Ontological Models in the Block Universe

Matthew Leifer Perimeter Institute

3rd July 2014

FWRQW 2014 - 1 / 31

Introduction
Explanatory Gaps
Possible Responses to the Gaps
Why can't I win the lottery?
Huw Price on Bell's theorem
Other Motivations
Overview of This Talk
Operational Circuit Models
Block Universe Ontological Models
Locality

Retrocausality

Conclusions

Introduction

Explanatory Gaps

Introduction

Explanatory Gaps

Possible Responses to the Gaps

Why can't I win the lottery?

Huw Price on Bell's theorem

Other Motivations

Overview of This Talk

Operational Circuit Models

Block Universe Ontological Models

Locality

Retrocausality

Conclusions

No-go theorems expose explanatory gaps in realist models for quantum theory.

□ *Bell's theorem*: There are nonlocal influences, but these cannot be used for signalling.

Contextuality: There are distinctions that do not make a difference.

□ *Excess baggage*: A qubit contains an infinite amount of information, but only one bit can be extracted.

Reality of the wavefunction: Many quantum phenomena are best explained if the wavefunction is epistemic, but nonetheless it must be real.

 Operationally time symmetric experiments cannot have a time symmetric model (Matt Pusey's talk).

Conclusion: Realist models require fine-tuning.

Possible Responses to the Gaps

Introduction

Explanatory Gaps

Possible Responses to the Gaps

Why can't I win the lottery?

Huw Price on Bell's theorem

Other Motivations

Overview of This Talk

Operational Circuit Models

Block Universe Ontological Models

Locality

Retrocausality

Conclusions

Reject realism: adopt a neo-Copenhagen approach.

Bite the bullet:

 Accept as a brute fact that these things exist and will remain fundamentally hidden.

Conjecture that these effects will be explicitly observed in the future (e.g. Valentini's approach to Bohmian mechanics).

Reject one or more of the (perhaps implicit) assumptions in the realist frameworks used to prove these theorems.

□ Retrocausality is an obvious starting point.

Why can't I win the lottery?

Introduction

Explanatory Gaps
Possible Responses to
the Gaps

- Why can't I win the lottery?
- Huw Price on Bell's theorem
- Other Motivations
- Overview of This Talk
- Operational Circuit Models

Block Universe Ontological Models

Locality

Retrocausality

- Retrocausality opens its own explanatory gap: Why can't I signal into the past?
- Two possible responses:
 - \Box Yes, but now we have one gap rather than several.
 - Apparent retrocausality is not fundamental, but emergent from a more fundamental "block universe" theory, which has no a priori causality. We may hope that no signalling into the past emerges naturally from this.

Huw Price on Bell's theorem

Introduction

Explanatory Gaps Possible Responses to the Gaps Why can't I win the

lottery?

Huw Price on Bell's theorem

Other Motivations

Overview of This Talk

Operational Circuit Models

Block Universe Ontological Models

Locality

Retrocausality

Conclusions

Huw Price states the logic of Bell's theorem as:

 $QM + Locality \Rightarrow Retrocausality$

- In Bell's framework, "free will", no superdeterminism, and no retrocausality are expressed by the same assumption, i.e. *measurement independence*.
- Bell locality is not compelling in the presence of retrocausality.
 Need a more general definition.
- □ As with Bell's framework, needs to be independent of the details of quantum theory, in order to support general conclusions.

Other Motivations

Introduction

Explanatory Gaps Possible Responses to the Gaps

Why can't I win the lottery?

Huw Price on Bell's theorem

Other Motivations

Overview of This Talk

Operational Circuit Models

Block Universe Ontological Models

Locality

Retrocausality

Conclusions

Existing theories that seem retrocausal; e.g. TSVF, transactional interpretation, Wharton's models; do not *prove* retrocausality. The mathematics is merely suggestive.

- □ Any physical theory has multiple mathematical formalisms. It would be wrong to draw conclusions about causality in classical physics from the Lagrangian formalism for example (c.f. FISH).
- □ So our arguments should rely only on the *operational* predictions of the theory, i.e. the stuff that all formalisms must agree upon.
- Counter Hypothesis of Instrumental Prediction Symmetry.
- Also need a framework to develop toy theories that illustrate how aspects of quantum theory can be accounted for by retrocausality, e.g. Helsinki model.
 - Hopefully, that framework will also contain a viable approach to all of quantum theory.

