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� Ontic state: a state of reality.

� ψ-ontic: the quantum state is ontic.

� Epistemic state: a state of knowledge or information.

� ψ-epistemic: the quantum state is epistemic.
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Bohr and Einstein: ψ-epistemicists
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Source: http://en.wikipedia.org/

There is no quantum world. There is only

an abstract quantum physical description. It is

wrong to think that the task of physics is to

find out how nature is. Physics concerns what

we can say about nature. — Niels Bohra

[t]he ψ-function is to be understood as

the description not of a single system but of

an ensemble of systems. — Albert Einsteinb

a
Quoted in A. Petersen, “The philosophy of Niels Bohr”, Bulletin of the

Atomic Scientists Vol. 19, No. 7 (1963)
b
P. A. Schilpp, ed., Albert Einstein: Philosopher Scientist (Open Court,

1949)
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It is often asserted that the state-vector is merely a convenient description

of ‘our knowledge’ concerning a physical system—or, perhaps, that the

state-vector does not really describe a single system but merely provides

probability information about an ‘ensemble’ of a large number of similarly

prepared systems. Such sentiments strike me as unreasonably timid

concerning what quantum mechanics has to tell us about the actuality of the

physical world. — Sir Roger Penrose1

Photo author: Festival della Scienza, License: Creative Commons generic 2.0 BY SA
1
R. Penrose, The Emperor’s New Mind pp. 268–269 (Oxford, 1989)
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ψ-epistemic ψ-ontic

Copenhagen

Anti-realist neo-Copenhagen

(e.g. QBism, Peres,

Zeilinger, Healey)

Einstein Dirac-von Neumann

Ballentine? Many worlds

Realist Spekkens Bohmian mechanics

Spontaneous collapse

? Modal interpretations
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� Collapse of the wavefunction

� Generalized probability theory

� Excess baggage
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� Interference

� Eigenvalue-eigenstate link

� Lack of imagination

� Quantum computing
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Preparation Measurement

|ψ〉 ∈ C
d M = {|a〉 , |b〉 , . . .}

Prob(a|ψ,M ) = |〈a|ψ〉|2
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Preparation Measurement

|ψ〉 ∈ C
d M = {|a〉 , |b〉 , . . .}

Prob(a|ψ,M ) = |〈a|ψ〉|2

λ

µψ

λ λ

1 ξMbξMa

Prob(a|ψ,M ) =
∫
ξMa (λ)dµψ
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An ontological model for Cd consists of:

� A measurable space (Λ,Σ).
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An ontological model for Cd consists of:

� A measurable space (Λ,Σ).

� For each state |ψ〉 ∈ C
d, a probability measure µψ : Σ → [0, 1].
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An ontological model for Cd consists of:

� A measurable space (Λ,Σ).

� For each state |ψ〉 ∈ C
d, a probability measure µψ : Σ → [0, 1].

� For each orthonormal basis M = {|a〉 , |b〉 , . . .}, a set of response

functions ξMa : Λ → [0, 1] satisfying

∀λ,
∑

|a〉∈M
ξMa (λ) = 1.
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An ontological model for Cd consists of:

� A measurable space (Λ,Σ).

� For each state |ψ〉 ∈ C
d, a probability measure µψ : Σ → [0, 1].

� For each orthonormal basis M = {|a〉 , |b〉 , . . .}, a set of response

functions ξMa : Λ → [0, 1] satisfying

∀λ,
∑

|a〉∈M
ξMa (λ) = 1.

The model is required to reproduce the quantum predictions, i.e.

∫

Λ
ξMa (λ)dµψ = |〈a|ψ〉|2 .
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� |ψ〉 and |φ〉 are ontologically distinct in an ontological model if there

exists Ω ∈ Σ s.t.

µψ(Ω) = 1 µφ(Ω) = 0.

µψ µφ µφµψ

Ω

λ λ

� An ontological model is ψ-ontic if every pair of states is ontologically

distinct. Otherwise it is ψ-epistemic.
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� The Colbeck-Renner theorem: R. Colbeck and R. Renner,

arXiv:1312.7353 (2013).

