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Quantum Theory as Generalized Probability

Classical Quantum

Algebra of R.V.’s on a sample space                .  Algebra of operators              on a Hilbert  
space       .

Probability distribution: Quantum State:

Expectation value: Expectation value:

Cartesian Product: Tensor Product:

Joint Distribution: Joint state:

Marginal Distn.: Partial Trace:

Stochastic transition map: TPCP map

Conditional Probability: ?

ρA ∈ B(HA)P (X)

〈X〉 = Tr (XρA)

ΩAB = ΩA × ΩB HAB = HA ⊗HB

〈X〉 =
∑

X

XP (X)

P (X, Y ) ρAB ∈ B(HAB)

ΓY |X EB|A : B(HA)→ B(HB)

P (Y |X) =
P (X, Y )
P (X)

(ΩA, SA) HA

B(HA)

P (X) =
∑

Y

P (X, Y ) ρA = TrB (ρAB)



Generalized Probability Theory

Quantum theory and classical probability are part of a more general theory, 
with            replaced by a more general      algebra.

In this talk, specialize to finite dimensional algebras of the form:

We are mainly interested in these two special cases:

Classical probability with a finite sample space

``Full’’ finite-dimensional quantum theory

B(H) C∗

O = B
(
Cd1 ⊕ Cd2 ⊕ . . .⊕ CdN

)

Oq,d = B(Cd)

Oc,d = B(C⊕d) = B(C⊕ C⊕ . . .⊕ C)



Why quantum conditional probability?

``Practical’’ Reasons:

Several probabilistic structures require cond. prob. or cond. independence 
for their definition, e.g. Markov Chains, Bayesian Networks.

Better understand the relationships between different qinfo tasks.

``Foundational” reasons:

QT is actually more like a generalized theory of stochastic process than 
abstract Kolmogorov probability.  Spacelike and timelike events are 
combined differently.

Cond. prob. is the missing notion that relates the two.  

Could be relevant to applying QT in the absence of background causal 
structure.
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1. Introduction: Uses of Cond. Prob.

(A) Reconstructing a joint distribution from a marginal

(B) Bayesian Updating

(C) Stochastic Dynamics

(D) Conditional Shannon Entropy

(E) Reduction of complexity via conditional independence

P (X, Y ) = P (Y |X)P (X)

P (H|D) =
P (D|H)P (H)

P (D)

P (Y ) =
∑

X

ΓY |XP (X)

H(Y |X) = H(X, Y )−H(X) = −
∑

X,Y

P (X, Y ) log2 P (Y |X)

P (Z|X, Y ) = P (Z|X)⇔ P (X, Y, Z) = P (X)P (Y |X)P (Z|X)



1. Introduction: Uses of Cond. Prob.

(A) Reconstructing a joint state from a marginal

(B) Updating a state after a measurement

(C) TPCP Dynamics

(D) Conditional von Neumann Entropy

(E) Reduction of complexity via conditional independence

Cerf & Adami achieve (A), (D), (E).  I achieve (A), (B), (C).

ρAB = f(ρA, ρB|A)

ρA →
E(j) (ρA)

Tr
(
E(j) (ρA)

)

ρB = EB|A(ρA)

S(B|A) = −Tr
(
ρAB log2 ρB|A

)



1. Introduction: Cerf & Adami

Cerf & Adami:  Let                               be a density operator, and define

(A) Reconstruction:

(C) Entropy:

(E) Complexity Reduction: 

ρAB ∈ OA ⊗OB

ρB|A = lim
n→∞

[
(ρA ⊗ IB)−

1
2n ρ

1
n
AB (ρA ⊗ IB)−

1
2n

]n

log2 ρB|A = log2 ρAB − log2 ρA ⊗ IB

S(B|A) = S(A,B)− S(A) = −Tr
(
ρAB log2 ρB|A

)

log2 ρC|AB = ρC|A ⊗ IB ⇔ log2 ρABC = log2 ρA ⊗ IB ⊗ IC + log2 ρB|A ⊗ IC + log2 ρC|A ⊗ IB

S(B : C|A) = S(C|A)− S(C|A,B) = 0

ρAB = 2log2 ρA⊗IB+log2 ρB|A



1.  Introduction: An Obvious Alternative

Let                               be a density operator, and define:

Properties:

        is a density operator on                   .

Maximally mixed on subsystem A:                                .

