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Quantum Theology

• The Church of the Larger Hilbert Space (J. Smolin)

• Quantum theory is “about” a pure state vector of the
universe that evolves unitarily.

• Schrödinger, Everett, Zurek, . . .

• The Church of the Smaller Hilbert Space

• Quantum theory is a noncommutative generalization of
classical probability theory.

• Heisenberg, von Neumann, . . .



Quantum Theology on Facebook

http://www.facebook.com/group.php?gid=5658946617

http://www.facebook.com/group.php?gid=5965533115



A Problem for the Smaller Church

• Classical probability theory does not care about causality

• P(Z ,W , . . .)

• Conventional quantum formalism does. . .

A B

Figure: “Spacelike” correlations

ρAB

B

A

Figure: “Timelike” correlations

ρB = EB|A (ρA)



A note on notation

• Conventional Formalism: Hilbert spaces are attached to
systems that persist in time.

• States are a catalogue of probabilities for potential future
measurement outcomes.

• Conditional States Formalism: Hilbert spaces are attached
to systems at a specific time, or more generally to
spacetime regions.

• Always use a distinct label to distinguish input and output
systems of a channel.

• Always combine regions via the tensor product.

• States are a catalogue of probabilities for any classical
variables correlated with the region.



Classical vs. quantum Probability

Table: Basic definitions

Classical Probability Quantum Theory

Sample space Hilbert space
ΩZ = {1,2, . . . ,dZ} HA = CdA

= span (|1〉 , |2〉 , . . . , |dA〉)

Probability distribution Quantum state
P(Z = z) ≥ 0 ρA ∈ L+ (HA)∑

z∈ΩZ
P(Z = z) = 1 TrA (ρA) = 1



Classical vs. quantum Probability

Table: Composite systems

Classical Probability Quantum Theory

Cartesian product Tensor product
ΩZW = ΩZ × ΩW HAB = HA ⊗HB

Joint distribution Bipartite state
P(Z ,W ) ρAB

Marginal distribution Reduced state
P(W ) =

∑
z∈ΩZ

P(Z = z,W ) ρB = TrA (ρAB)

Conditional distribution Conditional state
P(W |Z ) = P(Z ,W )

P(Z ) ρB|A =?
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Spatial correlations

SR

Figure: Classical correlations

P(Z ,W ) = P(W |Z )P(Z )

A B

Figure: Quantum correlations

ρAB =?



Definition of Spatial QCS

Definition

A spatial quantum conditional state of B given A is a positive
operator ρB|A on HAB = HA ⊗HB that satisfies

TrB
(
ρB|A

)
= IA.

c.f. P(W |Z ) is a positive function on ΩZW = ΩZ × ΩW that
satisfies ∑

w∈ΩW

P(W = w |Z ) = 1.



Relation to reduced and joint States

(ρA, ρB|A) → ρAB = (
√
ρA ⊗ IB) ρB|A (

√
ρA ⊗ IB)

ρAB → ρA = TrB (ρAB)

ρB|A =

(√
ρ−1

A ⊗ IB

)
ρAB

(√
ρ−1

A ⊗ IB

)

Note: ρB|A defined from ρAB is a QCS on supp(ρA)⊗HB.
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Relation to reduced and joint States

Table: Comparison of relations between joints, conditionals and
marginals

Classical Probability Quantum Theory

P(Z ,W ) = P(W |Z )P(Z ) ρAB =
(√
ρA ⊗ IB

)
ρB|A

(√
ρA ⊗ IB

)
ρB|A =

P(W |Z ) = P(Z ,W )
P(Z )

(√
ρ−1

A ⊗ IB

)
ρAB

(√
ρ−1

A ⊗ IB

)



Notation

• Drop implied identity operators, e.g.

