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Quantum Theory as Generalized Probability

Classical Quantum

Algebra of operators B (7 .4) on a Hilbert

Algebra of R.V:s on a sample space (24, 54). |ga003,

Probability distribution: P(X) Quantuwm State: pa € B(Ha)

Expectation value: (X) = ; XP(X) Expectation valve: (X) =Tr(Xpa)

Cartesian Produet: Qap = Q4 x Qp Tensor Produet: Hap =Ha®HB

Joint Distribution: P(X,Y) Joint state: paB € B(Hap)

Marginal Distn.: * (X) = ;P (X,Y)  |partial Trace: EESHR ST

Stochastic transition map: 'y x TPCPwmap Epja: B(Ha) — B(Hp)

P
Conditional Probability: P(Y|X) = —5== ?




Generalized Probability Theory

* Quantum theory and classical probability are part of a more general theory,
with B(H) replaced by a more general C*algebra.

* |n this talk, specialize to finite dimensional algebras of the form:
O=B(C"aC”a...0CW)
*  We are mainly inferested in these two special cases:
*  (lassical probability with a finite sample space
D.q=B(C?)=BCapCq...0C)

* " Full” finite-dimensional quantum theory

D,q=B(CY




Why quantum conditional probability?

* Practical” Reasons:

*  Several probabilistic structures require cond. prob. or cond. independence
for their definition, e.g. Markov Chains, Bayesian Networks.

* Better understand the relationships between different ginfo tasks.

*  Foundational” reasons:

* QT is actvally more like a generalized theory of stochastic process than
abstract Kolmogorov probability. Spacelike and timelike events are
combined differently.

Cond. prob. is the missing notion that relates the two.

Could be relevant to applying QT in the absence of background causal
structure.
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1. Introduction: Uses of Cond. Prob.

(A) Reconstrueting a joint distribution from a marginal

P(X,Y) = P(Y|X)P(X)

(B) Bayesian Updating
P(D|H)P(H)
P(D)

P(H|D) =
(C) Stochastic Pynamics
P(Y)=)» IyxP(X)
(P) Conditional Shannon En’rrop);

H(Y|X)=H(X,Y) - H(X)=-) P(X,Y)log, P(Y|X)
XY
(E) Reduction of complexity via conditional independence

P(Z|X,Y)=P(Z|X) < P(X,Y,Z) = P(X)P(Y|X)P(Z|X)




1. Introduction: Uses of Cond. Prob.

(A) Reconstrueting a joint state from a marginal

PAB = f(pA7PB|A)

(B) Updating a state after a measurement

> EY) (pa)
T &9 (o)

(C) TPCP Pynamics pp = Epja(pa)

PA

(P) Conditional von Neumann Entropy

S(B|A) = —Tr (paplog, ppa)
(E) Reduction of complexity via conditional independence
* Cerf & Adami achieve (A), (D), (E). 1achieve (A), (B), (C).




1. Introduction: Cerf & Adawmi

* Cerf & Adami: Let pas € D4 @ Op be a density operator, and define

Ly e > S e
PB|A = nll_{l(’)lo [(PA ®1Ip) *" pip (pA @ IB) 2"}

logy p1a = logy pap — logy pa ® Ip

* (A) Reconstruction: pap = 21982 PA®I5+log; pp)a

*  (C) Entropy:
S(BJ|A) = 5(A4,B) — S(A) = —Tr (,OAB log, PB|A)
*  (E) Complexity Reduction:

logs pojaB = pcja @ Ip < logy papc =10gy pa ® Ip @ Ic +10g, pp1a @ Lo + 108y poja ® 1B
S(B: C|A) = 5(C|4) — S(C|A, B) = 0




1. Introduction: An Obvious Alternative

* let pap € D4 ® Opbeadensity operator, and define:

_1 _1
PB|A = Pa° @Ippapps? @ IB

*  Properties:

* PB|A (s adensity operatoron D, @ Op.
Pa

*  Maximally mixed on subsystem A: Trz(ppja) = et
A

* (A) Reconstruetion:

1 1
pAB = p3 @ Ippapps ®Ip




2. Dynawics as Conditional Probability

o &

I'xy I'x|z 'y z

2

P(X,Y)

By =ty Pbcrv)

P(X,Y)
P(X)

P(Y|X) =

Isomorphism: (P(X )7F§f|x) & P(X,Y)




2. Dynawics as conditional probability
(a) (b) (c)

Source: 7Tanp

Isomorphism: (pA,8§| A) < 7ap 1




2. Choi-Jamiolkowski Isomorphism

* Recall: Kraus decomposition of CP-maps €54 : B(Ha) — B(HB)

(et
Epjalpa) = Z R%QPAR%?;{ Rpla:Ha—Hp
L

* For bipartite pure states and operators:

Rpja = Z@jk ) (kla & (V) ap = Zajk k)4 @ 14) B
Jk jk

* For mixed states and CP-maps:

Ry < [1) Eoia & man = 2 [¥0) (1),
L




2. Choi-Jamiolkowski Isomorphism

1 . .
* let )CI>+>AA, = \TA E 194 @ 15) a
J

* Then TaB =14 ® 8B|A’ ( (I)+>AA’ <(I)+|AA’)
Epla (pa) = di <(I)+‘AA’ PA X TA'B ‘(I)+>AA’

* (Qperational interpretation: Noisy gate teleportation.