(A) Reconstruction:

ρB|A

TrB(ρB|A) =
PA

dr
A

ρAB = ρ
1
2
A ⊗ IBρABρ

1
2
A ⊗ IB

OA ⊗OB

ρAB ∈ OA ⊗OB

ρB|A = ρ
− 1

2
A ⊗ IBρABρ

− 1
2

A ⊗ IB



2.  Dynamics as Conditional Probability
5

X

(c)(b)(a)

YY

X

X

Z

Y

ΓY |X ΓX|Y ΓX|Z ΓY |Z

FIG. 1: Distinct ways in which a general joint probability distribution P (X, Y ) may arise. (a) X is the cause of Y . The
generation of Y must be in the temporal future of the generation of X. For example, Y may be the result of sending X through
a noisy channel described by a stochastic matrix ΓY |X . (b) Y is the cause of X. The generation of X must be in the temporal
future of the generation of Y . For example, X may be the result of sending Y through a noisy channel described by a stochastic
matrix ΓX|Y . (c) X and Y are the result of some common cause, described by a random variable Z. They may be observed at
spacelike separation from one another, provided the points where this happens are both in the forward lightcone of the point
where Z was generated.

In the quantum case, this is analogous to preparing a density operator ρA at t1 and then subjecting the system to
a dynamical evolution according to a TPCP map EB|A to obtain a density operator ρB = EB|A(ρA) at t2.

Classically, there is no reason not to consider the two-time joint probability distribution P (X, Y ) that results from
combining the preparation P (X) with the dynamics ΓY |X . To do this, we need only define the conditional distributions
P (Y |X), since the joint is then given by eq. (10). Comparing eq. (11) with eqs. (8) and (10), we see that setting

P (Y = i|X = j) = (ΓY |X)ij , (12)

for all i, j such that P (X = j) != 0 gives the desired result. In the quantum case, we do not ordinarily construct a
joint density operator on L(HA ⊗HB), which would be the analog of the joint probability P (X, Y ).

Note that, for a fixed preparation P (X), we may vary the dynamics arbitrarily for all values of X that have no
support in P (X), without affecting the conditional distribution P (Y |X), or the joint P (X, Y ). Conversely, knowing
P (Y |X) or P (X, Y ) only specifies the dynamics on the support of P (X).

The set of joint probability distributions obtainable in cases (a) and (c) are precisely the same, so we can define
an isomorphism between the pair of objects consisting of a preparation and a dynamics and the joint state of two
subsystems

(P (X),Γr
Y |X)↔ P (X, Y ). (13)

Here, Γr
Y |X refers to the restriction of the dynamics ΓY |X to the support of P (X), and is in one-to-one correspondence

with the conditional probability P (Y |X). The left-hand side of eq. (13) can be thought of as arising from scenario
(a), and the right-hand side from scenario (c). This may seem like an unnecessarily complicated restatement of what
is essentially the definition of conditional probability, but it is worth remarking upon because the new isomorphism
of §IV is the quantum analog of this. That is, we construct an isomorphism between the pair of objects consisting of
a preparation and a dynamics, and the joint state of two subsystems:

(ρA, Er
B|A)↔ τAB , (14)

where Er
B|A denotes the restriction of a TPCP map EB|A to the support of ρA. The object Er

B|A is to be thought of as
a quantum analog of conditional probability, playing the same role in the theory as Γr

Y |X does in classical probability.

IV. A NEW VARIANT OF THE JAMIO!LKOWSKI ISOMORPHISM

In this section, the new isomorphism is described. It is constructed and shown to be an an isomorphism in §IV A.
§IV B gives the operational interpretation of the isomorphism. Finally, §IV C and §IV D describe some properties of
the isomorphism that are exploited in the applications that follow.

Isomorphism:

P (Y ) =
∑

X

ΓY |XP (X)

P (X, Y ) = ΓY |XP (X)

P (Y |X) = Γr
Y |X

P (X, Y )

P (X) =
∑

Y

P (X, Y )

P (Y |X) =
P (X, Y )
P (X)(

P (X),Γr
Y |X

)
⇔ P (X, Y )



2. Dynamics as conditional probability

Isomorphism:                              ?

Source:

B

A

B

(c)(b)(a)

A

BA

EB|A EA|B

τAB

ρB = EB|A(ρA)

(
ρA, Er

B|A

)
⇔ τAB

ρAB =?

ρB|A =?

τAB

τA = TrB (τAB)

τB|A =?