Overview of This Talk

Introduction

Explanatory Gaps

- Possible Responses to the Gaps
- Why can't I win the lottery?
- Huw Price on Bell's theorem

Other Motivations

Overview of This Talk

Operational Circuit Models

Block Universe Ontological Models

Locality

Retrocausality

Conclusions

Introduction

Operational Circuit Models

Block Universe Ontological Models

Locality

Retrocausality

Introduction				
Operational Circuit Models				
Gates				
Special Types of Gate				
Example: Quantum Theory				
Circuits Operational Circuit Models				
Block Universe Ontological Models				

Locality

Retrocausality

Conclusions

Operational Circuit Models

Introduction
Operational Circuit
Models
Gates
Special Types of Gate
Example: Quantum
Theory
Circuits
Operational Circuit
Models
Block Universe
Ontological Models
Locality

Retrocausality

Conclusions

The basic element of a circuit model is a *gate* G. A gate has a number of *input wires* and *output wires*, each with a *system type label*.

 $\begin{array}{c}
A & A \\
B & C \\
B & C
\end{array}$

- Each gate is associated with a random variable $X_{\rm G}$ taking a finite number of possible values.
- If $X_{\rm G}$ only has one possible value then the gate is a *transformation* and we can ignore $X_{\rm G}$.
- Let $I_{\rm G}$ and $O_{\rm G}$ denote the set of input and output wires of G respectively, and $W_{\rm G} = I_{\rm G} \cup O_{\rm G}$.

Special Types of Gate

Introduction Operational Circuit Models Gates Special Types of Gate Example: Quantum Theory Circuits Operational Circuit Models Block Universe Ontological Models

Retrocausality

Conclusions

A transformation with no input wires is a *preparation*. A gate with no input wires is an *ensemble preparation*.

$$P = \vdots = P = \vdots$$

A transformation with no output wires is a *unit* corresponding to throwing the system away. A gate with no output wires is a (destructive) *measurement*.

$$\vdots$$
 M = \vdots M

Circuit Framework		Quantum Case	
System type Input wires Output wires	$\begin{array}{c} A \\ I_{\rm G} \\ O_{\rm G} \end{array}$	Hilbert space Input space Output space	$\mathcal{H}_{A} \\ \mathcal{H}_{I_{G}} = \otimes_{A \in I_{G}} \mathcal{H}_{A} \\ \mathcal{H}_{O_{G}} = \otimes_{A \in O_{G}} \mathcal{H}_{A}$
Preparation Ensemble Preparation	${\rm P} \\ {\rm P}, X_{\rm P}$	State Ensemble of states	$\substack{ ho_{O_{\mathrm{P}}} \\ ho_{O_{\mathrm{P}}}^{x}, Prob(X_{\mathrm{P}})}$
Unit Measurement	$\stackrel{\rm M}{\rm M}, X_{\rm M}$	Trace POVM	$ \begin{split} & \operatorname{Tr}_{I_{\mathrm{M}}}\left(\cdot\right) \\ & \operatorname{Tr}_{I_{\mathrm{M}}}\left(E_{I_{\mathrm{M}}}^{x}\left(\cdot\right)\right) \end{split} $
Transformation Gate	${\operatorname{G}}{\operatorname{G}}, X_{\operatorname{G}}$	CPT map Instrument	$\mathcal{G}: \mathcal{L}(\mathcal{H}_{I_{\mathrm{G}}}) \to \mathcal{L}(\mathcal{H}_{O_{\mathrm{G}}})$ $\mathcal{G}^{x}: \mathcal{L}(\mathcal{H}_{I_{\mathrm{G}}}) \to \mathcal{L}(\mathcal{H}_{O_{\mathrm{G}}})$

Circuits

Introduction Operational Circuit Models

Gates

Special Types of Gate

Example: Quantum Theory

Circuits

Operational Circuit Models

Block Universe Ontological Models

Locality

Retrocausality

Conclusions

- Let $\mathfrak{G} = (G_1, G_2, \ldots)$ be a tuple of gates.
- Denote X_{G_i} by X_j . Similarly for, I_j , O_j and W_j .
- A *wiring* of \mathfrak{G} is an identification of the output wires of each gate with the input wires of others so that the system type labels match, there are no dangling wires, and no causal loops.

