

Formulating Quantum Theory as a Causally Neutral Theory of Bayesian Inference

M. S. Leifer (UCL)

Joint work with R. W. Spekkens (Perimeter)

ColloQui (Royal Holloway) 23rd June 2011

Outline

- Introduction
- Spatial Quantum Conditional States
- Temporal Quantum Conditional States
- Preparations and Measurements
- Quantum Bayes' rule
- Bayesian Conditioning
- Combining Expert Advice
- Further results and open questions

Topic

- Introduction
- Spatial Quantum Conditional States
- Temporal Quantum Conditional States
- Preparations and Measurements
- Quantum Bayes' rule
- Bayesian Conditioning
- Combining Expert Advice
- 8 Further results and open questions

Quantum Theology

- The Church of the Larger Hilbert Space (J. Smolin)
 - Quantum theory is "about" a pure state vector of the universe that evolves unitarily.
 - Schrödinger, Everett, Zurek, . . .
- The Church of the Smaller Hilbert Space
 - Quantum theory is a noncommutative generalization of classical probability theory.
 - · Heisenberg, von Neumann, ...

Quantum Theology on Facebook

The Church of the Larger Hilbert Space 🔟 Join

http://www.facebook.com/group.php?gid=5658946617

The Church of The Smaller Hilbert Space

http://www.facebook.com/group.php?gid=5965533115

A Problem for the Smaller Church

- Classical probability theory does not care about causality
 - *P*(*Z*, *W*, . . .)
- · Conventional quantum formalism does...

Figure: "Spacelike" correlations

Figure: "Timelike" correlations

$$\rho_{\mathsf{B}} = \mathcal{E}_{\mathsf{B}|\mathsf{A}}\left(\rho_{\mathsf{A}}\right)$$

A note on notation

- Conventional Formalism: Hilbert spaces are attached to systems that persist in time.
 - States are a catalogue of probabilities for potential future measurement outcomes.
- Conditional States Formalism: Hilbert spaces are attached to systems at a specific time, or more generally to spacetime regions.
 - Always use a distinct label to distinguish input and output systems of a channel.
 - Always combine regions via the tensor product.
 - States are a catalogue of probabilities for any classical variables correlated with the region.

Classical vs. quantum Probability

Table: Basic definitions

Classical Probability	Quantum Theory
Sample space $\Omega_Z = \{1, 2, \dots, d_Z\}$	Hilbert space $\mathcal{H}_{A}=\mathbb{C}^{d_{A}} = \operatorname{span}\left(\ket{1},\ket{2},\ldots,\ket{d_{A}} ight)$
Probability distribution $P(Z=z) \geq 0$ $\sum_{z \in \Omega_Z} P(Z=z) = 1$	Quantum state $ ho_{\mathcal{A}} \in \mathfrak{L}^+\left(\mathcal{H}_{\mathcal{A}} ight) \ \operatorname{Tr}_{\mathcal{A}}\left(ho_{\mathcal{A}} ight) = 1$

Classical vs. quantum Probability

Table: Composite systems

Classical Probability	Quantum Theory
Cartesian product $\Omega_{ZW} = \Omega_Z \times \Omega_W$	Tensor product $\mathcal{H}_{AB} = \mathcal{H}_{A} \otimes \mathcal{H}_{B}$
Joint distribution $P(Z, W)$	Bipartite state <i>PAB</i>
Marginal distribution $P(W) = \sum_{z \in \Omega_Z} P(Z = z, W)$	Reduced state $\rho_{B}=\operatorname{Tr}_{A}\left(\rho_{AB}\right)$
Conditional distribution $P(W Z) = \frac{P(Z,W)}{P(Z)}$	Conditional state $\rho_{B A} = ?$

Topic

- Introduction
- Spatial Quantum Conditional States
- Temporal Quantum Conditional States
- Preparations and Measurements
- Quantum Bayes' rule
- Bayesian Conditioning
- Combining Expert Advice
- 8 Further results and open questions

