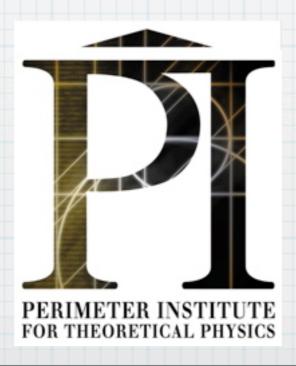
Quantum Pynamics as Generalized Conditional Probabilities

quant-ph/0606022

M. S. Leifer University of Guelph (19th September 2006)



Quantum Theory as Generalized Probability

Classical	Quantum
Algebra of R.V.'s on a sample space (Ω_A, S_A) .	Algebra of operators $\mathfrak{B}(\mathcal{H}_A)$ on a Hilbert space \mathcal{H}_A .
Probability distribution: $P(X)$	Quantum State: $ ho_A \in \mathfrak{B}(\mathcal{H}_A)$
Expectation value: $\langle X \rangle = \sum_X X P(X)$	Expectation value: $\langle X angle = { m Tr}(X ho_A)$
Cartesian Product: $\Omega_{AB}=\Omega_A imes\Omega_B$	Tensor Product: $\mathcal{H}_{AB}=\mathcal{H}_{A}\otimes\mathcal{H}_{B}$
Joint Distribution: $P(X,Y)$	Joint state: $ ho_{AB}\in \mathfrak{B}(\mathcal{H}_{AB})$
Marginal Distn.: $P(X) = \sum_{Y} P(X, Y)$	Partial Trace: $ ho_A = { m Tr}_B \left(ho_{AB} ight)$
Stochastic transition map: $\Gamma_{Y X}$	TPCP map $\mathcal{E}_{B A}:\mathfrak{B}(\mathcal{H}_A) o\mathfrak{B}(\mathcal{H}_B)$
Conditional Probability: $P(Y X) = \frac{P(X,Y)}{P(X)}$	7

Generalized Probability Theory

* Quantum theory and classical probability are part of a more general theory, with $\mathfrak{B}(\mathcal{H})$ replaced by a more general C^* algebra.

* In this talk, specialize to finite dimensional algebras of the form:

$$\mathfrak{O}=\mathfrak{B}\left(\mathbb{C}^{d_1}\oplus\mathbb{C}^{d_2}\oplus\ldots\oplus\mathbb{C}^{d_N}
ight)$$

- * We are mainly interested in these two special cases:
 - * Classical probability with a finite sample space

$$\mathfrak{O}_{c,d} = \mathfrak{B}(\mathbb{C}^{\oplus d}) = \mathfrak{B}(\mathbb{C} \oplus \mathbb{C} \oplus \ldots \oplus \mathbb{C})$$

* "Full" finite-dimensional quantum theory

$$\mathfrak{O}_{q,d}=\mathfrak{B}(\mathbb{C}^d)$$

Why quantum conditional probability?

* "Practical" Reasons:

- * Several probabilistic structures require cond. prob. or cond. independence for their definition, e.g. Markov Chains, Bayesian Networks.
- * Better understand the relationships between different qinfo tasks.

* "Foundational" reasons:

- * QT is actually more like a generalized theory of stochastic process than abstract Kolmogorov probability. Spacelike and timelike events are combined differently.
- * Cond. prob. is the missing notion that relates the two.
- Could be relevant to applying QT in the absence of background causal structure.

Outline

- 1. Introduction
- 2. Stochastic Dynamics as Conditional Probability
- 3. Choi-Jamiolkowski Isomorphism
- 4. A New Isomorphism
- 5. Operational Interpretation
- 6. Application: Cloning, broadcasting & monogamy of entanglement
- 7. Future Directions