3. Choi-Jamiolkowski Isomorphism

Recall: Kraus decomposition of CP-maps

For bipartite pure states and operators:

For mixed states and CP-maps:

EB|A : B(HA)→ B(HB)

EB|A(ρA) =
∑

µ

R(µ)
B|AρAR(µ)†

B|A
R(µ)

B|A : HA → HB

RB|A =
∑

jk

αjk |j〉B 〈k|A ⇔ |Ψ〉AB =
∑

jk

αjk |k〉A ⊗ |j〉B

R(µ)
B|A ⇔

∣∣∣Ψ(µ)
〉

EB|A ⇔ τAB =
∑

µ

∣∣∣Ψ(µ)
〉

AB

〈
Ψ(µ)

∣∣∣
AB



3. Choi-Jamiolkowski Isomorphism

Let 

Then

Operational interpretation: Noisy gate teleportation.

∣∣Φ+
〉

AA′ =
1√
dA

∑

j

|j〉A ⊗ |j〉A′

EB|A (ρA) = d2
A

〈
Φ+

∣∣
AA′ ρA ⊗ τA′B

∣∣Φ+
〉

AA′

τAB = IA ⊗ EB|A′
(∣∣Φ+

〉
AA′

〈
Φ+

∣∣
AA′

)



3. Choi-Jamiolkowski Isomorphism

Remarks:

Isomorphism is basis dependent.  A basis must be chosen to define                  .

If we restrict attention to Trace Preserving CP-maps then 

This is a special case of the isomorphism we want to construct

where                   .

∣∣Φ+
〉

AA′

τA = TrB(τAB) =
IA

dA

(
ρA, Er

B|A

)
⇔ τAB

ρA =
IA

dA



4. A New Isomorphism

                            direction:

Instead of                   use 

Then

                           direction:

Set 

Let

          satisfies

Hence, it is uniquely associated to a TPCP map via the Choi-Jamiolkowski 
isomorphism. 

τAB = IA ⊗ Er
B|A′ (|Φ〉AA′ 〈Φ|AA′)

τAB →
(
ρA, Er

B|A

)

ρA = τT
A , τA = TrB (τAB)

(
ρA, Er

B|A

)
→ τAB

∣∣Φ+
〉

AA′
|Φ〉AA′ =

(
ρT

A

) 1
2 ⊗ IA′

∣∣Φ+
〉

AA′

τB|A = τ
− 1

2
A ⊗ IBτABτ

− 1
2

A ⊗ IB

TrB

(
τB|A

)
=

PA

dr
A

Er
B|A : B(PAHA)→ B(HB)

τB|A



4. A New Isomorphism 7

(b)

(a)

BA

B

AA

B

(c)

Source: τAB

τA

τAB

τA

Er
B|A

ρA = τT
A

FIG. 2: In these diagrams, time flows up the page. Starting from (a), the space and time axes are interchanged and the diagram
is “stretched out” to arrive at (b). This does not describe a possible experiment, since we cannot send system A backwards in
the time direction. In order to arrive at a feasible experiment, some arrows must be reversed, giving rise to (c). The transpose
on τA is an artifact of this time reversal.

has support on the subspace that PA projects onto, so the state |Φ〉AA′ obtained will be the same. The action of
Er

B|A′ is well defined on |Φ+〉rAA′ and the two steps of the construction commute, so that the CP-map can be applied

to |Φ+〉rAA′ , followed by conjugation with
(
ρT

A

) 1
2 , without affecting the resulting state τAB . The state |Φ+〉rAA′ is

maximally entangled on the subspace PAHA ⊗PAHA, and so the state σAB = IA ⊗ Er
B|A′(|Φ+〉r 〈Φ+|rAA′) is the state

one would have obtained from applying the standard Jamio#lkowski isomorphism to Er
B|A. On applying the reverse

construction, the same state σAB is obtained in eq. (18), and because states and maps are uniquely related by the
standard isomorphism, the map Er

B|A that we started with is recovered from this procedure.

B. Operational Interpretation

Unlike the standard Jamio#lkowski isomorphism, the new isomorphism does not have an immediate operational
interpretation in terms of noisy gate teleportation. However, there is a sense in which τAB and the pair (ρA, Er

B|A)
are operationally indistinguishable. To understand this, we need to recall the role of Positive Operator Valued
Measures (POVMs) in describing generalized quantum measurements [1], and explain their correspondence to ensemble
preparations of density operators.

A POVM is a set of positive operators that sum to the identity. Here, POVMs are denoted by upper-case letters
M,N, . . .. The operators within a POVM are denoted by the corresponding boldface letter, e.g. M = {M (m)}, where
the superscript m is a positive integer used to distinguish the operators within POVM.

POVMs are normally used to compute the probabilities for the possible outcomes of generalized measurements. Let
the possible outcomes be labeled by the same integers as the POVM elements, so that the generalized Born rule is

P (M = m) = Tr
(
M (m)ρ

)
. (22)

Note that the symbol M , which stands for a collection of operators, is also being used to denote the random variable
generated by the measurement. It should be clear from the context which of the two meanings is being referred to.