Spatial correlations

Figure: Classical correlations

$$P(Z,W)=P(W|Z)P(Z)$$

Figure: Quantum correlations

$$\rho_{AB} = ?$$

Definition of Spatial QCS

Definition

A spatial quantum conditional state of B given A is a positive operator $\rho_{B|A}$ on $\mathcal{H}_{AB}=\mathcal{H}_{A}\otimes\mathcal{H}_{B}$ that satisfies

$$\operatorname{Tr}_{B}\left(\rho_{B|A}\right)=I_{A}.$$

c.f. P(W|Z) is a positive function on $\Omega_{ZW} = \Omega_Z \times \Omega_W$ that satisfies

$$\sum_{W\in\Omega_W}P(W=w|Z)=1.$$

$$(\rho_{A}, \rho_{B|A}) \rightarrow \rho_{AB} = (\sqrt{\rho_{A}} \otimes I_{B}) \rho_{B|A} (\sqrt{\rho_{A}} \otimes I_{B})$$

$$\rho_{AB} \rightarrow \rho_{A} = \text{Tr}_{B} (\rho_{AB})$$

$$\rho_{B|A} = \left(\sqrt{\rho_{A}^{-1}} \otimes I_{B}\right) \rho_{AB} \left(\sqrt{\rho_{A}^{-1}} \otimes I_{B}\right)$$

$$(\rho_{A}, \rho_{B|A}) \rightarrow \rho_{AB} = (\sqrt{\rho_{A}} \otimes I_{B}) \rho_{B|A} (\sqrt{\rho_{A}} \otimes I_{B})$$

$$\rho_{AB} \rightarrow \rho_{A} = \text{Tr}_{B} (\rho_{AB})$$

$$\rho_{B|A} = \left(\sqrt{\rho_{A}^{-1}} \otimes I_{B}\right) \rho_{AB} \left(\sqrt{\rho_{A}^{-1}} \otimes I_{B}\right)$$

Note: $\rho_{B|A}$ defined from ρ_{AB} is a QCS on supp $(\rho_A) \otimes \mathcal{H}_B$.

Table: Comparison of relations between joints, conditionals and marginals

Classical Probability	Quantum Theory
P(Z,W)=P(W Z)P(Z)	$ ho_{AB} = \left(\sqrt{ ho_{A}}\otimes I_{B}\right) ho_{B A}\left(\sqrt{ ho_{A}}\otimes I_{B}\right)$
$P(W Z) = \frac{P(Z,W)}{P(Z)}$	$\rho_{B A} = \left(\sqrt{\rho_A^{-1}} \otimes I_B\right) \rho_{AB} \left(\sqrt{\rho_A^{-1}} \otimes I_B\right)$

Notation

Drop implied identity operators, e.g.

•
$$I_A \otimes M_{BC}N_{AB} \otimes I_C \longrightarrow M_{BC}N_{AB}$$

•
$$M_A \otimes I_B = N_{AB} \qquad \rightarrow \qquad M_A = N_{AB}$$

Define non-associative "product"

•
$$M \star N = \sqrt{N} M \sqrt{N}$$

Table: Comparison of relations between joints, conditionals and marginals

Classical Probability	Quantum Theory
P(Z,W)=P(W Z)P(Z)	$ ho_{AB} = \left(\sqrt{ ho_{A}}\otimes I_{B}\right) ho_{B A}\left(\sqrt{ ho_{A}}\otimes I_{B}\right)$
$P(W Z) = \frac{P(Z,W)}{P(Z)}$	$\rho_{B A} = \left(\sqrt{\rho_A^{-1}} \otimes I_B\right) \rho_{AB} \left(\sqrt{\rho_A^{-1}} \otimes I_B\right)$

Table: Comparison of relations between joints, conditionals and marginals

Classical Probability	Quantum Theory
P(Z,W) = P(W Z)P(Z)	$\rho_{AB} = \rho_{B A} \star \rho_A$
$P(W Z) = \frac{P(Z,W)}{P(Z)}$	$\rho_{B A} = \rho_{AB} \star \rho_A^{-1}$

Classical Probability as a Special Case

• Given a classical variable Z, define a Hilbert space \mathcal{H}_Z with a preferred basis $\{|1\rangle_Z, |2\rangle_Z, \ldots, |d_Z\rangle_Z\}$ labeled by elements of Ω_Z . Then,

$$\rho_{Z} = \sum_{z \in \Omega_{Z}} P(Z = z) |z\rangle \langle z|_{Z}$$

Similarly,

$$\rho_{ZW} = \sum_{z \in \Omega_Z, w \in \Omega_W} P(Z = z, W = w) |zw\rangle \langle zw|_{ZW}$$

$$\rho_{W|Z} = \sum_{z \in \Omega_{Z}, w \in \Omega_{W}} P(W = w|Z = z) |zw\rangle \langle zw|_{ZW}$$

