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1 Introduction

Figure 1: Alice and Bob, separated by a wall, through which they can only interact via the two qubit
Hamiltonian H.[1]

Entanglement is a key rescource in many protocols in quantum information
theory. One of the central problems of entanglement theory is to quantify and
classify this rescource. Much work has been done on this for quantum states,
but recently similar ideas have begun to be applied to quantum operations.
The objective is to classify the ways in which operations can change the en-
tanglement properties of the states they act on and to provide some measure
of the amount of entangling interaction involved in the operation.

One of the main ways in which entanglement is quantified is by intercon-
vertability of rescources under local operations. For example, in the problem
considered here, Alice and Bob each have a qubit in a Hilbert space C2. Their
combined system is a state in the 2-qubit space C

2 ⊗ C
2. However, as shown

in fig. 1, they are separated by a wall and the only way their systems can
interact is via a Hamiltonian H, which is always present. They would like
to simulate the evolution that would occur if they had a different interaction
Hamiltonian H ′, but they are only allowed to perform operations on their own
systems.

In [3], we have found protocols for doing this with minimal time cost. We
showed that the efficiency is not reduced if Alice and Bob are only allowed
to peform unitary U(2) operations on their systems, so this is the restricted
case that is discussed here. We have solved the problem in terms of the
geometry of efficiently simulable Hamiltonians and showed that the results
can be succinctly characterised by a majorization like relation that provides
a partial order on 2-qubit Hamiltonians.



2 The 2-qubit simulation problem

Figure 2: Protocol for two qubit Hamiltonian simulation. The resulting evolution will be e−iH′t′

If Alice and Bob were to do nothing for a time t then the evolution of their
system due to H would be e−iHt. Instead of this, we allow them to perform
the protocol described below and shown in fig.2.

• Alice peforms operation ã1 ∈ U(2) on her qubit and Bob performs b̃1 ∈

U(2) on his.

• They allow the system to evolve under H for time t1.

• Alice peforms operation ã2 ∈ U(2) on her qubit and Bob performs b̃2 ∈
U(2) on his.

• They allow the system to evolve under H for time t2.

...

• Alice peforms operation ãN ∈ U(2) on her qubit and Bob performs b̃N ∈
U(2) on his.

• They allow the system to evolve under H for time tN .

• Alice peforms operation c̃ ∈ U(2) on her qubit and Bob performs d̃ ∈ U(2)
on his.

We assume that Alice and Bob can perform their local operations fast com-
pared to the timescale of the interaction.

The protocol results in an evolution that would have occured if some Hamil-
tonian H ′ were acting for a time t′. Setting t =

∑N
j=1 tj, we say that we have

simulated the action of H ′ acting for time t′ with efficiency t′/t. The resulting
evolution is given by

e−iH ′t′ =

(

N
∏

j=1

ãj ⊗ b̃je
−iHtj

)

c̃⊗ d̃ (1)



Additionaly, we require that the protocol must work with the same efficiency
for all t, so that it simulates the dynamics due to H ′ at all intermediate times
as well as resulting in e−iH ′t′.

Definition 1 H ′ is efficiently simulable by H (H ′ ≺S H) if there exists a
protocol with efficiency ≥ 1. If H ′ ≺S H and H ≺S H ′ then they are equivalent
H ′ ∼S H.

We are interested in solving the following two equivalent problems.

• The efficient simulation problem: given H, find all H ′ ≺S H.

• The optimal simulation problem: given H,H ′ find the maximal η such
that ηH ′ ≺S H and the protocol that achieves it. The maximal η is called
the optimal simulation factor ηH|H ′.

We have shown that every H is equivalent to its normal form which can be
written in terms of three parameters h1 ≥ h2 ≥ |h3| ≥ 0.

H ∼S

∑

j

hjσj ⊗ σj (2)

Thus, we only have to consider simulation of normal forms. We have also
shown that eq. (1) can be rewritten as

ηDH ′ =
N
∑

j=1

pjOjDHQj (3)

where Oj, Qj ∈ SO(3), η = t′/t is the efficiency of the protocol,
∑

j pj = 1
and

DH =





h1 0 0
0 h2 0
0 0 h3



 , DH ′ =





h′
1 0 0
0 h′

2 0
0 0 h′

3



 (4)

In addition each term OjDHQj can be taken to be diagonal. Thus, we can
represent every Hamiltonian as a real 3-dimensional vector h = (h1, h2, h3)
and determining the efficiently simulable h′ = (h′

1, h
′
2, h

′
3) becomes a problem

in convex geometry.



3 The structure of PH

Since each term OjDHQj in eq.(3) is diagonal, we can regard them as 3-
dimensional vectors. The set of allowed OjDHQj by contains at most 24
elements. Since the sum in eq.(3) is convex, the set of efficiently simulable
Hamiltonians is a polytope, denoted PH , with these elements as its vertices.
Fig. 3 shows PH for the generic case where h1 > h2 > h3 > 0.
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Figure 3: Structure of PH [2]

The interior of PH can be characterised by the following set of inequalities.

(x, y, z) ∈ PH iff























|x| ≤ h1 , |y| ≤ h1 , |z| ≤ h1

−(1− 2h3) ≤ +x+ y + z ≤ 1
−(1− 2h3) ≤ −x− y + z ≤ 1
−(1− 2h3) ≤ +x− y − z ≤ 1
−(1− 2h3) ≤ −x+ y − z ≤ 1

(5)

All Hamiltonians that lie within PH are efficiently simulable. The optimal
simulation problem can be solved by constructing the vector from the origin
to the boundary of PH that lies in the direction h′ = (h′

1, h
′
2, h

′
3). Detailed

analysis of this can be found in [3].



4 The s-majorization relation

It is possible to rewrite our results in terms of a majorization like relation,
which we call s-majorization (denoted ≺s). Thus, H ′ is efficiently simulable
using H iff h′ ≺s h. In terms of components, this means

h′
1 ≤ h1

h′
1 + h′

2 − h′
3 ≤ h1 + h2 − h3

h′
1 + h′

2 + h′
3 ≤ h1 + h2 + h3

(6)

Comments

• s-majorization is a partial order on the space of 2-qubit Hamiltonians.

• s-majorization implies the standard weak sub-majorization relation (h′ ≺w

h). Therefore, weak sub-majorization is a necessary, but not sufficient
condition for efficient simulation.

• In the case where sg(h′
3) = sg(h3) and h′

1 + h′
2 + h′

3 = h1 + h2 + h3,
majorization, weak sub-majorization and s-majorization are all equivalent.

• The optimal simulation factor is given by ηH|H ′ = maxη(ηH
′ ≺s H).



5 Conclusions

We have found the optimal simulation protocols for 2-qubit Hamiltonians and
shown that they lead to a partial order, which is similar to a majorization
relation. This provides a good starting point for the classification of entangle-
ment in operations. A natural next step would be to generalise this to higher
dimensional systems and to more than two parties. Some work has been done
on this and a few bounds are known.

Also, we would like to to connect this work to the case where we want to
simulate a particular unitary, but we don’t require that the entire dynamics
of H ′ is simulated. Another interesting direction would be to investigate the
robustness of these protocols to uncertainties in the Hamiltonian and the local
operations. Other related questions include quantifying the classical commu-
nication capacity of a Hamiltonian and the maximum possible entanglement
obtainable from an operation. Finally, generalisations to the case where we
have more than one copy of the Hamiltonian acting on different systems might
provide new measures of entanglement for operations.
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