• IA ⊗MBCNAB ⊗ IC → MBCNAB

• MA ⊗ IB = NAB → MA = NAB

• Define non-associative “product”

• M ? N =
√

NM
√

N



Relation to reduced and joint States

Table: Comparison of relations between joints, conditionals and
marginals

Classical Probability Quantum Theory
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Relation to reduced and joint states

Table: Comparison of relations between joints, conditionals and
marginals

Classical Probability Quantum Theory

P(Z ,W ) = P(W |Z )P(Z ) ρAB = ρB|A ? ρA

P(W |Z ) = P(Z ,W )
P(Z ) ρB|A = ρAB ? ρ

−1
A



Classical Probability as a Special Case

• Given a classical variable Z , define a Hilbert space HZ
with a preferred basis {|1〉Z , |2〉Z , . . . , |dZ 〉Z} labeled by
elements of ΩZ . Then,

ρZ =
∑

z∈ΩZ

P(Z = z) |z〉 〈z|Z

• Similarly,

ρZW =
∑

z∈ΩZ ,w∈ΩW

P(Z = z,W = w) |zw〉 〈zw |ZW

ρW |Z =
∑

z∈ΩZ ,w∈ΩW

P(W = w |Z = z) |zw〉 〈zw |ZW
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Correlations between subsystems

SR

Figure: Classical correlations

P(Z ,W ) = P(W |Z )P(Z )

A B

Figure: Quantum correlations

ρAB = ρB|A ? ρA



Dynamics

S

R

Figure: Classical stochastic map

P(W ) = ΓW |Z (P(Z ))

=
∑

Z

P(W |Z )P(Z )

B

A

Figure: Quantum CPT map

ρB = EB|A (ρA)

= TrA
(
ρB|A ? ρA

)
?



Temporal Conditionals and Joints

Theorem (Jamiołkowski isomorphism)

Let EB|A : L (HA)→ L (HB) be a CPT map and define

%B|A = EB|A′ ⊗ IA

(∣∣Φ+
〉 〈

Φ+
∣∣TA
A′A

)
,

where |Φ+〉A′A =
∑

j |jj〉A′A. Then,

EB|A (ρA) = TrA
(
%B|A ? ρA

)
.

• %B|A = ρTA
B|A for some spatial QCS ρB|A. Call such operators

temporal conditional states.
• Can also define temporal joint state: %AB = %B|A ? ρA.
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Dynamics

S

R

Figure: Classical stochastic map

P(W ) = ΓW |Z (P(Z ))

=
∑

Z

P(W |Z )P(Z )

B

A

Figure: Quantum CPT map

ρB = EB|A (ρA)

= TrA
(
%B|A ? ρA

)
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Quantum Classical Hybrids

• Composite of a quantum region and a classical random
variable.

• Classical r.v. X has Hilbert space HX with preferred basis
{|1〉X , |2〉X , . . . , |dX 〉X}.

• Quantum region A has Hilbert space HA.

• Hybrid has Hilbert space HXA = HX ⊗HA

• Operators on HXA restricted to be of the form

MXA =
∑

x∈ΩX

|x〉 〈x |X ⊗MX=x ,A
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Preparations

X

R

Figure: Classical preparation

P(Z ) =
∑

X

P(Z |X )P(X )

X

A

Figure: Quantum preparation

ρA =
∑

x

P(X = x)ρ
(x)
A

ρA = TrX
(
%A|X ? ρX

)



Measurements

R

X

Figure: Noisy measurement

P(Y ) =
∑

Z

P(Y |Z )P(Z )

A

Y

Figure: POVM measurement

P(Y = y) = TrA

(
E (y)

A ρA

)
ρY = TrA

(
%Y |A ? ρA

)



State Update rules

Definition (Quantum Instrument)

A quantum instrument is a set of CP-maps E(y)
B|A such that the

operators E (y)
A form a POVM, where

E (y)
A =

(
E(y)

B|A

)†
(IB) .