Topic

- Introduction
- Spatial Quantum Conditional States
- Temporal Quantum Conditional States
- Preparations and Measurements
- Quantum Bayes' rule
- Bayesian Conditioning
- Combining Expert Advice
- 8 Further results and open questions

Correlations between subsystems

Figure: Classical correlations

$$P(Z,W) = P(W|Z)P(Z)$$

Figure: Quantum correlations

$$\rho_{AB} = \rho_{B|A} \star \rho_A$$

Dynamics

Figure: Classical stochastic map

$$P(W) = \Gamma_{W|Z}(P(Z))$$
$$= \sum_{Z} P(W|Z)P(Z)$$

Figure: Quantum CPT map

$$\rho_{B} = \mathcal{E}_{B|A}(\rho_{A})$$

$$= \operatorname{Tr}_{A}(\rho_{B|A} \star \rho_{A})?$$

Temporal Conditionals and Joints

Theorem (Jamiołkowski isomorphism)

Let $\mathcal{E}_{B|A}:\mathfrak{L}(\mathcal{H}_A) o \mathfrak{L}(\mathcal{H}_B)$ be a CPT map and define

$$\varrho_{\textit{B}|\textit{A}} = \mathcal{E}_{\textit{B}|\textit{A}'} \otimes \mathcal{I}_{\textit{A}} \left(\left| \Phi^+ \right\rangle \left\langle \Phi^+ \right|_{\textit{A}'\textit{A}}^{\textit{T}_{\textit{A}}} \right),$$

where
$$|\Phi^{+}
angle_{A'A}=\sum_{j}|jj
angle_{A'A}.$$
 Then,

$$\mathcal{E}_{B|A}(\rho_A) = \operatorname{Tr}_A(\varrho_{B|A} \star \rho_A).$$

Temporal Conditionals and Joints

Theorem (Jamiołkowski isomorphism)

Let $\mathcal{E}_{B|A}:\mathfrak{L}(\mathcal{H}_A) \to \mathfrak{L}(\mathcal{H}_B)$ be a CPT map and define

$$\varrho_{\mathcal{B}|\mathcal{A}} = \mathcal{E}_{\mathcal{B}|\mathcal{A}'} \otimes \mathcal{I}_{\mathcal{A}} \left(\left| \Phi^{+} \right\rangle \left\langle \Phi^{+} \right|_{\mathcal{A}'\mathcal{A}}^{\mathcal{T}_{\mathcal{A}}} \right),$$

where $|\Phi^{+}\rangle_{A'A}=\sum_{j}|jj\rangle_{A'A}$. Then,

$$\mathcal{E}_{B|A}(\rho_A) = \operatorname{Tr}_A(\varrho_{B|A} \star \rho_A).$$

• $\varrho_{B|A} = \rho_{B|A}^{T_A}$ for some spatial QCS $\rho_{B|A}$. Call such operators temporal conditional states.

Temporal Conditionals and Joints

Theorem (Jamiołkowski isomorphism)

Let $\mathcal{E}_{B|A}:\mathfrak{L}(\mathcal{H}_A) \to \mathfrak{L}(\mathcal{H}_B)$ be a CPT map and define

$$\varrho_{B|A} = \mathcal{E}_{B|A'} \otimes \mathcal{I}_{A} \left(\left| \Phi^{+} \right\rangle \left\langle \Phi^{+} \right|_{A'A}^{T_{A}} \right),$$

where $|\Phi^{+}
angle_{A'A}=\sum_{j}|jj
angle_{A'A}.$ Then,

$$\mathcal{E}_{B|A}(\rho_A) = \operatorname{Tr}_A(\varrho_{B|A} \star \rho_A).$$

- $\varrho_{B|A} = \rho_{B|A}^{T_A}$ for some spatial QCS $\rho_{B|A}$. Call such operators temporal conditional states.
- Can also define temporal joint state: $\varrho_{AB} = \varrho_{B|A} \star \rho_A$.

