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Quantum Theology "

The Church of the Larger Hilbert Space (J. Smolin)

Quantum theory is “about” a pure state vector of the
universe that evolves unitarily.

Schrédinger, Everett, Zurek, . ..

The Church of the Smaller Hilbert Space

Quantum theory is a noncommutative generalization of
classical probability theory.

Heisenberg, von Neumann, ...
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A Problem for the Smaller Church &

Classical probability theory does not care about causality
P(Z,W,..)

Conventional quantum formalism does. ..

“Spacelike” correlations “Timelike” correlations

PAB pB = Epa(pA)



A note on notation &

Conventional Formalism: Hilbert spaces are attached to
systems that persist in time.

States are a catalogue of probabilities for potential future
measurement outcomes.

Conditional States Formalism: Hilbert spaces are attached
to systems at a specific time, or more generally to
spacetime regions.

Always use a distinct label to distinguish input and output
systems of a channel.

Always combine regions via the tensor product.

States are a catalogue of probabilities for any classical
variables correlated with the region.



Classical vs. quantum Probability

Basic definitions

Classical Probability Quantum Theory
Sample space Hilbert space
Qz=1{1,2,...,dz} Hp=Co%
=span([1),[2),...,[da))
Probability distribution Quantum state
P(Z=2)>0 pa € £ (Ha)

> zeq, P(Z=2)=1 Tra(pa) =1




Classical vs. quantum Probability

Composite systems

Classical Probability Quantum Theory
Cartesian product Tensor product
Qzw = Qz x Qw Hag=Ha®Hp
Joint distribution Bipartite state
P(Z, W) PAB
Marginal distribution Reduced state
P(W) =3 ,cq, P(Z=2W) pB = Tra(pas)
Conditional distribution Conditional state
P(W|2) = 250 peia =7







Spatial correlations n

Classical correlations Quantum correlations

P(Z,W)=P(W|Z)P(2Z) pAB ="



Definition of Spatial QCS &

A spatial quantum conditional state of B given A is a positive
operator pg4 0N Hag = Ha ® Hp that satisfies

Trg (pgja) = Ia-

c.f. P(W|Z) is a positive function on Qzy = Q7 x Qy that

satisfies
> PW=w|Z2)=1.

weQw



Relation to reduced and joint States "

(pa; pBIA) - paB = (VPa® Ig) ppia(Vra® Ig)

PAB —  pa=Tre(pas)

PBIA = ( pa' @ IB> PAB < pa' ® /B>



Relation to reduced and joint States "

(pa; pBIA) - paB = (VPa® Ig) ppia(Vra® Ig)

PAB —  pa=Tre(pas)

PBIA = ( pa' @ IB> PAB < pa' ® /B>

Note: ppg|4 defined from pap is @ QCS on supp(pa) @ Hs.



Relation to reduced and joint States

Comparison of relations between joints, conditionals and

marginals

Classical Probability

Quantum Theory

P(Z,W)=P(W|Z)P(2Z)

P(Z,W
P(W’Z) = ,E:(Z))

pag = (vPa® Ig) pgia (v/PA® Ip)

PBIA =
pa ® IB) PAB < pa ® /B>




Drop implied identity operators, e.g.

Ia ® MpcNag ® Ic - MpcNag

Ma® Ig = Nag — Ma = Nas

Define non-associative “product”

Mx N =vVNMVN



Relation to reduced and joint States

Comparison of relations between joints, conditionals and

marginals

Classical Probability

Quantum Theory

P(Z,W)=P(W|Z)P(2Z)

P(Z,W
P(W’Z) = ,E:(Z))

pag = (vPa® Ig) pgia (v/PA® Ip)

PBIA =
pa ® IB) PAB < pa ® /B>




Relation to reduced and joint states "

Comparison of relations between joints, conditionals and

marginals
Classical Probability Quantum Theory
P(z, W) = P(W|Z)P(2) PAB = PBIA * PA

P(W|Z) = P§=Z(’zv)v) PB|A = PAB *021




Classical Probability as a Special Case "

Given a classical variable Z, define a Hilbert space H»
with a preferred basis {|1),,(2),,...,|dz),} labeled by
elements of Q. Then,

pz = Z P(Z = z)|z) (z|,
zeQy
Similarly,
pzw= Y. P(Z=2z,W=w)|zw) (zw|y,
zeQ7,weQy
pwiz= Y, PW=w|Z=2z)|z2w)(zw|z,

zZeQz WweQy






Correlations between subsystems

AN (O

Classical correlations Quantum correlations

P(Z, W) = P(W|Z)P(Z) PAB = PBIA™ PA



Dynamics &

Classical stochastic map Quantum CPT map

P(W) =Twz(P(2)) pB = Epa(pA)
- Z P(W|Z)P(2) =Tra (ppja+pa)?
Z



Temporal Conditionals and Joints

LetEpa: £(Ha) — £(Hp) be a CPT map and define
T,
oA = Eglar @ Ia (\¢+> <¢+|A7A) ;
Where |¢+>A’A - Z/ ‘jj>A'A' Then,