5. Operational Interpretation

Reminder about measurements:  

POVM: 

Probability Rule:

Update CP-map:

        depends on details of system-measuring device interaction.

M = {M}, M > 0,
∑

M

M = I

EM (ρ) =
∑

j

AM
j ρAM†

j

∑

j

AM†
j AM

j = M

ρ|M =
EM (ρ)

Tr (Mρ)

P (M) = Tr (Mρ)

EM



5. Operational Interpretation

Lemma:                               is an ensemble decomposition of a 

density matrix     iff there is a POVM                     s.t.

                                           and

Proof sketch:  Set

ρ =
∑

M

P (M)ρ|M

M = {M}ρ

P (M) = Tr (Mρ)

M = P (M)ρ−
1
2 ρ|Mρ−

1
2

ρ|M =
√

ρM
√

ρ

Tr (Mρ)



5. Operational Interpretation

      -measurement of  

Input:               

Measurement probabilities: 

Updated state:

      -preparation of

Input:  Generate a classical r.v. with p.d.f

Prepare the corresponding state:

M

ρ

ρ

M

M ρ

ρ

M ρ

P (M) = Tr (Mρ)

P (M) = Tr (Mρ)

ρ|M =
√

Mρ
√

M

Tr (Mρ)

ρ|M =
√

ρM
√

ρ

Tr (Mρ)



5. Operational Interpretation 9

(a)

A B

NM

B

A

M

N

(b) (c)

M

B

A

N

M -measurement N -measurement

τAB

τA

M -measurement

τA

τAB

N -measurement

MT -preparation

ρA = τT
A

Er
B|A

N -measurement

FIG. 3: This figure represents the same experiments as fig. 2, with the addition of measurements and preparations. (a) is
obtained by simply adding M and N -measurements to fig. 2(a). In (b), the space and time axes have been swapped and
the diagram has been “stretched out”. As with fig. 2(b) this does not represent a possible experiment. To obtain a feasible
experiment, in addition to the transformations of fig. 2, the M -measurement must be transformed into a preparation, leading
to (c). The transpose is an artifact of this time-reversal.

where σAB is the state defined in eq. (18). Since σAB = IA ⊗ Er
B|A′

(
|Ψ+〉r 〈Ψ+|rAA′

)
, this gives

P (M,N) = Tr



τ
1
2

A MAτ
1
2

A ⊗ NB
1

dr
A

dr
A∑

j,k=1

|j〉 〈k|A ⊗ Er
B|A (|j〉 〈k|A)



 . (27)

Rearranging then gives

P (M,N) =
dr

A∑

j,k=1

〈k| τ
1
2

A MAτ
1
2

A |j〉 〈k|R(µ)†
B|ANBR(µ)

B|A |j〉 (28)

=
dr

A∑

j=1

〈j| (τ
1
2

A )T MT
A (τ

1
2

A )T

dr
A∑

k=1

|k〉 〈k|R(µ)†
B|ANBR(µ)

B|A |j〉 . (29)

Now, τT
A = ρA and

∑dr
A

k=1 |k〉 〈k| = PA, where PA is the projector onto the support of ρA, so

P (M,N) =
dr

A∑

j=1

〈j| ρ
1
2
AMT

A ρ
1
2
APAR(µ)†

B|ANBR(µ)
B|A |j〉 . (30)

is the same in (a) and (c) for 
any POVMs       and      .

P (M,N)
M N



6. Application: Broadcasting & Monogamy

For any TPCP map                                                    the reduced 
maps are:

The following commutativity properties hold:

Therefore, 2 states                     incompatible with being the 
reduced states of a global state          .

2 reduced maps                   incompatible with being the reduced 
maps of a global map           .

EB|A = TrC ◦ EBC|A EC|A = TrB ◦ EBC|A

10

However, ρ
1
2
APAR(µ)†

B|A = ρ
1
2
AR(µ)†

B|A, since R(µ)
B|A is only defined on the support of ρA. Substituting this and rearranging

gives

P (M,N) = TrB



NBR(µ)
B|A

dr
A∑

j=1

|j〉 〈j|A ρ
1
2
AMT

A ρ
1
2
AR(µ)†

B|A



 . (31)

Now again
∑dr

A
j=1 |j〉 〈j|A = PA and R(µ)

B|APAρ
1
2
A = R(µ)

B|Aρ
1
2
A, so

P (M,N) = TrB

(
NBEr

B|A

(
ρ

1
2
AMT

A ρ
1
2
A

))
(32)

= Q(M,N). (33)

C. Commutativity properties of the isomorphism

Two commutativity of the isomorphism are useful for the applications that follow. Firstly, the isomorphism com-
mutes with the partial trace for tripartite states. To describe this, it is useful to introduce the concept of a reduced
map.