• On obtaining y in a measurement of E (y)
A :

ρA → ρ
(y)
B =

E(y)
B|A (ρA)

TrA

(
E (y)

A ρA

)
• The projection postulate is the special case:

E(y)
B|A (ρA) = IB|A

(
Π

(y)
A ρAΠ

(y)
A

)



Instruments (Update Rules)

X

S

R

Figure: Classical instrument

P(Y ,W ) =
∑

Z

P(Y ,W |Z )P(Z )

P(Y |Z ) =
∑
W

P(Y ,W |Z )

A

X

B

Figure: Quantum instrument

ρYB = TrA
(
%YB|A ? ρA

)
%Y |A = TrB

(
%YB|A

)



Comparison of notation

Dynamics ρB = EB|A (ρA) ρB = TrA
(
%B|A ? ρA

)

Preparation ρA =
∑

x P(X = x)ρ
(x)
A ρA = TrX

(
%A|X ? ρX

)
Measurement P(Y = y) = TrA

(
E (y)ρA

)
ρY = TrA

(
%Y |A ? ρA

)

Update P(Y = y)ρ
(y)
B = E(y)

B|A (ρA) ρYB = TrA
(
%YB|A ? ρA

)
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Classical Bayes’ rule

• Two expressions for joint probabilities:

P(Z ,W ) = P(W |Z )P(Z )

= P(Z |W )P(W )

• Bayes’ rule:

P(Z |W ) =
P(W |Z )P(Z )

P(W )

• Alternative form of Bayes’ rule:

P(Z |W ) =
P(W |Z )P(Z )∑
Z P(W |Z )P(Z )



Spatial Quantum Bayes’ rule

• Two expressions for bipartite states:

ρAB = ρB|A ? ρA

= ρA|B ? ρB

• Bayes’ rule:

ρA|B = ρB|A ?
(
ρA ⊗ ρ−1

B

)
• Alternative form of Bayes’ rule

ρA|B = ρB|A ?
(
ρA ⊗ TrA

(
ρB|A ? ρA

)−1
)



Temporal Quantum Bayes’ rule

• Given an input state ρA and a temporal QCS %B|A, define

%A|B = %B|A ?
(
ρA ⊗ TrB

(
%B|A ? ρA

))
• Temporal joint state now has two decompositions:

%AB = %B|A ? ρA = %A|B ? ρB



State/POVM duality

• A temporal hybrid joint state can be written two ways:

%XA = %A|X ? ρX = %X |A ? ρA

• The two representations are connected via Bayes’ rule:

%X |A = %A|X ?
(
ρX ⊗ TrX

(
%A|X ? ρX

)−1
)

%A|X = %X |A ?
(

TrA
(
%X |A ? ρA

)−1 ⊗ ρA

)

%X=x |A =
P(X = x)%A|X=x∑

x ′∈ΩX
P(X = x ′)%A|X=x ′

%A|X=x =

√
ρA%X=x |A

√
ρA

TrA
(
%X=x |AρA

)
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Quantum (Hybrid) Bayesian Conditioning

• Classically, upon learning X = x :

P(Z )→ P(Z |X = x)

• Quantumly: ρA → %A|X=x?



Projection postulate vs. Bayes’ rule

Projection Postulate Bayesian Conditioning

ρA →
IB|A

(√
E (y)

A ρA

√
E (y)

A

)
TrA

(
E (y)

A ρA

) ρA →
√
ρAE (y)

A
√
ρA

TrA

(
E (y)

A ρA

)

A

X

B

A

Y



Conditioning on a Preparation Variable

X

A

direction

inference

of

Y

Figure: Prep. & meas.
experiment

• Joint probability:

%XY = TrA
(
%Y |A ?

(
%A|X ? ρX

))
• Marginal for Y :

ρY = TrA
(
%Y |A ? ρA

)
• Conditional probabilities:

%Y |X = TrA
(
%Y |A ? %A|X

)
• Bayesian update:

ρA → %A|X=x



Conditioning on a Direct Measurement

X

A

direction

inference

of

Y

Figure: Prep. & meas.
experiment

• Apply Bayes’ rule to %A|X and
%Y |A:

ρXY = TrA
(
%X |A ?

(
%A|Y ? ρY

))
• Marginal for X :

ρX = TrA
(
%X |A ? ρA

)
• Conditional probabilities:

%X |Y = TrA
(
%X |A ? %A|Y

)
• Bayesian update:

ρA → %A|Y =y

• c.f. Barnett, Pegg & Jeffers, J.
Mod. Opt. 47:1779 (2000).



Conditioning on a Remote Measurement

A B

X Y

Figure: Bipartite experiment

• Joint probability: ρXY = TrAB
((
%X |A ⊗ %Y |B

)
? ρAB

)
• B can be factored out: ρXY = TrA

(
%Y |A ?