� Hardy’s theorem: L. Hardy, Int. J. Mod. Phys. B, 27:1345012 (2013)

arXiv:1205.1439

� The Pusey-Barrett-Rudolph theorem: M. Pusey et. al., Nature Physics,

8:475–478 (2012) arXiv:1111.3328
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|z+〉

~λ

ϕ

ϑ

p(θ)

S. Kochen and E. Specker, J. Math. Mech., 17:59–87 (1967)

µz+(Ω) =

∫

Ω
p(ϑ) sinϑdϑdϕ

p(ϑ) =

{

1
π
cosϑ, 0 ≤ ϑ ≤ π

2

0, π
2 < ϑ ≤ π

|ψ〉
|φ〉
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� Lewis et. al. provided a ψ-epistemic model for all finite d.

� P. G. Lewis et. al., Phys. Rev. Lett. 109:150404 (2012)

arXiv:1201.6554

� Aaronson et. al. provided a similar model in which every pair of

nonorthogonal states is ontologically indistinct.

� S. Aaronson et. al., Phys. Rev. A 88:032111 (2013)

arXiv:1303.2834

� These models have the feature that, for a fixed inner product, the

amount of overlap decreases with d.
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� Classical asymmetric overlap:

Ac(ψ, φ) := inf
{Ω∈Σ|µφ(Ω)=1}

µψ(Ω)

µφµψ

λAc(ψ, φ)

� An ontological model is maximally ψ-epistemic if

Ac(ψ, φ) = |〈φ|ψ〉|2
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� Classical symmetric overlap:

Sc(ψ, φ) := inf
Ω∈Σ

[µψ(Ω) + µφ(Λ\Ω)]

µφµψ

λSc(ψ, φ)

ΩΛ\Ω

� Optimal success probability of distinguishing |ψ〉 and |φ〉 if you know

λ:

pc(ψ, φ) =
1

2
(2− Sc(ψ, φ))
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� Classical symmetric overlap:

Sc(ψ, φ) := inf
Ω∈Σ

[µψ(Ω) + µφ(Λ\Ω)]

� Quantum symmetric overlap:

Sq(ψ, φ) := inf
0≤E≤I

[〈ψ|E |ψ〉+ 〈φ| (I − E) |φ〉]

� Optimal success probability of distinguishing |ψ〉 and |φ〉 based on a

quantum measurement:

pq(ψ, φ) =
1

2
(2− Sq(ψ, φ))
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� Classical overlap measures:

Sc(ψ, φ) ≤ Ac(ψ, φ)

� Quantum overlap measures:

� Sq(ψ, φ) = 1−
√

1− |〈φ|ψ〉|2

� Sq(ψ, φ) ≥ 1
2 |〈φ|ψ〉|

2

� Hence:
Sc(ψ, φ)

Sq(ψ, φ)
≤ 2

Ac(ψ, φ)

|〈φ|ψ〉|2
.
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� Define:

k(ψ, φ) =
Ac(ψ, φ)

|〈φ|ψ〉|2
.

� Maroney showed k(ψ, φ) < 1 for some states. ML and Maroney

showed this follows from KS theorem.

� Barrett et. al. exhibited a family of states in C
d such that, for d ≥ 4:

k(ψ, φ) ≤ 4

d− 1
.

� Today: k(ψ, φ) ≤ de−cd for d divisible by 4.
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� Example: Klyachko states

� |aj〉 = sinϑ cosϕj |0〉+ sinϑ sinϕj |1〉+ cosϑ |2〉
� ϕj =

4πj
5 and cosϑ = 1

4
√
5

O

|a0〉

|a1〉

|a2〉 |a3〉

|a4〉 |α2〉

|α1〉

|α0〉

|α3〉

|α4〉
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� The independence number α(G) of a graph G is the cardinality of the

largest subset of vertices such that no two vertices are connected by

an edge.

� Example: α(G) = 2

|a2〉

|a1〉

|a0〉

|a3〉

|a4〉
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Theorem: Let V be a finite set of states in C
d an let G = (V,E) be its

orthogonality graph. For |ψ〉 ∈ C
d define

k̄(ψ) =
1

|V |
∑

|a〉∈V
k(ψ, a).