2. Choi-Jamiolkowski Isomorphism

* Rewmarks:
*  Isomorphisw is basis dependent. A basis must be chosen to define [&F) .

*  If werestrict attention to Trace Preserving CP-maps then

*  This is a special case of the isomorphism we want to construet

(IOA7 giA) <~ TAB

14

where pa = ds




4. A New Isomorphism

* (pa,Ep1a) — 7an direction:
use |P)aqa = (:05)5 ® Lar (I)+>AA’

*  Then 7aB =Za Q&R A (|1P) g4n (Pl gar)

* Instead of |®7F) ),

x 7an — (pa,E54) direction:

* Set PA = TZ» Ta = Trp (TaB)

L1 11
* let TBja=7T4° ®IpTaBT4* ®IB

&

dy

Hence, it is uniquely associated to a TPCP map via the Choi-Jamiolkowski
isomor phism. .

*  TB|A satisfies Trp (TB|A) T




4. A New lsomorphism

(b)




5. Operational Inferpretation

* Rewinder about wmeasurements:

*  POVM: M={M}, M>0,  M=1I
M

*  Probability Rule: P(M) = Tr (Mp)

HHEM (o)
M T (M)

*  Update CP-map:

()= AN AN = m

J J

* &M depends on details of system-measuring device interaction.




5. Operational Inferpretation

* lemma: p=>_ P(M)p is an ensemble decomposition of a
M

density matrix o iff thereisa POVM a7 = (A1) st

M
P(M)=Tr(Mp) and pj = %f(M\g)

* Proof sketch: Set M = P(a)p~




5. Operational Inferpretation

%k )N/-wmeasurewent of P
% Input: p

% Measurement probabilities: P(M) = Tr (M p)

% Updated state: vV M p/ M
At (Mp)

% )[-preparation of 0

%k Input: Generate a classical rv. with p.d.f

P(M) = Tr (Mp)

5k Prepare the corresponding state:

_ VPM\/p
PIM T Ty (M)




5. Operational Inferpretation

(b) N-measurement (C) N-measurement

B B
@ M-measurement  N-measurement @ A

Al B
e

(a)

x TAB/

P(M, N) is the same in (a) and (¢) for
any POVMs M and N.

M-measurement M7 -preparation



6. Application: Broadcasting & Monogamy

For any TPCP map Epcia : B(Ha) — B(Ha @ He) the reduced
maps are:

Epja=Trcolpcla  Ecja =Trpo&pcla

The following commutativity properties hold:

PABC (P4, €pc)a)

Trgl lTrC

PAB (P4, Epa)-

Therefore, 2 states P4B,PAC incompatible with being the
reduced states of a global state pasc.

2 reduced maps £x 4, E0,4 incompatible with being the reduced
maps of a global map €54 .




6. Application: Broadcasting & Monogamy

* ATPCP-map Eaara:B(Ha) — B(Ha ® Har) is broadeasting
for a state pa if

Eara (pa) = par Eara (pa) = par

A TPCP-map Earaja: B(Ha) — B(Ha ® Har) is cloning for a
state pa if

gAlAlllA (IOA) = PlAY ®,0A”

Note: For pure states cloning = broadcasting.

A TPCP-wmap is universal broadcasting if it is broadcasting for
every state.




6. Application: Broadcasting & Monogamy

*  No cloning theorem (Dieks ‘82, Wootters & Zurek '8 2):

*  Thereis no map that is cloning for two nonorthogonal and nonidentical pure
states.

* No broadcasting theorem (Barnum et. al. ‘96):

*  Thereis no map that is broadcasting for fwo noncomwmuting density operators.

* (learly, this implies no universal broadcasting as well.

* Note that the maps £4/4,E4 4 are valid individually, but they
cannot be the reduced maps ot a global map £4/4- .




6. Application: Broadcasting & Monogamy

* The maps £4/14,E4714 must be related to incompatible states
TAA"y TAAY

Theorem: If £4:414 isuniversal broadeasting, then both 744/, 744
must be pure and maximally entangled.

Ensemble broadeasting{(p, p1), (1 — p),p2)} st. [p1,p2] #0

(ppl + (1 . p),02, SQ’A”|A) < TAA' A

Theorew: There is a local operation on A that transforms both 744/
and 744~ into pure, entangled states with nonzero probability
of success.




7. Future Directions

Quantitative relations between approximate ensemble
broadcasting and monogawmy inequalities for entanglement.

Pynawics of systewms initially correlated with the environment.

Quantuwm pooling (joint work with R. Spekkens).

How are the different analogs of conditional probability related?
Is their a heirarchy of conditional independence relations?

Can quantum theory be formulated using an analog of conditional
probability as the fundamental notion?




