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� No-go theorems expose explanatory gaps in realist models for quantum

theory.

� Bell’s theorem: There are nonlocal influences, but these cannot be used

for signalling.

� Contextuality: There are distinctions that do not make a difference.

� Excess baggage: A qubit contains an infinite amount of information, but

only one bit can be extracted.

� Reality of the wavefunction: Many quantum phenomena are best

explained if the wavefunction is epistemic, but nonetheless it must be

real.

� Operationally time symmetric experiments cannot have a time symmetric

model (Matt Pusey’s talk).

� Conclusion: Realist models require fine-tuning.
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� Reject realism: adopt a neo-Copenhagen approach.

� Bite the bullet:

� Accept as a brute fact that these things exist and will remain

fundamentally hidden.

� Conjecture that these effects will be explicitly observed in the future (e.g.

Valentini’s approach to Bohmian mechanics).

� Reject one or more of the (perhaps implicit) assumptions in the realist

frameworks used to prove these theorems.

� Retrocausality is an obvious starting point.
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� Retrocausality opens its own explanatory gap: Why can’t I signal into

the past?

� Two possible responses:

� Yes, but now we have one gap rather than several.

� Apparent retrocausality is not fundamental, but emergent from a

more fundamental “block universe” theory, which has no a priori

causality. We may hope that no signalling into the past emerges

naturally from this.
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� Huw Price states the logic of Bell’s theorem as:

QM + Locality ⇒ Retrocausality

� In Bell’s framework, “free will”, no superdeterminism, and no

retrocausality are expressed by the same assumption, i.e.

measurement independence.

� Bell locality is not compelling in the presence of retrocausality.

Need a more general definition.

� As with Bell’s framework, needs to be independent of the details of

quantum theory, in order to support general conclusions.
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� Existing theories that seem retrocausal; e.g. TSVF, transactional

interpretation, Wharton’s models; do not prove retrocausality. The

mathematics is merely suggestive.

� Any physical theory has multiple mathematical formalisms. It would be

wrong to draw conclusions about causality in classical physics from the

Lagrangian formalism for example (c.f. FISH).

� So our arguments should rely only on the operational predictions of the

theory, i.e. the stuff that all formalisms must agree upon.

� Counter Hypothesis of Instrumental Prediction Symmetry.

� Also need a framework to develop toy theories that illustrate how aspects of

quantum theory can be accounted for by retrocausality, e.g. Helsinki model.

� Hopefully, that framework will also contain a viable approach to all of

quantum theory.
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� The basic element of a circuit model is a gate G. A gate has a number

of input wires and output wires, each with a system type label.

A

G

A

B C

B

� Each gate is associated with a random variable XG taking a finite

number of possible values.

� If XG only has one possible value then the gate is a transformation

and we can ignore XG.

� Let IG and OG denote the set of input and output wires of G
respectively, and WG = IG ∪OG.
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� A transformation with no input wires is a preparation. A gate with no

input wires is an ensemble preparation.

P P

?>

89
... =

...

� A transformation with no output wires is a unit corresponding to

throwing the system away. A gate with no output wires is a

(destructive) measurement.

M M

=<

:;
... =

...
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Circuit Framework Quantum Case

System type A Hilbert space HA

Input wires IG Input space HIG = ⊗A∈IGHA

Output wires OG Output space HOG
= ⊗A∈OG

HA

Preparation P State ρOP

Ensemble Preparation P, XP Ensemble of states ρxOP
,Prob(XP)

Unit M Trace TrIM (·)
Measurement M, XM POVM TrIM

(

Ex
IM

(·)
)

Transformation G CPT map G : L(HIG) → L(HOG
)

Gate G, XG Instrument Gx : L(HIG) → L(HOG
)
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� Let G = (G1,G2, . . .) be a tuple of gates.

� Denote XGj
by Xj . Similarly for, Ij , Oj and Wj .

� A wiring of G is an identification of the output wires of each gate with the

input wires of others so that the system type labels match, there are no

dangling wires, and no causal loops.

G1

76
01

A

G3

A

G6B (/).G5

B A

G8

54
23

G2

76

01

B C

G7

A

C

G4

B C

G9

54
23A B

� A circuit C is a tuple of gates GC together with a wiring. WC denotes the

set of wires of C . Let XC = (X1, X2, . . .).
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� An operational circuit model consists of a set of gates and, for every circuit C

that can be formed from tuples of those gates, a joint probability distribution

Prob(XC |GC) = Prob(X1, X2, . . . |GC).

� Quantum example:

G1

7601
A

G3

A

G5

54

23
B

G2

76

01

B C

C

G4

B

G6

5423A B

Prob(X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5, X6 = x6|GC)

= TrI5I6

(

Ex5

I5
⊗ Ex6

I6
Gx4

4

(

Gx3

3

(

ρx1

O1
⊗ ρx2

O2

)))

× Prob(X1 = x1)Prob(X2 = x2)

� We should impose additional causality constraints, e.g. no operational

signalling into the past.
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� Two circuits are of the same type if their wirings and system type

labels are the same.

� An ontological model for an operational circuit model specifies, for

each circuit type:

� A probability space (Λ,Σ, µ) where

� Λ is the ontic state space.

� µ is some notion of the “uniform” measure.

� A rule for computing the outcome probabilities in terms of µ that

reproduces the operational predictions.

� We consider two classes of model:

� Constraint models

� Probabilistic constraint models
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� In a constraint model, each circuit C is associated with a constraint (relation)

Γ ⊆ Λ.

� Let x = (x1, x2, . . .). XC = x denotes (X1 = x1, X2 = x2, . . .).