1. Introduction: Uses of Cond. Prob.

(A) Reconstructing a joint distribution from a marginal

$$P(X,Y) = P(Y|X)P(X)$$

(B) Bayesian Updating

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

(C) Stochastic Dynamics

$$P(Y) = \sum_{X} \Gamma_{Y|X} P(X)$$

(D) Conditional Shannon Entropy

$$H(Y|X) = H(X,Y) - H(X) = -\sum_{X,Y} P(X,Y) \log_2 P(Y|X)$$

(E) Reduction of complexity via conditional independence

$$P(Z|X,Y) = P(Z|X) \Leftrightarrow P(X,Y,Z) = P(X)P(Y|X)P(Z|X)$$

1. Introduction: Uses of Cond. Prob.

(A) Reconstructing a joint state from a marginal

$$\rho_{AB} = f(\rho_A, \rho_{B|A})$$

(B) Updating a state after a measurement

$$\rho_A \to \frac{\mathcal{E}^{(j)}(\rho_A)}{\operatorname{Tr}\left(\mathcal{E}^{(j)}(\rho_A)\right)}$$

- (C) TPCP Dynamics $\rho_B = \mathcal{E}_{B|A}(\rho_A)$
- (D) Conditional von Neumann Entropy

$$S(B|A) = -\text{Tr}\left(\rho_{AB}\log_2 \rho_{B|A}\right)$$

- Reduction of complexity via conditional independence
- * Cerf & Adami achieve (A), (D), (E). I achieve (A), (B), (C).

1. Introduction: Cerf & Adami

* Cerf & Adami: Let $ho_{AB}\in \mathfrak{O}_A\otimes \mathfrak{O}_B$ be a density operator, and define

$$\rho_{B|A} = \lim_{n \to \infty} \left[(\rho_A \otimes I_B)^{-\frac{1}{2n}} \rho_{AB}^{\frac{1}{n}} (\rho_A \otimes I_B)^{-\frac{1}{2n}} \right]^n$$

$$\log_2 \rho_{B|A} = \log_2 \rho_{AB} - \log_2 \rho_A \otimes I_B$$

- * (A) Reconstruction: $ho_{AB} = 2^{\log_2
 ho_A \otimes I_B + \log_2
 ho_{B|A}}$
- * (C) Entropy:

$$S(B|A) = S(A,B) - S(A) = -\operatorname{Tr}\left(\rho_{AB}\log_2\rho_{B|A}\right)$$

* (E) Complexity Reduction:

$$\log_2 \rho_{C|AB} = \rho_{C|A} \otimes I_B \Leftrightarrow \log_2 \rho_{ABC} = \log_2 \rho_A \otimes I_B \otimes I_C + \log_2 \rho_{B|A} \otimes I_C + \log_2 \rho_{C|A} \otimes I_B$$

$$S(B:C|A) = S(C|A) - S(C|A,B) = 0$$

1. Introduction: An Obvious Alternative

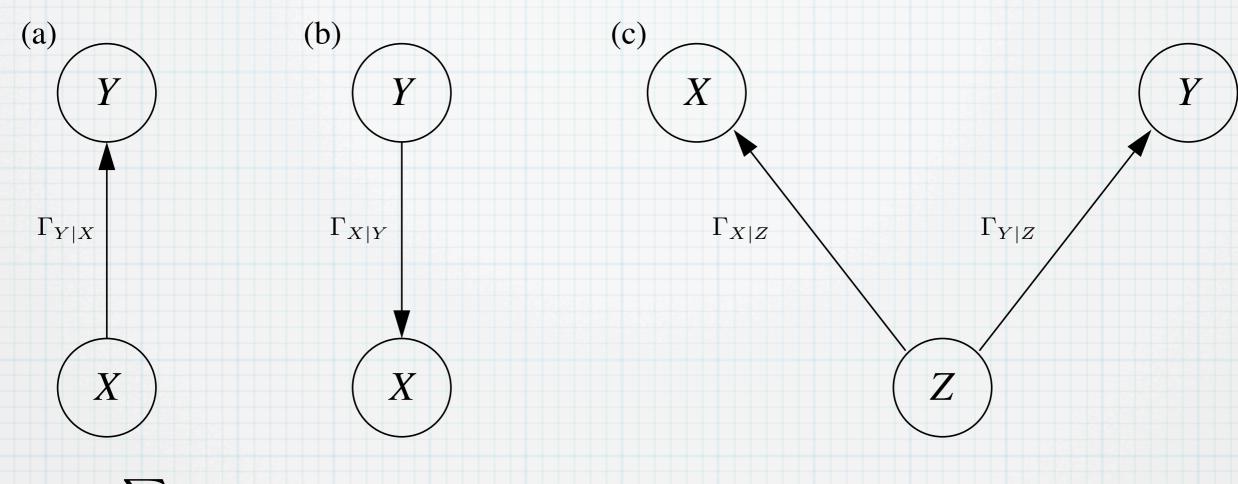
* Let $\rho_{AB} \in \mathfrak{O}_A \otimes \mathfrak{O}_B$ be a density operator, and define:

$$\rho_{B|A} = \rho_A^{-\frac{1}{2}} \otimes I_B \rho_{AB} \rho_A^{-\frac{1}{2}} \otimes I_B$$

- * Properties:
 - * $ho_{B|A}$ is a density operator on $\mathfrak{O}_A\otimes\mathfrak{O}_B$.
 - * Maximally mixed on subsystem A: ${
 m Tr}_B(
 ho_{B|A})=rac{P_A}{d_A^r}.$
- * (A) Reconstruction:

$$\rho_{AB} = \rho_A^{\frac{1}{2}} \otimes I_B \rho_{AB} \rho_A^{\frac{1}{2}} \otimes I_B$$

2. Dynamics as Conditional Probability



$$P(Y) = \sum_{X} \Gamma_{Y|X} P(X)$$

$$P(X,Y) = \Gamma_{Y|X} P(X)$$

$$P(X) = \sum_{Y} P(X,Y)$$

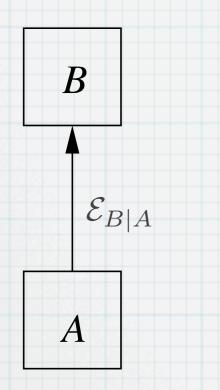
$$P(Y|X) = \Gamma_{Y|X}^{r}$$

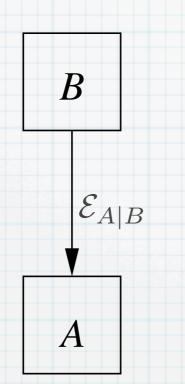
$$P(Y|X) = \frac{P(X,Y)}{P(X)}$$

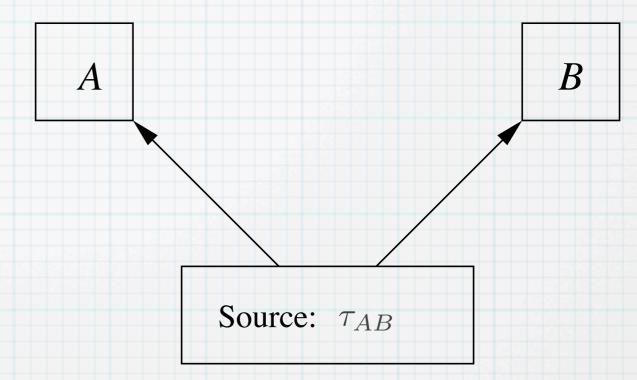
Isomorphism: $\left(P(X), \Gamma_{Y|X}^r\right) \Leftrightarrow P(X, Y)$

2. Dynamics as conditional probability

(a) (b) (c)







$$\rho_B = \mathcal{E}_{B|A}(\rho_A)$$

$$\rho_{AB} = ?$$

$$\rho_{B|A} = ?$$

Isomorphism: $\left(
ho_A, \mathcal{E}^r_{B|A} \right) \Leftrightarrow au_{AB}$?