Dynamics

Figure: Classical stochastic map

$$P(W) = \Gamma_{W|Z}(P(Z))$$
$$= \sum_{Z} P(W|Z)P(Z)$$

Figure: Quantum CPT map

$$\rho_{B} = \mathcal{E}_{B|A} (\rho_{A})$$
$$= \operatorname{Tr}_{A} (\varrho_{B|A} \star \rho_{A})$$

Topic

- Introduction
- Spatial Quantum Conditional States
- Temporal Quantum Conditional States
- Preparations and Measurements
- Quantum Bayes' rule
- Bayesian Conditioning
- Combining Expert Advice
- 8 Further results and open questions

Quantum Classical Hybrids

- Composite of a quantum region and a classical random variable.
- Classical r.v. X has Hilbert space \mathcal{H}_X with preferred basis $\{|1\rangle_X, |2\rangle_X, \dots, |d_X\rangle_X\}.$
- Quantum region A has Hilbert space \mathcal{H}_A .
- Hybrid has Hilbert space $\mathcal{H}_{XA} = \mathcal{H}_X \otimes \mathcal{H}_A$

Quantum Classical Hybrids

- Composite of a quantum region and a classical random variable.
- Classical r.v. X has Hilbert space \mathcal{H}_X with preferred basis $\{|1\rangle_X, |2\rangle_X, \dots, |d_X\rangle_X\}.$
- Quantum region A has Hilbert space \mathcal{H}_A .
- Hybrid has Hilbert space $\mathcal{H}_{XA} = \mathcal{H}_X \otimes \mathcal{H}_A$
- Operators on \mathcal{H}_{XA} restricted to be of the form

$$M_{XA} = \sum_{x \in \Omega_X} |x\rangle \langle x|_X \otimes M_{X=x,A}$$

Preparations

Figure: Classical preparation

$$P(Z) = \sum_X P(Z|X)P(X)$$

Figure: Quantum preparation

$$\rho_{A} = \sum_{x} P(X = x) \rho_{A}^{(x)}$$

$$\rho_{A} = \text{Tr}_{X} \left(\varrho_{A|X} \star \rho_{X} \right)$$

Measurements

Figure: Noisy measurement

$$P(Y) = \sum_{Z} P(Y|Z)P(Z)$$

Figure: POVM measurement

$$P(Y = y) = \operatorname{Tr}_{A} \left(E_{A}^{(y)} \rho_{A} \right)$$
$$\rho_{Y} = \operatorname{Tr}_{A} \left(\varrho_{Y|A} \star \rho_{A} \right)$$

State Update rules

Definition (Quantum Instrument)

A quantum instrument is a set of CP-maps $\mathcal{E}_{B|A}^{(y)}$ such that the operators $\mathcal{E}_A^{(y)}$ form a POVM, where

$$E_A^{(y)} = \left(\mathcal{E}_{B|A}^{(y)}\right)^{\dagger} \left(I_B\right).$$

• On obtaining y in a measurement of $E_A^{(y)}$:

$$ho_{A}
ightarrow
ho_{B}^{(y)} = rac{\mathcal{E}_{B|A}^{(y)}(
ho_{A})}{\operatorname{Tr}_{A}\left(\mathcal{E}_{A}^{(y)}
ho_{A}
ight)}$$

The projection postulate is the special case:

$$\mathcal{E}_{B|A}^{(y)}\left(\rho_{A}\right)=\mathcal{I}_{B|A}\left(\Pi_{A}^{(y)}\rho_{A}\Pi_{A}^{(y)}\right)$$

Instruments (Update Rules)

Figure: Classical instrument

$$P(Y, W) = \sum_{Z} P(Y, W|Z)P(Z)$$

$$P(Y|Z) = \sum_{W} P(Y, W|Z)$$

Figure: Quantum instrument

$$\begin{split} \rho_{\mathit{YB}} &= \mathsf{Tr}_{\mathit{A}} \left(\varrho_{\mathit{YB}|\mathit{A}} \star \rho_{\mathit{A}} \right) \\ \varrho_{\mathit{Y}|\mathit{A}} &= \mathsf{Tr}_{\mathit{B}} \left(\varrho_{\mathit{YB}|\mathit{A}} \right) \end{split}$$

