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Classical: Ω = Probability simplex, V = conv{Ω,0}.
Quantum:

V = {Semi- + ve matrices}, Ω = {Denisty matrices }.
Polyhedral:

Ω
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Definition

The dual cone V ∗ is the set of positive affine functionals on V .

V ∗ = {f : V → R|∀v ∈ V , f (v) ≥ 0}

∀α, β ≥ 0, f (αu + βv) = αf (u) + βf (v)

Partial order on V ∗: f ≤ g iff ∀v ∈ V , f (v) ≤ g(v).

Unit: ∀ω ∈ Ω, 1̃(ω) = 1. Zero: ∀v ∈ V , 0̃(v) = 0.

Normalized effects: [0̃, 1̃] = {f ∈ V ∗|0̃ ≤ f ≤ 1̃}.
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Classical: [0̃, 1̃] = {Fuzzy indicator functions}.
Quantum: [0̃, 1̃] ∼= {POVM elements} via f (ρ) = Tr(Efρ).

Polyhedral:

Ω

V

V ∗ [0̃, 1̃]

1̃

0̃
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Definition

An observable is a finite collection (f1, f2, . . . , fN) of elements of

[0̃, 1̃] that satisfies
∑N

j=1 fj = u.

Note: Analogous to a POVM in Quantum Theory.

Can give more sophisticated measure-theoretic definition.
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Informationally Complete Observables

An observable (f1, f2, . . . , fN) induces an affine map:

ψf : Ω→ ∆N ψf (ω)j = fj(ω).

Definition

An observable (f1, f2, . . . , fN) is informationally complete if

∀ω, µ ∈ Ω, ψf (ω) 6= ψf (µ).

Lemma

Every state space has an informationally complete observable.
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Tensor Products

Definition

Separable TP: VA ⊗sep VB = conv {vA ⊗ vB|vA ∈ VA, vB ∈ VB}

Definition

Maximal TP: VA ⊗max VB =
(
V ∗A ⊗sep V ∗B

)∗
Definition

A tensor product VA ⊗ VB is a convex cone that satisfies

VA ⊗sep VB ⊆ VA ⊗ VB ⊆ VA ⊗max VB.
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Dynamics

Definition

The dynamical maps DB|A are a convex subset of the affine

maps φ : VA → VB.

∀α, β ≥ 0, φ(αuA + βvA) = αφ(uA) + βφ(vA)

Dual map: φ∗ : V ∗B → V ∗A [φ∗(fB)] (vA) = fB (φ(vA))

Normalization preserving affine (NPA) maps: φ∗(1̃B) = 1̃A.

Require: ∀f ∈ V ∗A, vB ∈ VB, φ(vA) = f (vA)vB is in DB|A.
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Distinguishability

Definition

A set of states {ω1, ω2, . . . , ωN}, ωj ∈ Ω, is jointly distinguishable

if ∃ an observable (f1, f2, . . . , fN) s.t.

fj(ωk ) = δjk .

Fact

The set of pure states of Ω is jointly distinguishable iff Ω is a

simplex.
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Cloning

Definition

An NPA map φ : V → V ⊗ V clones a state ω ∈ Ω if

φ(ω) = ω ⊗ ω.

Every state has a cloning map: φ(µ) = 1̃(µ)ω ⊗ ω = ω ⊗ ω.

Definition

A set of states {ω1, ω2, . . . , ωN} is co-cloneable if ∃ an affine

map in D that clones all of them.
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The No-Cloning Theorem

Theorem

A set of states is co-cloneable iff they are jointly distinguishable.

Proof.

If J.D. then φ(ω) =
∑N

j=1 fj(ω)ωj ⊗ ωj is cloning.

If co-cloneable then iterate cloning map and use IC

observable to distinguish the states.
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The No-Cloning Theorem

Universal cloning of pure states is only possible in classical

theory.
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Reduced States and Maps

Definition

Given a state vAB ∈ VA ⊗ VB, the marginal state on VA is

defined by

∀fA ∈ V ∗A, fA(vA) = fA ⊗ 1̃B(ωAB).

Definition

Given an affine map φBC|A : VA → VB ⊗ VC , the reduced map

φ : VA → VB is defined by

∀fB ∈ V ∗B, vA ∈ VA, fB(φB|A(vA)) = fB ⊗ 1̃C

(
φBC|A(vA)

)
.
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Broadcasting

Definition

A state ω ∈ Ω is broadcast by a NPA map

φA′A′′|A : VA → VA′ ⊗ VA′′ if φA′|A(ω) = φA′′|A(ω) = ω.