3. Choi-Jamiolkowski Isomorphism

* Recall: Kraus decomposition of CP-maps $\mathcal{E}_{B|A}:\mathfrak{B}(\mathcal{H}_A) o\mathfrak{B}(\mathcal{H}_B)$

$$\mathcal{E}_{B|A}(\rho_A) = \sum_{\mu} R_{B|A}^{(\mu)} \rho_A R_{B|A}^{(\mu)\dagger} \qquad \qquad R_{B|A}^{(\mu)} : \mathcal{H}_A \to \mathcal{H}_B$$

* For bipartite pure states and operators:

$$R_{B|A} = \sum_{jk} \alpha_{jk} |j\rangle_B \langle k|_A \Leftrightarrow |\Psi\rangle_{AB} = \sum_{jk} \alpha_{jk} |k\rangle_A \otimes |j\rangle_B$$

* For mixed states and CP-maps:

$$R_{B|A}^{(\mu)} \Leftrightarrow \left| \Psi^{(\mu)} \right\rangle \qquad \qquad \mathcal{E}_{B|A} \Leftrightarrow \tau_{AB} = \sum_{\mu} \left| \Psi^{(\mu)} \right\rangle_{AB} \left\langle \Psi^{(\mu)} \right|_{AB}$$

3. Choi-Jamiolkowski Isomorphism

* Let
$$\left|\Phi^+\right\rangle_{AA'}=rac{1}{\sqrt{d_A}}\sum_{j}\left|j\right\rangle_{A}\otimes\left|j\right\rangle_{A'}$$

* Then
$$au_{AB}=\mathcal{I}_A\otimes\mathcal{E}_{B|A'}\left(\left|\Phi^+\right\rangle_{AA'}\left\langle\Phi^+\right|_{AA'}\right)$$

$$\mathcal{E}_{B|A}(\rho_A) = d_A^2 \left\langle \Phi^+ \big|_{AA'} \rho_A \otimes \tau_{A'B} \left| \Phi^+ \right\rangle_{AA'} \right.$$

* Operational interpretation: Noisy gate teleportation.

3. Choi-Jamiolkowski Isomorphism

* Remarks:

- * Isomorphism is basis dependent. A basis must be chosen to define $\ket{\Phi^+}_{AA'}$
- * If we restrict attention to Trace Preserving CP-maps then

$$\tau_A = \text{Tr}_B(\tau_{AB}) = \frac{I_A}{d_A}$$

* This is a special case of the isomorphism we want to construct

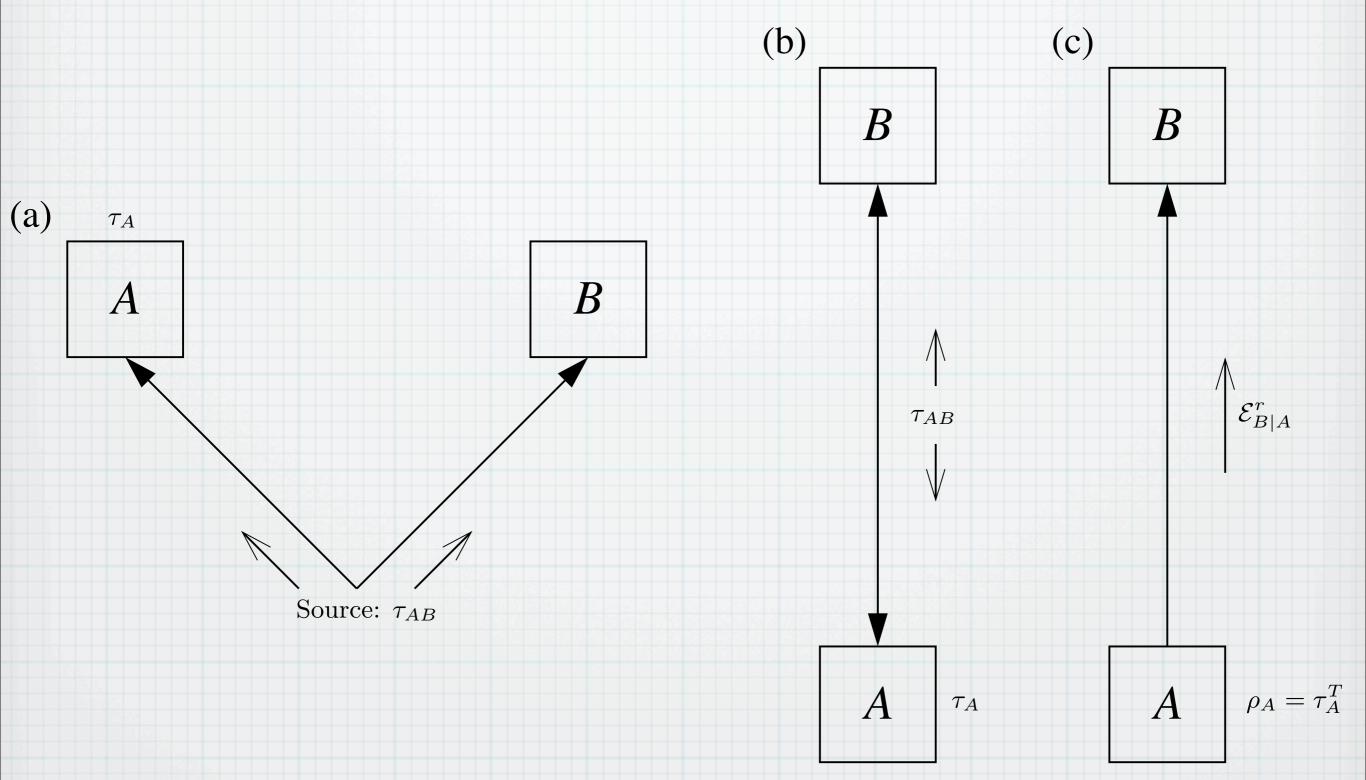
$$\left(\rho_A, \mathcal{E}^r_{B|A}\right) \Leftrightarrow \tau_{AB}$$