A *circuit* C is a tuple of gates \mathfrak{G}_C together with a wiring. W_C denotes the set of wires of C. Let $X_C = (X_1, X_2, \ldots)$.

FWRQW 2014 - 13 / 31

Operational Circuit Models

Introduction Operational Circuit Models Gates Special Types of Gate Example: Quantum Theory Circuits Operational Circuit Models Block Universe Ontological Models

Locality

Retrocausality

Conclusions

An *operational circuit model* consists of a set of gates and, for every circuit C that can be formed from tuples of those gates, a joint probability distribution

$$\mathsf{Prob}(X_{\boldsymbol{C}}|\mathfrak{G}_{\boldsymbol{C}}) = \mathsf{Prob}(X_1, X_2, \dots |\mathfrak{G}_{\boldsymbol{C}}).$$

Quantum example:

I We should impose additional causality constraints, e.g. no operational signalling into the past.
FWRQW 2014 – 14 / 31

Introduction	
Operational Circuit Models	
Block Universe Ontological Models	
Block Universe Ontological Models	
Constraint Models Probabilistic Constraint Models	
Locality	

Retrocausality

Conclusions

Block Universe Ontological Models

Block Universe Ontological Models

Introduction
Operational Circuit Models
Block Universe Ontological Models
Block Universe Ontological Models
Constraint Models Probabilistic Constraint Models

Retrocausality

Locality

- Two circuits are of the same *type* if their wirings and system type labels are the same.
- An *ontological model* for an operational circuit model specifies, for each circuit type:
 - $\hfill\square$ A probability space (Λ,Σ,μ) where
 - Λ is the *ontic state space*.
 - μ is some notion of the "uniform" measure.
 - \Box A rule for computing the outcome probabilities in terms of μ that reproduces the operational predictions.
- We consider two classes of model:
 - □ Constraint models
 - □ Probabilistic constraint models

Constraint Models

Introduction Operational Circuit Models

Block Universe Ontological Models

Block Universe Ontological Models

Constraint Models

Probabilistic Constraint Models

Locality

Retrocausality

Conclusions

In a constraint model, each circuit C is associated with a constraint (relation) $\Gamma \subseteq \Lambda$.

Let
$$x = (x_1, x_2, \ldots)$$
. $X_C = x$ denotes $(X_1 = x_1, X_2 = x_2, \ldots)$.

Each tuple of values x for the random variables is associated with a constraint $\Gamma_x \subseteq \Gamma$ such that, for $x \neq x'$,

$$\Gamma_x \cap \Gamma_{x'} = \emptyset.$$

and

```
\cup_x \Gamma_x = \Gamma.
```

The probability rule is then given by

$$P(X_{C} = x | \mathfrak{G}_{C}) = \int_{\Lambda} P(X_{C} = x | \mathfrak{G}_{C}, \lambda) d\mu(\lambda | \mathfrak{G}_{C})$$
$$= \int_{\Lambda} \chi_{\Gamma_{x}}(\lambda) \frac{\chi_{\Gamma}(\lambda) d\mu(\lambda)}{\mu(\Gamma)} = \frac{\mu(\Gamma_{x})}{\mu(\Gamma)}.$$

FWRQW 2014 - 17 / 31

Probabilistic Constraint Models

Introduction	•
Operational Circuit Models	•
Block Universe Ontological Models	•
Block Universe Ontological Models	•
Constraint Models Probabilistic Constraint Models	
Locality	•
Retrocausality	•

Conclusions

In a probabilistic constraint model, the constraint associated with a circuit is not fixed, but drawn according to a probability measure.