Cloning is a special case where outputs must be

uncorrelated.

Definition

A set of states is co-broadcastable if there exists an NPA map

that broadcasts all of them.
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The No-Broadcasting Theorem

Theorem

A set of states is co-broadcastable iff it is contained in a

simplex that has jointly distinguishable vertices.

Quantum theory: states must commute.

Universal broadcasting only possible in classical theories.

Theorem

The set of states broadcast by any affine map is a simplex that

has jointly distinguishable vertices.
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Introduction

Exchangeability

The Theorem

The de Finetti Theorem

A structure theorem for symmetric classical probability

distributions.

In Bayesian Theory:

Enables an interpretation of “unknown probability”.

Justifies use of relative frequencies in updating prob.

assignments.

Other applications, e.g. cryptography.
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Exchangeability

Let ω(k) ∈ ΩA1
⊗ ΩA2

⊗ . . .⊗ ΩAk
.

m
ar

gi
na

liz
e

A1 A2 A3 A4 Ak Ak+1 Ak+2

A1 A2 A3 A4 Ak Ak+1

A1 A2 A3 A4 Ak ω(k)

ω(k+1)

ω(k+2)
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Exchangeability

Let ω(k) ∈ ΩA1
⊗ ΩA2

⊗ . . .⊗ ΩAk
.

m
ar

gi
na

liz
e

A9 Ak A7 Ak+1 A2 A1 Ak

A2 A6 Ak A5 A3 A4

A5 A3 A2 A1 A4 ω(k)

ω(k+1)

ω(k+2)
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Exchangeability

Let ω(k) ∈ ΩA1
⊗ ΩA2

⊗ . . .⊗ ΩAk
.

m
ar

gi
na

liz
e

Ak A5 Ak+2 A2 Ak+1 A1 A3

A7 A5 A2 A3 A6 A4

Ak Ak−1 A4 A3 A1 ω(k)

ω(k+1)

ω(k+2)
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The de Finetti Theorem

Theorem

All exchangeable states can be written as

ω(k) =

∫
ΩA

p(µ)µ⊗kdµ (1)

where p(µ) is a prob. density and the measure dµ can be any

induced by an embedding in Rn.
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The de Finetti Theorem

Proof.

Consider an IC observable (f1, f2, . . . , fn) for ΩA.

{fj1 ⊗ fj2 ⊗ . . .⊗ fjk} is IC for Ω⊗k
A .

The prob. distn. it generates is exchangeable - use

classical de Finetti theorem.

Prob(j1, j2, . . . , jk ) =

∫
∆N

P(q)qj1qj2 . . . qjk dq

Verify that all q’s are of the form q = ψf (µ) for some

µ ∈ ΩA.
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The de Finetti Theorem

Have to go outside framework to break de Finetti, e.g. Real

Hilbert space QM.

Quantum Classical
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Generic Theories
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Teleportation

jσ

Measurement
Bell

|Φ+〉 = |00〉+ |11〉ρ

ρ
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NOYES

|Φ+〉 = |00〉+ |11〉ρ

|Φ+〉?

ρ ?
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VA ⊗ VA′ ⊗ VA′′ NOYES

ωA′A′′µA

fAA′?

µA ?

M. Leifer et. al. Separations of Probabilistic Theories



Introduction

Framework

Cloning and Broadcasting

The de Finetti Theorem

Teleportation

Conclusions

Quantum Teleportation

Generalized Teleportation

Generalized Conclusive Teleportation

Theorem

If generalized conclusive teleportation is possible then VA is

affinely isomorphic to V ∗A.

Not known to be sufficient.

Weaker than self-dual.

Implies ⊗ ∼= D.
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Quantum Teleportation

Generalized Teleportation

Examples

Classical: [0̃, 1̃] = {Fuzzy indicator functions}.
Quantum: [0̃, 1̃] ∼= {POVM elements} via f (ρ) = Tr(Efρ).

Polyhedral:

Ω

V

V ∗ [0̃, 1̃]

1̃

0̃
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Quantum Teleportation

Generalized Teleportation

Generalized Conclusive Teleportation

Teleportation exists in all C∗-algebraic theories.
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C*-algebraic
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Summary

Many features of QI thought to be “genuinely quantum

mechanical” are generically nonclassical.

Can generalize much of QI/QP beyond the C∗ framework.

Nontrivial separations exist, but have yet to be fully

characterized.
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Open Questions

Finite de Finetti theorem?

Necessary and sufficient conditions for teleportation.

Other Protocols

Full security proof for Key Distribution?

Bit Commitment?

Which primitives uniquely characterize quantum

information?
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