Then, in any ontological model

k̄(ψ) ≤ α(G)

|V |min|a〉∈V |〈a|ψ〉|2
.
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� |aj〉 = sinϑ cosϕj |0〉+ sinϑ sinϕj |1〉+ cosϑ |2〉
� ϕj =

4πj
5 and cosϑ = 1

4
√
5

� |ψ〉 = |2〉

|a2〉

|a1〉

|a0〉

|a3〉

|a4〉

k̄(ψ) ≤ α(G)

5minj |〈aj |ψ〉|2
=

2

5× 1√
5

∼ 0.8944
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� For x = (x0, x1, . . . , xd−1) ∈ {0, 1}d, let

|ax〉 =
1√
d

d−1
∑

j=0

(−1)xj |j〉 .

� Let |ψ〉 = |0〉.
� By Frankl-Rödl theorem2, for d divisible by 4, there exists an ǫ > 0

such that α(G) ≤ (2− ǫ)d.

k̄(ψ) ≤ α(G)

2dmin
x∈{0,1}d |〈ax|ψ〉|2

=
(2− ǫ)d

2d × 1
d

= de−cd

c = ln 2− ln(2− ǫ)

2
P. Frankl and V. Rödl, Trans. Amer. Math. Soc. 300:259 (1987)
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Theorem: Let V be a finite set of states in C
d an let G = (V,E) be its

orthogonality graph. For |ψ〉 ∈ C
d define

k̄(ψ) =
1

|V |
∑

|a〉∈V
k(ψ, a).

Then, in any ontological model

k̄(ψ) ≤ α(G)

|V |min|a〉∈V |〈a|ψ〉|2
.
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� Let M be a covering set of bases for V .
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� Let M be a covering set of bases for V .

� For M ∈ M, let

ΓMa = {λ|ξMa (λ) = 1}
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� Let M be a covering set of bases for V .

� For M ∈ M, let

ΓMa = {λ|ξMa (λ) = 1}

� µa(Γ
M
a ) = 1 because

∫

Λ ξ
M
a (λ)dµa = |〈a|a〉|2 = 1.



Proof of main result:1

Introduction

Arguments for Epistemic

Quantum States

Ontological Models

ψ-ontology theorems

ψ-epistemic models

Overlap measures

Overlap bounds

Previous results

Orthogonality graphs

Independence number

Main result

Klyatchko bound

Exponential bound

Main result

Proof of main result:1

Proof of main result:2

Proof of main result:3

Contextuality

Conclusions

IQSA Olomouc 2014 – 35 / 46

� Let M be a covering set of bases for V .

� For M ∈ M, let

ΓMa = {λ|ξMa (λ) = 1}

� µa(Γ
M
a ) = 1 because

∫

Λ ξ
M
a (λ)dµa = |〈a|a〉|2 = 1.

� Let

ΓM
a = ∩{M∈M||a〉∈M}Γ

M
a
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� Let M be a covering set of bases for V .

� For M ∈ M, let

ΓMa = {λ|ξMa (λ) = 1}

� µa(Γ
M
a ) = 1 because

∫

Λ ξ
M
a (λ)dµa = |〈a|a〉|2 = 1.

� Let

ΓM
a = ∩{M∈M||a〉∈M}Γ

M
a

� µa(Γ
M
a ) = 1 also.
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� Let M be a covering set of bases for V .

� For M ∈ M, let

ΓMa = {λ|ξMa (λ) = 1}

� µa(Γ
M
a ) = 1 because

∫

Λ ξ
M
a (λ)dµa = |〈a|a〉|2 = 1.

� Let

ΓM
a = ∩{M∈M||a〉∈M}Γ

M
a

� µa(Γ
M
a ) = 1 also.

� Hence, Ac(ψ, a) = inf{Ω∈Σ|µa(Ω)=1} µψ(Ω) ≤ µψ(Γ
M
a )
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�

Ac(ψ, a) ≤ µψ(Γ
M
a )

∑

|a〉∈V
Ac(ψ, a) ≤

∑

a∈V
µψ(Γ

M
a )

� Let

χa(λ) =

{

1, λ ∈ ΓM
a

0, λ /∈ ΓM
a
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�

Ac(ψ, a) ≤ µψ(Γ
M
a )

∑

|a〉∈V
Ac(ψ, a) ≤

∑

a∈V
µψ(Γ

M
a )

� Let

χa(λ) =

{

1, λ ∈ ΓM
a

0, λ /∈ ΓM
a

� Then,

∑

a∈V
µψ(Γ

M
a ) =

∫

Λ

[

∑

a∈V
χa(λ)

]

dµψ ≤ sup
λ∈Λ

[

∑

a∈V
χa(λ)

]

.
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� If 〈a|b〉 = 0 then ΓMa ∩ ΓMb = ∅ because ξMa (λ) + ξMb (λ) ≤ 1.
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� If 〈a|b〉 = 0 then ΓMa ∩ ΓMb = ∅ because ξMa (λ) + ξMb (λ) ≤ 1.