Finite example: The circuit C is associated with constraints $(\Gamma^{(j)}, \Gamma_x^{(j)})$ with probability p_j . Then,

$$P(X_{\mathfrak{C}} = x) = \sum_{j} p_{j} \frac{\mu(\Gamma_{x}^{(j)})}{\mu(\Gamma^{(j)})}.$$

Introduction
Operational Circuit Models
Block Universe Ontological Models
Locality
Einstein Separability

		101	011		νp	a	uo	1
(Ge	ne	era	liz	ed	B	ell	

Locality

PR-Box Model

PR-Box Model

A Quantum Model

Retrocausality

Conclusions

Locality

Einstein Separability

Introduction
Operational Circuit Models
Block Universe Ontological Models
Locality
Einstein Separability
Generalized Bell Locality
PR-Box Model
PR-Box Model
A Quantum Model
Retrocausality

Let W_{C} be the set of wires in a circuit C. A model is *separable* if

$$\Lambda = \times_{w \in W_{\mathbf{C}}} \Lambda_w.$$

- Typically, we want Λ_w to only depend on the system type label of the wire.
- Note: Separability is not essential for defining locality, but it simplifies matters to assume it.

Generalized Bell Locality

Introduction Operational Circuit Models Block Universe Ontological Models Locality Einstein Separability Generalized Bell Locality

PR-Box Model

PR-Box Model

A Quantum Model

Retrocausality

Conclusions

In a separable constraint model, let $\Lambda^j = \times_{w \in W_j} \Lambda_w$.

A separable constraint model is *local* if, for a circuit C, each gate G_j is associated with constraints $(\Gamma^j, \Gamma^j_{x_j})$ defined on Λ^j , i.e.

 $\Gamma^j \subseteq \Lambda^j, \qquad \Gamma^j_{x_j} \cap \Gamma^j_{x'_j} = \emptyset \qquad ext{and} \qquad \cup_{x_j} \Gamma^j_{x_j} = \Gamma^j.$

The circuit constraints are then of the form $\Gamma_x = \bigcap_j \left(\Gamma_{x_j}^j \times_{w \notin W_j} \Lambda_w \right) \qquad \Gamma = \bigcap_j \left(\Gamma^j \times_{w \notin W_j} \Lambda_w \right).$

For a probabilistic constraint model, the constraints are drawn independently for each gate according to a local probability measure.

PR-Box Model

Introduction Operational Circuit Models Block Universe Ontological Models Locality Einstein Separability Generalized Bell Locality

PR-Box Model

PR-Box Model

A Quantum Model

Retrocausality

Conclusions

To model the PR-Box, there is one system type. Each wire has ontic state space $\{0, 1\} \times \{0, 1\}$. Label the first bit a and the second x.

 μ is the counting measure.

There is one preparation gate with two output wires

$$\begin{array}{c} a_1, x_1 \\ \hline PR \\ a_2, x_2 \end{array}$$

Its constraint is $x_1 \oplus x_2 = a_1a_2$, i.e. using order (a_1, a_2, x_1, x_2) .

 $\Gamma^{\mathrm{PR}} = \{(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 1), (1, 1, 1, 0)\}$

FWRQW 2014 - 22 / 31

PR-Box Model

Introduction

Operational Circuit Models

Block Universe Ontological Models

Locality

Einstein Separability Generalized Bell Locality

PR-Box Model

PR-Box Model

A Quantum Model

Retrocausality

Conclusions

There are two measurement gates with one input wire and binary valued random variable.

a, x a, x 1

and constraints
$$\Gamma_x^a = \{(a, x)\}.$$

Consider the circuits

with $M_1, M_2 \in \{0, 1\}.$

I This gives the PR-Box correlations.

A Quantum Model

Introduction Operational Circuit Models Block Universe Ontological Models Locality Einstein Separability Generalized Bell Locality PR-Box Model PR-Box Model A Quantum Model

Retrocausality

- Singlet correlations can be simulated using shared randomness and one PR-Box¹.
- Thus, we can convert the PR-Box model into a singlet model just by adding shared randomness and modifying the constraints.
 - □ Wires have two additional variables $\vec{\lambda}$, $\vec{\eta}$, which are 3D real unit vectors with a priori Haar measure.
 - Singlet and measurement gates need to impose some additional constraints relating the $\vec{\lambda}$'s and $\vec{\eta}$'s to the *x*'s and *a*'s. These are as in the CGMP model.
- Note: The measurement directions are not present in the ontic states.