where
$$ho_A=rac{I_A}{d_A}$$
 .

4. A New Isomorphism

- * $\left(\rho_A, \mathcal{E}^r_{B|A}\right) \to au_{AB}$ direction:
 - * Instead of $\ket{\Phi^+}_{AA'}$ use $\ket{\Phi}_{AA'} = \left(\rho_A^T\right)^{\frac{1}{2}} \otimes I_{A'} \ket{\Phi^+}_{AA'}$
 - * Then $au_{AB}=\mathcal{I}_{A}\otimes\mathcal{E}^{r}_{B|A'}\left(|\Phi
 angle_{AA'}\left\langle\Phi|_{AA'}
 ight)$
- * $au_{AB}
 ightarrow \left(
 ho_A, \mathcal{E}^r_{B|A}
 ight)$ direction:
 - * Set $\rho_A = \tau_A^T$, $\tau_A = \operatorname{Tr}_B(\tau_{AB})$
 - * Let $au_{B|A}= au_A^{-rac{1}{2}}\otimes I_B au_{AB} au_A^{-rac{1}{2}}\otimes I_B$
 - * $au_{B|A}$ satisfies $\operatorname{Tr}_B\left(au_{B|A}\right) = rac{P_A}{d_A^r}$
 - Hence, it is uniquely associated to a TPCP map via the Choi-Jamiolkowski isomorphism. $\mathcal{E}^r_{B|A}:\mathfrak{B}(P_A\mathcal{H}_A) o\mathfrak{B}(\mathcal{H}_B)$

4. A New Isomorphism



* Reminder about measurements:

* POVM:
$$M = \{M\}, M > 0, \sum_{M} M = I$$

- * Probability Rule: $P(M) = \operatorname{Tr}(\boldsymbol{M}\rho)$
- * Update CP-map: $ho_{|M} = rac{\mathcal{E}^M(
 ho)}{{
 m Tr}\,(oldsymbol{M}
 ho)}$

$$\mathcal{E}^{M}(\rho) = \sum_{j} A_{j}^{M} \rho A_{j}^{M\dagger}$$

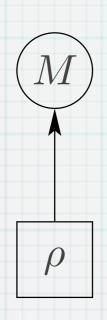
$$\sum_{j} A_{j}^{M\dagger} A_{j}^{M} = M$$

* \mathcal{E}^M depends on details of system-measuring device interaction.