� Hence, ΓM
a ∩ ΓM

b = ∅.
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� If 〈a|b〉 = 0 then ΓMa ∩ ΓMb = ∅ because ξMa (λ) + ξMb (λ) ≤ 1.

� Hence, ΓM
a ∩ ΓM

b = ∅.

� Hence, if λ ∈ ΓM
a then λ /∈ ΓM

b for any |b〉 ∈ V such that

(|a〉 , |b〉) ∈ E.
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� If 〈a|b〉 = 0 then ΓMa ∩ ΓMb = ∅ because ξMa (λ) + ξMb (λ) ≤ 1.

� Hence, ΓM
a ∩ ΓM

b = ∅.

� Hence, if λ ∈ ΓM
a then λ /∈ ΓM

b for any |b〉 ∈ V such that

(|a〉 , |b〉) ∈ E.

� Hence, supλ∈Λ
[
∑

a∈V χa(λ)
]

≤ α(G).
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� An ontological model for a set of bases M is Kochen-Specker

noncontextual if it is:

� Outcome deterministic: ξMa (λ) ∈ {0, 1}.

� Measurement noncontextual : ξMa = ξNa .
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� An ontological model for a set of bases M is Kochen-Specker

noncontextual if it is:

� Outcome deterministic: ξMa (λ) ∈ {0, 1}.

� Measurement noncontextual : ξMa = ξNa .

� In any ontological model Ac(ψ, φ) ≤ maxProbN.C.(φ|ψ,M)
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� An ontological model for a set of bases M is Kochen-Specker

noncontextual if it is:

� Outcome deterministic: ξMa (λ) ∈ {0, 1}.

� Measurement noncontextual : ξMa = ξNa .

� In any ontological model Ac(ψ, φ) ≤ maxProbN.C.(φ|ψ,M)

� Therefore, any KS contextuality inequality gives an overlap bound.
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� Summary

� There exist pairs of states such that k(ψ, φ) ≤ de−cd. The

ψ-epistemic explanations of indistinguishability, no-cloning, etc.

get implausible for these states very radpidly for large d.

� Any contextuality inequality can be used to derive an overlap

bound.

� Open questions

� Error analysis.

� Best bounds in small dimensions.

� Bounds with a fixed inner product.

� Connection to communication complexity.
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� Become neo-Copenhagen.

� Adopt a more exotic ontology:

� Nonstandard logics and probability theories.

� Ironic many-worlds.

� Retrocausality.

� Relationalism.
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� Become neo-Copenhagen.

� Adopt a more exotic ontology:

� Nonstandard logics and probability theories.

� Ironic many-worlds.

� Retrocausality.

� Relationalism.

� Explanatory conservatism: If there is a natural explanation for a

quantum phenomenon then we should adopt an interpretation that

incorporates it.

� Suggests exploring exotic ontologies.
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|ψ〉AB

M =

{

|αj〉A
}

N =

{

|βj〉B
}

� Parameter Independence:

� P (aj |M,N, λ) = P (aj |M,λ)

� P (bk|M,N, λ) = P (bk|N,λ)
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� Ontic indifference: If U |ψ〉 = |ψ〉 then all of the ontic states in the

support of µψ should be left invariant by U .

� Example: For a spin-1/2 particle, σX |x+〉 = |x+〉.

� But in Spekkens’ toy theory:

µx+σX µx+

σX



The PBR Theorem

Introduction

Arguments for Epistemic

Quantum States

Ontological Models

ψ-ontology theorems

ψ-epistemic models

Overlap measures

Overlap bounds

Conclusions

Extra Slides

The Colbeck-Renner

Theorem

Hardy’s Theorem

The PBR Theorem

IQSA Olomouc 2014 – 46 / 46

|ψ〉A

|φ〉B

{∣

∣αj
〉

AB

}

� The Preparation Independence Postulate:

� (ΛAB,ΣAB) = (ΛA × ΛB,ΣA ⊗ ΣB)

� µAB = µA × µB
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