Epia(pa) = Tra (0Bja * pa) -




Temporal Conditionals and Joints

LetEpa: £(Ha) — £(Hp) be a CPT map and define
T,
oA = Eglar @ Ia (\¢+> <¢+|A7A) ;
Where |¢+>A’A - Z/ ‘jj>A'A' Then,

Epia(pa) = Tra (0Bja * pa) -

0BA = pgTA for some spatial QCS pg 4. Call such operators
temporal conditional states.



Temporal Conditionals and Joints

LetEpa: £(Ha) — £(Hp) be a CPT map and define
T,
oA = Eglar @ Ia (\¢+> <¢+|A7A) ;
Where |¢+>A’A - Z/ ‘jj>A'A' Then,

Epia(pa) = Tra (0Bja * pa) -

0BA = p;TA for some spatial QCS pg 4. Call such operators
temporal conditional states.

Can also define temporal joint state: oag = 0pja * pa-



Dynamics &

Classical stochastic map

P(W) =Twz(P(2)) B = Epja (pa)
— 3" P(W|2)P(2) =Tra (0814 * pa)
V4

Quantum CPT map






Quantum Classical Hybrids "

Composite of a quantum region and a classical random
variable.

Classical r.v. X has Hilbert space Hx with preferred basis
{Mx 12 [dx)x}-

Quantum region A has Hilbert space H 4.

Hybrid has Hilbert space Hxa = Hx @ Ha



Quantum Classical Hybrids "

Composite of a quantum region and a classical random
variable.

Classical r.v. X has Hilbert space Hx with preferred basis
{Mx 12 [dx)x}-

Quantum region A has Hilbert space H 4.
Hybrid has Hilbert space Hxa = Hx @ Ha

Operators on Hxx restricted to be of the form
Mxa= > 1x) (X|x ® Mx—x.a

XEQx



Preparations n
Classical preparation Quantum preparation

=> P(Z|X)P PA—ZP = x)p%)
X

pA = Trx (0aix * px)



Measurements &

Noisy measurement POVM measurement

)=2_P(Y12)P P(Y = y) = Tia (EY pa)
Z
py = Tra (oya* pa)



State Update rules "

A quantum instrument is a set of CP-maps ‘9:(3}|//)\ such that the
operators EY) form a POVM, where

EY = (e5)) ).

On obtaining y in a measurement of E/(\y):

v 8aloa)

PA— P’ = Tr 4 (E/E\y)pA)

The projection postulate is the special case:

5/(3}\/2\ (pa) = Zpa ( N pany )>



Instruments (Update Rules)

Classical instrument Quantum instrument

P(Y, W)= Z P(Y,W|2Z2)P(2) pys = Tra (ovBia * pa)
z

ovia = Tra (oysia)
P(Y|Z)=> P(Y,W|2)
w



Comparison of notation &

Dynamics pB = Epja(pa) pB = Tra (0814 * pa)

Preparation | pa=>_,P(X = x)pqu) pa = Trx (oax * px)

Measurement | P(Y = y) = Tra (EWpa) | py = Tra (ovja * pa)

Update P(Y = y)p¥) = 5/(3}& (pa) | pyB =Tra (ovBia* pa)







Classical Bayes' rule "

Two expressions for joint probabilities:

P(Z, W) = P(W|Z)P(Z)
= P(ZIW)P(W)

Bayes’ rule:
P(W|2)P(Z)

PZIW) = i

Alternative form of Bayes’ rule:

_ PW|2)P(2)
PEW) = < rwiz)P(2)




Spatial Quantum Bayes’ rule "

Two expressions for bipartite states:

PAB = PBIA* PA
= PAB* PB
Bayes’ rule:
PAB = PB|A* (PA ® P§1>
Alternative form of Bayes’ rule

1
PAIB = PBIA* (PA ® Tra (pBja* pA) )



Temporal Quantum Bayes’ rule "

Given an input state p4 and a temporal QCS g, 4, define
0aB = 0Bja* (pa® Ttg (084 * pa))
Temporal joint state now has two decompositions:

OAB = OBJA* PA = CAB* PB



State/POVM duality "

A temporal hybrid joint state can be written two ways:
OXA = QAIX * PX = OX|A X PA

The two representations are connected via Bayes’ rule:
—1
OX|A = 0AX * (px ® Trx (0aix * px) )

1
0AIX = OX|A* <T|’A (oxja*pa) ® PA)

P(X = X)oax=x VPAOX=x|A\/PA
OX=x|A = 0 PAX=x =
leenx P(X =x )QA\X:X’ Tra (QX:X\APA)







Quantum (Hybrid) Bayesian Conditioning

Classically, upon learning X = x:

P(Z) = P(Z|X = x)

Quantumly: pa — oax=x?