¹N. J. Cerf, N. Gisin, S. Massar and S. Popescu, PRL 94:220403 (2005)

Introduction
Operational Circuit Models
Block Universe Ontological Models
Locality
Retrocausality
Causal Models Identifying Retrocausality
Are Non-Causal Models Always Retrocausal?
Huw Price's take on Bell's Theorem Bevisited

Conclusions

Retrocausality

Causal Models

Introduction Operational Circuit Models Block Universe Ontological Models

Locality

Retrocausality

Causal Models Identifying

Retrocausality

Are Non-Causal Models Always Retrocausal? Huw Price's take on Bell's Theorem Revisited

- A local constraint model is *causal* if, for every gate G_j , Γ^j is a function. This means that, ignoring the outcome, the transformation is a deterministic function from input to output.
- A local probabilistic constraint model is *causal* if the probabilities are nonzero only on such functional constraints. This means that the transformation acts like a stochastic transition from input to output.
 - Causal models satisfy Bell's definition of local causality.

- □ Constraint models become *deterministic* LHVTs.
- Probabilistic constraint models become general (possibly stochastic) LHVTs.
- Thus we have a true generalization of Bell's local causality.

Identifying Retrocausality

 λ_5

 G_4

 G_5

Η

 G_6

 λ_7

 λ_8

 λ_9

$$P(\lambda^-, X^- | \mathbf{F}) \neq P(\lambda^-, X^- | \mathbf{H}).$$

Causal models are not retrocausal, but the PR-Box and singlet models are.

FWRQW 2014 - 27 / 31

Are Non-Causal Models Always Retrocausal?

Introduction

Operational	Circuit
Models	

Block Universe Ontological Models

Locality

Retrocausality

Causal Models Identifying Retrocausality

Are Non-Causal Models Always Retrocausal?

Huw Price's take on Bell's Theorem Revisited

Conclusions

- Causal models are not retrocausal, but are non-causal models always retrocausal?
- \Box No, because there could be an equivalent model that is causal.

□ Example:

- Constraint model: $\Gamma^{\mathfrak{G}} = \{(0,0), (0,1), (1,0), (1,1)\}.$
- Probabilistic causal model: $p(0|0) = p(1|0) = p(0|1) = p(1|1) = \frac{1}{2}.$
- Two models are equivalent if they have the same probabilities $P(\lambda, X_C | \mathfrak{G}_C)$.
- A model is *implicitly causal* if it has an equivalent causal model. Implicitly causal models are not retrocausal.
- Conjecture: Non implicitly causal models are retrocausal.

Huw Price's take on Bell's Theorem Revisited

Introduction **Operational Circuit** Models **Block Universe Ontological Models** Locality Retrocausality Causal Models Identifying Retrocausality Are Non-Causal Models Always Retrocausal? Huw Price's take on Bell's Theorem Revisited Conclusions

We can now take "Locality" in Huw's implication to mean generalized Bell locality. Then, if the conjecture is true, we would have

 $QM + Locality \Rightarrow Non implicitly causal \Rightarrow Retrocausal$

on	ctio	bd	Intro	
----	------	----	-------	--

Operational Circuit Models

Block Universe Ontological Models

Locality

Retrocausality

Conclusions

Further Ideas and Open Questions

Further Ideas and Open Questions

In	tr	0	d	u	С	ti	0	n	

Operational Circuit Models

Block Universe Ontological Models

Locality

Retrocausality

Conclusions

Further Ideas and Open Questions

Further ideas:

- Can define generalized notions of noncontextuality, ψ -epistemic models, etc. Toy models that satisfy them can be found.
- Open questions:
 - Do communication complexity results block resolving excess baggage in these models?
 - □ Extension of Spekkens' toy theory.
 - □ Are there natural principles that can be used to derive quantum theory in this framework?
 - □ Formulating similar models in spacetime rather than circuits.