Definition IV.4. For a linear map EBC|A : L(HA) → L(HB ⊗HC). The reduced map EB|A : L(HA) → L(HB) is
given by composing the map with the partial trace, i.e. EB|A = TrC ◦ EB|A.

Starting with a pair (ρA, Er
BC|A), the isomorphism can be used to arrive at a tripartite state τABC , and then the

partial trace over C gives the bipartite reduced state τAB . This is the same bipartite state that one obtains by
applying the isomorphism to the pair (ρA, Er

B|A). This is summarized in the following diagram:

ρABC (ρA, Er
BC|A)

TrC

*
*TrC

ρAB (ρA, Er
B|A).

(34)

The second commutativity property concerns M -measurements. Starting with a pair (ρA, Er
B|A), the isomorphism

can be used to arrive at a bipartite state τAB , and then an M -measurement can be applied to system A, giving a
bipartite state

√
MA⊗IBτAB

√
MA⊗IB , where the normalization factor has been admitted. This is the same bipartite

state that one obtains by first performing an MT -measurement on ρA to obtain the pair (
√

M
T
AρA

√
M

T
A, Er

B|A), and
then applying the isomorphism. This is summarized in the following diagram:

τAB (ρA, Er
B|A)

MA-measurement

*
*MT

A -measurement

√
MA ⊗ IBτAB

√
MA ⊗ IB (

√
M

T
AρA

√
M

T
A, Er

B|A)

(35)

These commutativity properties are straightforward to prove from the definition of the isomorphism, and so the
proofs are omitted here.

D. Remarks

As with the standard isomorphism, the new construction depends on the basis chosen for |Φ+〉AA′ . The forward
direction takes a particularly simple form if this is chosen to be an eigenbasis of ρA, since this basis is then a Schmidt
basis for |Φ〉AA′ . Let ρA =

∑
j λj |j〉 〈j|A be an eigendecomposition of ρA. Then eq. (15) can be written as

|Φ〉AA′ =
∑

j

√
λj |j〉A ⊗ |j〉A′ , (36)

ρAB , ρAC

ρABC

Er
B|A, Er

C|A
Er

BC|A

EBC|A : B(HA)→ B(HA ⊗HC)



6. Application: Broadcasting & Monogamy

A TPCP-map                                                          is broadcasting 
for a state        if

A TPCP-map                                                         is cloning for a 
state        if

Note: For pure states cloning = broadcasting.

A TPCP-map is universal broadcasting if it is broadcasting for 
every state.

EA′|A (ρA) = ρA′ EA′′|A (ρA) = ρA′′

EA′A′′|A (ρA) = ρA′ ⊗ ρA′′

ρA

EA′A′′|A : B(HA)→ B(HA′ ⊗HA′′)

EA′A′′|A : B(HA)→ B(HA′ ⊗HA′′)
ρA



6. Application: Broadcasting & Monogamy

No cloning theorem (Dieks ’82, Wootters & Zurek ‘82):

There is no map that is cloning for two nonorthogonal and nonidentical pure 
states.

No broadcasting theorem (Barnum et. al. ‘96):

There is no map that is broadcasting for two noncommuting density operators.

Clearly, this implies no universal broadcasting as well.

Note that the maps                     are valid individually, but they 
cannot be the reduced maps of a global map            .

EA′|A, EA′′|A
EA′A′′|A



6. Application: Broadcasting & Monogamy

The maps                     must be related to incompatible states         

Theorem: If                   is universal broadcasting, then both                      
must be pure and maximally entangled.

Ensemble broadcasting                                      s.t. 

Theorem: There is a local operation on     that transforms both     
and            into pure, entangled states with nonzero probability 
of success.   

EA′|A, EA′′|A
τAA′ , τAA′′

EA′A′′|A τAA′ , τAA′′

{(p, ρ1), ((1− p), ρ2)} [ρ1, ρ2] != 0

(
pρ1 + (1− p)ρ2, Er

A′A′′|A

)
⇔ τAA′A′′

A τAA′

τAA′′



7. Future Directions

Quantitative relations between approximate ensemble 
broadcasting and monogamy inequalities for entanglement.

Dynamics of systems initially correlated with the environment. 

Quantum pooling (joint work with R. Spekkens).

How are the different analogs of conditional probability related?

Is their a heirarchy of conditional independence relations?

Can quantum theory be formulated using an analog of conditional 
probability as the fundamental notion?