Projection postulate vs. Bayes’ rule "

Projection Postulate

Bayesian Conditioning

IpA (@PA@)

PA —

Tra (E,E\Y)PA>

N \/PAE,(L\y)\/PA
PA TrA<E(Y)p >
A PA

A




Conditioning on a Preparation Variable

I,

direction
of
inference

Prep. & meas.
experiment

Joint probability:
oxy = Tra (oyja* (0ax * px))
Marginal for Y:

py = Tra (oyja * pa)
Conditional probabilities:

ovix = Tra (ovia* 0ax)

Bayesian update:

PA = QAX=x



Conditioning on a Direct Measurement "

Apply Bayes’ rule to g4 x and
ﬁ Oy|A:
pxy = Tra (ox)a * (0a)y * py))

Marginal for X:

direction
of px = Tra (ox|a* pa)
inference

Conditional probabilities:
\ oxjy = Tra (oxja* 0ajy)

A

/x\

Prep. & meas.
experiment

Bayesian update:

PA = QA Y=y
c.f. Barnett, Pegg & Jeffers, J.
Mod. Opt. 47:1779 (2000).



Conditioning on a Remote Measurement

Bipartite experiment
Joint probability: pxy = Tras ((QX\A & QY|B) * pAB)
B can be factored out: pxy = Tra (0ya * (0ax * x))

where oy 4 = Trg (QY|BPB\A)






Expert Advice &

A (B) (D)
Gg ) Og %\PS
Alice Bob Debbie

Initial State Assignments



Expert Advice &

(D)

Og
Debbie

Final State Assignment

D A B D
o0 — (o o(®), 0



Classical Expert Advice "

04 (S) Op(S) Pp(S)
Alice Bob Debbie

Initial State Assignments



Classical Expert Advice "

0,(S)

A g

Debbie

Final State Assignment

Qp(S) = 1(Qa(S), Qs(S), Po(9))



Diplomatic Rule &

EE!I m

A QB ly D

Combining Incompatible Assignments

Linear pool:

Qp(S) = waQa(S) + waQp(S) + wpPp(S)



Scientific Rule A

Eml E

A QB lj D

Combining Independent Evidence

Multiplicative (log-linear) pool:

Qa(S)Qs(S)

Qp(S) o Po(S)



Bayesian Approach "

Bayesian inference says that:

Qp(S) = Pp(S|Ra = Qa(S), Rs = Qs(S))
__ Pp(Ra= Qa(S), Rs = Qs(5)|5)Pp(S)
>_s Po(Ra = Qa(S), Rs = Q(S)|S)Pp(S)

Similarly:
(D) _ (D)
g =
s =°F S|IRa=0$" ,Rg=0'?)

_ (D) (D) D D
— * Tr *
P Ra=o) Rg=0P)|s Ps @ s P Ra=0$" Rg=0")|S Ps



Quantum conditional independence

Quantum Chain Rule:

pasc = pcias * (PBiA * pa)



Quantum conditional independence

Quantum Chain Rule:

paBc = pciaB * (PBIA* PA)

If pciaB = pcig then C is conditionally independent of A given B.



Quantum conditional independence

Quantum Chain Rule:

paBc = pciaB * (PBIA* PA)

If pciaB = pcig then C is conditionally independent of A given B.

The following conditions are equivalent:
PC|AB = PC|B
PAIBC = PAB
I(A: C|B)=0.
Further, conditional independence implies that

PAC|B = PABPC|B-



Shared priors &

PSix=x Psly=y Ps

Alice / . Bob Debbie

The Case of Shared Priors

If X and Y are conditionally independent given S then

(D)

—1
PSIRa=psix—x-Re=psjy—y = PSIX=xPs PS|Y=y



Shared Priors &

If the minimal sufficient statistics for X and Y with respect to S
are conditionally independent given S then

(D) —1
pS\RA:P5|xzxu‘?B:Psw:y X PS|X=xPg PS|Y=y






Further results &

Quantum sufficient statistics
Quantum state compatibility
Quantum pooling

M. Asorey et. al., Open.Syst.Info.Dyn. 12:319-329 (2006).
M. S. Leifer, Phys. Rev. A 74:042310 (2006).

M. S. Leifer, AIP Conference Proceedings 889:172—186
(2007).

M. S. Leifer & D. Poulin, Ann. Phys. 323:1899 (2008).




Open question n

1
PB — PBIA = PAB* (TfB (paB*pB)  © PB)



Thanks for your attention!

Foundational Questions Institute (FQXi) Grant
RFP1-06-006

Perimeter Institute
University College London
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