* Lemma: $\rho=\sum_M P(M)\rho_{|M}$ is an ensemble decomposition of a density matrix ρ iff there is a POVM $M=\{M\}$ s.t.

$$P(M) = \operatorname{Tr}(\boldsymbol{M}\rho)$$
 and $\rho_{|M} = \frac{\sqrt{\rho} \boldsymbol{M} \sqrt{\rho}}{\operatorname{Tr}(\boldsymbol{M}\rho)}$

* Proof sketch: Set $M=P(M)\rho^{-\frac{1}{2}}\rho_{|M}\rho^{-\frac{1}{2}}$



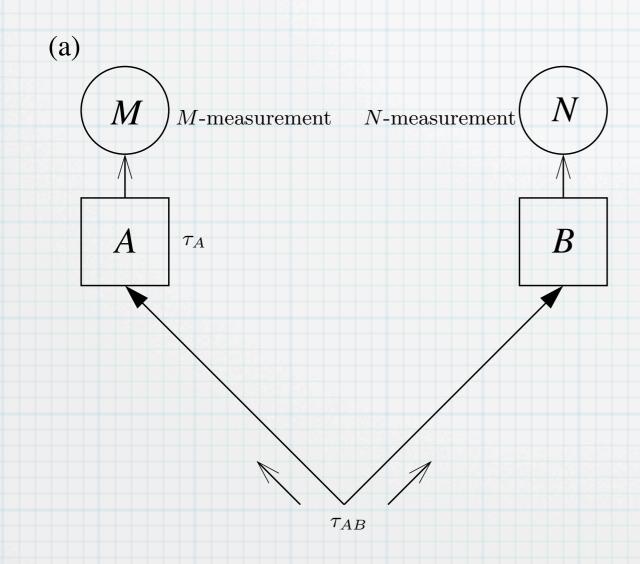
- * M-measurement of ρ
 - * Input: P
 - * Measurement probabilities: $P(M) = \operatorname{Tr}(M\rho)$
 - * Updated state: $\rho_{|M} = \frac{\sqrt{M}\rho\sqrt{M}}{\mathrm{Tr}\left(M\rho\right)}$

- * M-preparation of ho
 - * Input: Generate a classical r.v. with p.d.f

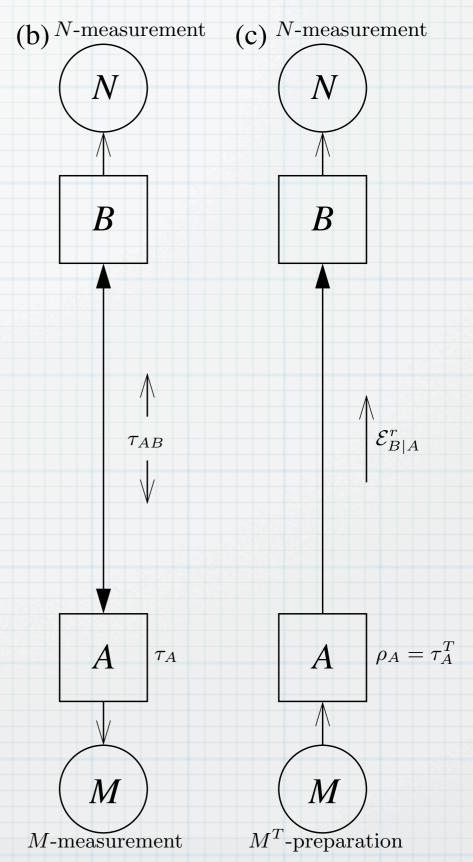
$$P(M) = \operatorname{Tr}(\boldsymbol{M}\rho)$$

* Prepare the corresponding state:

$$ho_{|M} = rac{\sqrt{
ho} M \sqrt{
ho}}{\mathrm{Tr}\left(M
ho
ight)}$$



P(M,N) is the same in (a) and (c) for any POVMs M and N.