Comparison of notation

Dynamics	$ ho_{\mathcal{B}} = \mathcal{E}_{\mathcal{B} \mathcal{A}}(ho_{\mathcal{A}})$	$ ho_{\mathcal{B}} = Tr_{\mathcal{A}} \left(arrho_{\mathcal{B} \mathcal{A}} \star ho_{\mathcal{A}} ight)$
Preparation	$\rho_A = \sum_{x} P(X = x) \rho_A^{(x)}$	$\rho_{\mathcal{A}} = Tr_{X} \left(\varrho_{\mathcal{A} X} \star \rho_{X} \right)$
Measurement	$P(Y = y) = \operatorname{Tr}_{A} (E^{(y)} \rho_{A})$	$\rho_{Y} = Tr_{\mathcal{A}} \left(\varrho_{Y \mathcal{A}} \star \rho_{\mathcal{A}} \right)$
Update	$P(Y = y)\rho_B^{(y)} = \mathcal{E}_{B A}^{(y)}(\rho_A)$	$\rho_{YB} = Tr_{A} \left(\varrho_{YB A} \star \rho_{A} \right)$

Topic

- Introduction
- Spatial Quantum Conditional States
- Temporal Quantum Conditional States
- Preparations and Measurements
- Quantum Bayes' rule
- Bayesian Conditioning
- Combining Expert Advice
- 8 Further results and open questions

Classical Bayes' rule

Two expressions for joint probabilities:

$$P(Z, W) = P(W|Z)P(Z)$$
$$= P(Z|W)P(W)$$

Bayes' rule:

$$P(Z|W) = \frac{P(W|Z)P(Z)}{P(W)}$$

Alternative form of Bayes' rule:

$$P(Z|W) = \frac{P(W|Z)P(Z)}{\sum_{Z} P(W|Z)P(Z)}$$

Spatial Quantum Bayes' rule

Two expressions for bipartite states:

$$\rho_{AB} = \rho_{B|A} \star \rho_A$$
$$= \rho_{A|B} \star \rho_B$$

Bayes' rule:

$$\rho_{A|B} = \rho_{B|A} \star \left(\rho_A \otimes \rho_B^{-1}\right)$$

Alternative form of Bayes' rule

$$\rho_{A|B} = \rho_{B|A} \star \left(\rho_A \otimes \operatorname{Tr}_A \left(\rho_{B|A} \star \rho_A\right)^{-1}\right)$$

Temporal Quantum Bayes' rule

• Given an input state ρ_A and a temporal QCS $\varrho_{B|A}$, define

$$\varrho_{A|B} = \varrho_{B|A} \star \left(\rho_A \otimes \operatorname{Tr}_B \left(\varrho_{B|A} \star \rho_A \right) \right)$$

Temporal joint state now has two decompositions:

$$\varrho_{AB} = \varrho_{B|A} \star \rho_A = \varrho_{A|B} \star \rho_B$$

State/POVM duality

A temporal hybrid joint state can be written two ways:

$$\varrho_{XA} = \varrho_{A|X} \star \rho_X = \varrho_{X|A} \star \rho_A$$

The two representations are connected via Bayes' rule:

$$\varrho_{X|A} = \varrho_{A|X} \star \left(\rho_X \otimes \operatorname{Tr}_X \left(\varrho_{A|X} \star \rho_X \right)^{-1} \right)$$

$$\varrho_{A|X} = \varrho_{X|A} \star \left(\operatorname{Tr}_A \left(\varrho_{X|A} \star \rho_A \right)^{-1} \otimes \rho_A \right)$$

$$\varrho_{X=x|A} = \frac{P(X=x)\varrho_{A|X=x}}{\sum_{x'\in\Omega_X}P(X=x')\varrho_{A|X=x'}} \qquad \varrho_{A|X=x} = \frac{\sqrt{\rho_A}\varrho_{X=x|A}\sqrt{\rho_A}}{\text{Tr}_A\left(\varrho_{X=x|A}\rho_A\right)}$$

Topic

- Introduction
- Spatial Quantum Conditional States
- Temporal Quantum Conditional States
- Preparations and Measurements
- Quantum Bayes' rule
- Bayesian Conditioning
- Combining Expert Advice
- 8 Further results and open questions

Quantum (Hybrid) Bayesian Conditioning

• Classically, upon learning X = x:

$$P(Z) \rightarrow P(Z|X=x)$$

• Quantumly: $\rho_A \rightarrow \varrho_{A|X=x}$?

