |p(v) by combining fusion and fission maps.

(CE)
(CD)(BD)

(AC)(AB)

ED

CB

A

Let τ be the CDO associated with a fusion map F .

ρB|A = E†(AC)(AB)|A
(
τB|(AB) ⊗ I(AC)

)
ρC|A = E†(AC)(AB)|A

(
τC|(AC) ⊗ I(AB)

)
ρD|BC = E†(BD)|B ⊗ E

†
(CD)(CE)|C

(
τD|(BD)(CD) ⊗ I(CE)

)
ρE |C = E†(CD)(CE)|C

(
τE |(CE)

)
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Decomposition into CDOs

(CE)
(CD)(BD)

(AC)(AB)

ED

CB

A

ρABCDE =
(((

ρA ∗ ρB|A
)
∗ ρC|A

)
∗ ρD|BC

)
∗ ρE |C is a locally

positive operator with the correct reduced states on all

“spacelike slices”.

It doesn’t depend on the choice of ancestral ordering:

ρABCDE =
(((

ρA ∗ ρC|A
)
∗ ρE |C

)
∗ ρB|A

)
∗ ρD|BC
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Markov Equivalence

Because the result is so similar to the classical case, we can

transcribe many known theorems with ease.

Definition

Two DAGs are Markov Equivalent if they support the same set

of “density operators” (up to local positive maps).

Theorem

Two DAGs are Markov Equivalent if they have the same links

and the same set of uncoupled head-to-head meetings.
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Markov Equivalence

C

C

C

B

B

B

A

A

A

CBA

meeting
Coupled head-to-head

meeting
Uncoupled head-to-head

These are equivalent
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Local Positivity: A Lament

Life would be easier if it were ρB|A rather than ρB|A.

This stems from the fact that not all locally positive

operators are positive and not all positive maps are

completely positive.

∀MA,MB ≥ 0,Tr (MA ⊗MBρAB) ≥ 0

doesn’t imply ∀MAB ≥ 0,Tr (MABρAB) ≥ 0

Similarly, we cannot implement a map that is positive, but

not completely positive.
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Example: Universal Not
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Implemeting Universal Not Passively
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So what is the problem?

D

CB

A

Whilst B and C are separate, we may perform any positive

operation on them passively by just relabeling our POVM

elements, obtaining any locally positive state ρBC .

When we recombine them at D, we have to describe both

systems in a common “reference frame”.

We must ensure that ρD is positive.
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Local Positivity Preserving Maps

Are you down with LPP?

Definition

A map EB1B2...Bn|A1A2...Am
: L
(
HA1
⊗HA2

⊗ . . .⊗HAm

)
→

L
(
HB1
⊗HB2

⊗ . . .⊗HBn

)
is completely local positivity

preserving (CLPP) if

EB1B2...Bn|A1A2...Am
⊗ IC

(
ρA1A2...AmC

)
(3)

is locally positive for all HC and all locally positive operators

ρA1A2...AmC .

For m = 1,n = 1 CLPP = Positive.
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Local Positivity Preserving Maps

Are you down with LPP?

I have no good classification of CLPP maps.

It would be sufficient to classify CLPP maps of the form

EB|A1A2...Am
and EB1B2...Bn|A.

321

321

BBBB

AAAA
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Lessons for Quantum Gravity?

Correlation structure seems more intrinsic to quantum

theory than causal structure.

Maybe we don’t have to sum over all possible causal

structures - only Markov equivalence classes.
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Open Questions

Classification of CLPP maps.

Including preparations and measurements - Quantum

Influence Diagrams.
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