(
%A|X ? ρX

))
• where %Y |A = TrB

(
%Y |BρB|A

)
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Expert Advice

ρS

(D)

S

S σS

(B)(A)

Alice Bob Debbie

σ

Figure: Initial State Assignments



Expert Advice

S

S

(D)
σ

Debbie

Figure: Final State Assignment

σ
(D)
S = f (σ

(A)
S , σ

(B)
S , ρ

(D)
S )



Classical Expert Advice

S

A

Alice Bob Debbie

Q  (S) P  (S)DQ  (S)B

Figure: Initial State Assignments



Classical Expert Advice

S

Debbie

Q  (S)
D

Figure: Final State Assignment

QD(S) = f (QA(S),QB(S),PD(S))



Diplomatic Rule

Q Q P Q
A B D D

Figure: Combining Incompatible Assignments

• Linear pool:

QD(S) = wAQA(S) + wBQB(S) + wDPD(S)



Scientific Rule

Q Q P Q
A B D D

Figure: Combining Independent Evidence

• Multiplicative (log-linear) pool:

QD(S) ∝ QA(S)QB(S)

PD(S)



Bayesian Approach

• Bayesian inference says that:

QD(S) = PD(S|RA = QA(S),RB = QB(S))

=
PD(RA = QA(S),RB = QB(S)|S)PD(S)∑
S PD(RA = QA(S),RB = QB(S)|S)PD(S)

• Similarly:

σ
(D)
S = ρ

(D)

S|RA=σ
(A)
S ,RB=σ

(B)
S

= ρ
(D)

RA=σ
(A)
S ,RB=σ

(B)
S |S

?

(
ρ

(D)
S ⊗ TrS

(
ρ

(D)

RA=σ
(A)
S ,RB=σ

(B)
S |S

? ρ
(D)
S

))



Quantum conditional independence

• Quantum Chain Rule:

ρABC = ρC|AB ?
(
ρB|A ? ρA

)

Definition
If ρC|AB = ρC|B then C is conditionally independent of A given B.

Theorem
The following conditions are equivalent:

• ρC|AB = ρC|B

• ρA|BC = ρA|B

• I(A : C|B) = 0.
Further, conditional independence implies that

• ρAC|B = ρA|BρC|B.
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Shared priors

S

ρS

Alice Bob Debbie

ρ

X Y

S X=x Y=y ρS

Figure: The Case of Shared Priors

Theorem
If X and Y are conditionally independent given S then

ρ
(D)
S|RA=ρS|X=x ,RB=ρS|Y =y

∝ ρS|X=xρ
−1
S ρS|Y =y



Shared Priors

Theorem (Stronger Version)
If the minimal sufficient statistics for X and Y with respect to S
are conditionally independent given S then

ρ
(D)
S|RA=ρS|X=x ,RB=ρS|Y =y

∝ ρS|X=xρ
−1
S ρS|Y =y



Topic

1 Introduction

2 Spatial Quantum Conditional States

3 Temporal Quantum Conditional States

4 Preparations and Measurements

5 Quantum Bayes’ rule

6 Bayesian Conditioning

7 Combining Expert Advice

8 Further results and open questions



Further results

Forthcoming paper(s) with R. W. Spekkens also include:

• Quantum sufficient statistics
• Quantum state compatibility
• Quantum pooling

Earlier papers with related ideas:

• M. Asorey et. al., Open.Syst.Info.Dyn. 12:319–329 (2006).
• M. S. Leifer, Phys. Rev. A 74:042310 (2006).
• M. S. Leifer, AIP Conference Proceedings 889:172–186

(2007).
• M. S. Leifer & D. Poulin, Ann. Phys. 323:1899 (2008).



Open question

What is the meaning of fully quantum Bayesian
conditioning?

ρB → ρB|A = ρA|B ?
(

TrB
(
ρA|B ? ρB

)−1 ⊗ ρB

)



Thanks for your attention!
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• Foundational Questions Institute (FQXi) Grant
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People who gave me office space when I didn’t have any
money

• Perimeter Institute
• University College London
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