Projection postulate vs. Bayes' rule

Projection Postulate	Bayesian Conditioning
$\rho_{\mathcal{A}} \to \frac{\mathcal{I}_{B A}\left(\sqrt{E_{A}^{(y)}}\rho_{A}\sqrt{E_{A}^{(y)}}\right)}{\operatorname{Tr}_{A}\left(E_{A}^{(y)}\rho_{A}\right)}$	$ ho_{A} ightarrowrac{\sqrt{ ho_{A}}{ m E}_{A}^{(y)}\sqrt{ ho_{A}}}{{ m Tr}_{A}\left({ m E}_{A}^{(y)} ho_{A} ight)}$
B A	Y

Conditioning on a Preparation Variable

Figure: Prep. & meas. experiment

Joint probability:

$$\varrho_{XY} = \operatorname{Tr}_{A}\left(\varrho_{Y|A}\star\left(\varrho_{A|X}\star\rho_{X}\right)\right)$$

Marginal for Y:

$$\rho_{Y} = \mathsf{Tr}_{A} \left(\varrho_{Y|A} \star \rho_{A} \right)$$

Conditional probabilities:

$$\varrho_{Y|X} = \operatorname{Tr}_{A} \left(\varrho_{Y|A} \star \varrho_{A|X} \right)$$

Bayesian update:

$$\rho_A \to \varrho_{A|X=X}$$

Conditioning on a Direct Measurement

Figure: Prep. & meas. experiment

• Apply Bayes' rule to $\varrho_{A|X}$ and $\varrho_{Y|A}$:

$$\rho_{XY} = \mathsf{Tr}_{A} \left(\varrho_{X|A} \star \left(\varrho_{A|Y} \star \rho_{Y} \right) \right)$$

Marginal for X:

$$\rho_{X} = \operatorname{Tr}_{A} \left(\varrho_{X|A} \star \rho_{A} \right)$$

Conditional probabilities:

$$\varrho_{X|Y} = \operatorname{Tr}_{A} \left(\varrho_{X|A} \star \varrho_{A|Y} \right)$$

Bayesian update:

$$\rho_A \rightarrow \varrho_{A|Y=y}$$

 c.f. Barnett, Pegg & Jeffers, J. Mod. Opt. 47:1779 (2000).

Conditioning on a Remote Measurement

Figure: Bipartite experiment

- Joint probability: $\rho_{XY} = \text{Tr}_{AB} \left(\left(\varrho_{X|A} \otimes \varrho_{Y|B} \right) \star \rho_{AB} \right)$
- *B* can be factored out: $\rho_{XY} = \text{Tr}_A \left(\varrho_{Y|A} \star \left(\varrho_{A|X} \star \rho_X \right) \right)$
- where $\varrho_{Y|A} = \text{Tr}_B \left(\varrho_{Y|B}\rho_{B|A}\right)$

Topic

- Introduction
- Spatial Quantum Conditional States
- Temporal Quantum Conditional States
- Preparations and Measurements
- Quantum Bayes' rule
- Bayesian Conditioning
- Combining Expert Advice
- 8 Further results and open questions

Figure: Initial State Assignments

Figure: Final State Assignment

$$\sigma_S^{(D)} = f(\sigma_S^{(A)}, \sigma_S^{(B)}, \rho_S^{(D)})$$

Classical Expert Advice

Figure: Initial State Assignments

Classical Expert Advice

Figure: Final State Assignment

$$Q_D(S) = f(Q_A(S), Q_B(S), P_D(S))$$

Diplomatic Rule

Figure: Combining Incompatible Assignments

Linear pool:

$$Q_D(S) = w_A Q_A(S) + w_B Q_B(S) + w_D P_D(S)$$

Scientific Rule

Figure: Combining Independent Evidence

Multiplicative (log-linear) pool:

$$Q_D(S) \propto rac{Q_A(S)Q_B(S)}{P_D(S)}$$

· Bayesian inference says that:

$$\begin{aligned} Q_D(S) &= P_D(S|R_A = Q_A(S), R_B = Q_B(S)) \\ &= \frac{P_D(R_A = Q_A(S), R_B = Q_B(S)|S)P_D(S)}{\sum_S P_D(R_A = Q_A(S), R_B = Q_B(S)|S)P_D(S)} \end{aligned}$$