* For any TPCP map $\mathcal{E}_{BC|A}:\mathfrak{B}(\mathcal{H}_A) o\mathfrak{B}(\mathcal{H}_A\otimes\mathcal{H}_C)$ the reduced maps are:

$$\mathcal{E}_{B|A} = \operatorname{Tr}_C \circ \mathcal{E}_{BC|A} \qquad \mathcal{E}_{C|A} = \operatorname{Tr}_B \circ \mathcal{E}_{BC|A}$$

* The following commutativity properties hold:

$$\rho_{ABC} = (\rho_A, \mathcal{E}^r_{BC|A})$$

$$\operatorname{Tr}_C \downarrow \qquad \qquad \downarrow \operatorname{Tr}_C$$

$$\rho_{AB} = (\rho_A, \mathcal{E}^r_{B|A}).$$

- * Therefore, 2 states ρ_{AB}, ρ_{AC} incompatible with being the reduced states of a global state ρ_{ABC} .
- * 2 reduced maps $\mathcal{E}^r_{B|A}, \mathcal{E}^r_{C|A}$ incompatible with being the reduced maps of a global map $\mathcal{E}^r_{BC|A}$.

* A TPCP-map $\mathcal{E}_{A'A''|A}:\mathfrak{B}(\mathcal{H}_A) o\mathfrak{B}(\mathcal{H}_{A'}\otimes\mathcal{H}_{A''})$ is broadcasting for a state ρ_A if

$$\mathcal{E}_{A'|A}(\rho_A) = \rho_{A'}$$
 $\mathcal{E}_{A''|A}(\rho_A) = \rho_{A''}$

* A TPCP-map $\mathcal{E}_{A'A''|A}:\mathfrak{B}(\mathcal{H}_A) o\mathfrak{B}(\mathcal{H}_{A'}\otimes\mathcal{H}_{A''})$ is cloning for a state ρ_A if

$$\mathcal{E}_{A'A''|A}(\rho_A) = \rho_{A'} \otimes \rho_{A''}$$

- * Note: For pure states cloning = broadcasting.
- * A TPCP-map is universal broadcasting if it is broadcasting for every state.

- * No cloning theorem (Dieks '82, Wootters & Zurek '82):
 - * There is no map that is cloning for two nonorthogonal and nonidentical pure states.

- * No broadcasting theorem (Barnum et. al. '96):
 - * There is no map that is broadcasting for two noncommuting density operators.

- * Clearly, this implies no universal broadcasting as well.
- * Note that the maps $\mathcal{E}_{A'|A}$, $\mathcal{E}_{A''|A}$ are valid individually, but they cannot be the reduced maps of a global map $\mathcal{E}_{A'A''|A}$.

- * The maps $\mathcal{E}_{A'|A}$, $\mathcal{E}_{A''|A}$ must be related to incompatible states $\tau_{AA'}$, $\tau_{AA''}$
- * Theorem: If $\mathcal{E}_{A'A''|A}$ is universal broadcasting, then both $\tau_{AA'}, \tau_{AA''}$ must be pure and maximally entangled.

* Ensemble broadcasting $\{(p,\rho_1),((1-p),\rho_2)\}$ s.t. $[\rho_1,\rho_2]\neq 0$

$$\left(p\rho_1 + (1-p)\rho_2, \mathcal{E}^r_{A'A''|A}\right) \Leftrightarrow \tau_{AA'A''}$$

* Theorem: There is a local operation on A that transforms both $\tau_{AA'}$ and $\tau_{AA''}$ into pure, entangled states with nonzero probability of success.

7. Future Pirections

- * Quantitative relations between approximate ensemble broadcasting and monogamy inequalities for entanglement.
- * Dynamics of systems initially correlated with the environment.
- * Quantum pooling (joint work with R. Spekkens).

- * How are the different analogs of conditional probability related?
- * Is their a heirarchy of conditional independence relations?
- Can quantum theory be formulated using an analog of conditional probability as the fundamental notion?