Similarly:

$$\sigma_{S}^{(D)} = \rho_{S|R_{A} = \sigma_{S}^{(A)}, R_{B} = \sigma_{S}^{(B)}}^{(D)}
= \rho_{R_{A} = \sigma_{S}^{(A)}, R_{B} = \sigma_{S}^{(B)}|S}^{(D)} \star \left(\rho_{S}^{(D)} \otimes \text{Tr}_{S} \left(\rho_{R_{A} = \sigma_{S}^{(A)}, R_{B} = \sigma_{S}^{(B)}|S}^{(D)} \star \rho_{S}^{(D)}\right)\right)$$

Quantum conditional independence

Quantum Chain Rule:

$$\rho_{ABC} = \rho_{C|AB} \star (\rho_{B|A} \star \rho_A)$$

Quantum conditional independence

Quantum Chain Rule:

$$\rho_{ABC} = \rho_{C|AB} \star (\rho_{B|A} \star \rho_A)$$

Definition

If $\rho_{C|AB} = \rho_{C|B}$ then C is conditionally independent of A given B.

Quantum conditional independence

· Quantum Chain Rule:

$$\rho_{ABC} = \rho_{C|AB} \star (\rho_{B|A} \star \rho_A)$$

Definition

If $\rho_{C|AB} = \rho_{C|B}$ then C is conditionally independent of A given B.

Theorem

The following conditions are equivalent:

- $\rho_{C|AB} = \rho_{C|B}$
- $\rho_{A|BC} = \rho_{A|B}$
- I(A:C|B)=0.

Further, conditional independence implies that

• $\rho_{AC|B} = \rho_{A|B}\rho_{C|B}$.

Shared priors

Figure: The Case of Shared Priors

Theorem

If X and Y are conditionally independent given S then

$$\rho_{S|R_{A}=\rho_{S|X=x},R_{B}=\rho_{S|Y=y}}^{(D)} \propto \rho_{S|X=x}\rho_{S}^{-1}\rho_{S|Y=y}$$

Theorem (Stronger Version)

If the minimal sufficient statistics for X and Y with respect to S are conditionally independent given S then

$$\rho_{S|R_A=\rho_{S|X=x},R_B=\rho_{S|Y=y}}^{(D)} \propto \rho_{S|X=x}\rho_S^{-1}\rho_{S|Y=y}$$

Topic

- Introduction
- Spatial Quantum Conditional States
- Temporal Quantum Conditional States
- Preparations and Measurements
- Quantum Bayes' rule
- Bayesian Conditioning
- Combining Expert Advice
- 8 Further results and open questions

Further results

Forthcoming paper(s) with R. W. Spekkens also include:

- Quantum sufficient statistics
- Quantum state compatibility
- Quantum pooling

Earlier papers with related ideas:

- M. Asorey et. al., Open.Syst.Info.Dyn. 12:319–329 (2006).
- M. S. Leifer, Phys. Rev. A 74:042310 (2006).
- M. S. Leifer, AIP Conference Proceedings 889:172–186 (2007).
- M. S. Leifer & D. Poulin, Ann. Phys. 323:1899 (2008).

What is the meaning of fully quantum Bayesian conditioning?

$$ho_{\mathcal{B}}
ightarrow
ho_{\mathcal{B}|\mathcal{A}} =
ho_{\mathcal{A}|\mathcal{B}} \star \left(\operatorname{Tr}_{\mathcal{B}} \left(
ho_{\mathcal{A}|\mathcal{B}} \star
ho_{\mathcal{B}} \right)^{-1} \otimes
ho_{\mathcal{B}} \right)$$

Thanks for your attention!

People who gave me money

 Foundational Questions Institute (FQXi) Grant RFP1-06-006

People who gave me office space when I didn't have any money

- Perimeter Institute
- University College London