� Each tuple of values x for the random variables is associated with a

constraint Γx ⊆ Γ such that, for x 6= x′,

Γx ∩ Γx′ = ∅.

and

∪xΓx = Γ.

� The probability rule is then given by

P (XC = x|GC) =

∫

Λ

P (XC = x|GC , λ)dµ(λ|GC)

=

∫

Λ

χΓx
(λ)

χΓ(λ)dµ(λ)

µ(Γ)
=
µ (Γx)

µ (Γ)
.
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� In a probabilistic constraint model, the constraint associated with a

circuit is not fixed, but drawn according to a probability measure.

� Finite example: The circuit C is associated with constraints

(Γ(j),Γ
(j)
x ) with probability pj . Then,

P (XC = x) =
∑

j

pj
µ(Γ

(j)
x )

µ(Γ(j))
.
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� Let WC be the set of wires in a circuit C. A model is separable if

Λ = ×w∈WC
Λw.

G1
?>
89

λ1

G3

λ2

G5

=<

:;
λ3

G2

?>

89

λ4 λ5

λ6

G4

λ7

G6
=<
:;λ8 λ9

� Typically, we want Λw to only depend on the system type label of the

wire.

� Note: Separability is not essential for defining locality, but it simplifies

matters to assume it.
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� In a separable constraint model, let Λj = ×w∈Wj
Λw.

� A separable constraint model is local if, for a circuit C, each gate Gj

is associated with constraints (Γj ,Γj
xj
) defined on Λj , i.e.

Γj ⊆ Λj , Γj
xj

∩ Γj
x′

j

= ∅ and ∪xj
Γj
xj

= Γj .

� The circuit constraints are then of the form

Γx = ∩j

(

Γj
xj

×w/∈Wj
Λw

)

Γ = ∩j

(

Γj ×w/∈Wj
Λw

)

.

� For a probabilistic constraint model, the constraints are drawn

independently for each gate according to a local probability measure.
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� To model the PR-Box, there is one system type. Each wire has ontic

state space {0, 1} × {0, 1}. Label the first bit a and the second x.

� µ is the counting measure.

� There is one preparation gate with two output wires

PR
?>
89

a1, x1

a2, x2

� Its constraint is x1 ⊕ x2 = a1a2, i.e. using order (a1, a2, x1, x2).

ΓPR = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0),

(1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 1), (1, 1, 1, 0)}
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� There are two measurement gates with one input wire and binary

valued random variable.

a, x "%#$0
a, x "%#$1

and constraints Γa
x = {(a, x)}.

� Consider the circuits

PR
?>
89

a1, x1 *-+,M1

a2, x2 *-+,M2

with M1,M2 ∈ {0, 1}.

� This gives the PR-Box correlations.
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� Singlet correlations can be simulated using shared randomness and

one PR-Box1.

� Thus, we can convert the PR-Box model into a singlet model just by

adding shared randomness and modifying the constraints.

� Wires have two additional variables ~λ, ~η, which are 3D real unit

vectors with a priori Haar measure.

� Singlet and measurement gates need to impose some additional

constraints relating the ~λ’s and ~η’s to the x’s and a’s. These are

as in the CGMP model.

� Note: The measurement directions are not present in the ontic states.

1
N. J. Cerf, N. Gisin, S. Massar and S. Popescu, PRL 94:220403 (2005)
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� A local constraint model is causal if, for every gate Gj , Γj is a function. This

means that, ignoring the outcome, the transformation is a deterministic

function from input to output.

� A local probabilistic constraint model is causal if the probabilities are nonzero

only on such functional constraints. This means that the transformation acts

like a stochastic transition from input to output.

� Causal models satisfy Bell’s definition of local causality.

P
76
01

λ1 *-+,M1

λ2 *-+,M2

� Constraint models become deterministic LHVTs.

� Probabilistic constraint models become general (possibly stochastic)

LHVTs.

� Thus we have a true generalization of Bell’s local causality.
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λ− = (λ1, λ2, λ3, λ5, λ6, λ7)

X− = (X1, X2, X3, X4)

� A model is retrocausal if

P (λ−, X−|F) 6= P (λ−, X−|H).

� Causal models are not retrocausal, but the PR-Box and singlet models are.
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� Causal models are not retrocausal, but are non-causal models always

retrocausal?

� No, because there could be an equivalent model that is causal.

� Example: λ1
G

λ2

� Constraint model: ΓG = {(0, 0), (0, 1), (1, 0), (1, 1)}.

� Probabilistic causal model:

p(0|0) = p(1|0) = p(0|1) = p(1|1) = 1

2
.

� Two models are equivalent if they have the same probabilities

P (λ,XC |GC).

� A model is implicitly causal if it has an equivalent causal model. Implicitly

causal models are not retrocausal.

� Conjecture: Non implicitly causal models are retrocausal.
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� We can now take “Locality” in Huw’s implication to mean generalized

Bell locality. Then, if the conjecture is true, we would have

QM + Locality ⇒ Non implicitly causal ⇒ Retrocausal
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� Further ideas:

� Can define generalized notions of noncontextuality, ψ-epistemic

models, etc. Toy models that satisfy them can be found.

� Open questions:

� Do communication complexity results block resolving excess

baggage in these models?

� Extension of Spekkens’ toy theory.

� Are there natural principles that can be used to derive quantum

theory in this framework?

� Formulating similar models in spacetime rather than circuits.


	Introduction
	Explanatory Gaps
	Possible Responses to the Gaps
	Why can't I win the lottery?
	Huw Price on Bell's theorem
	Other Motivations
	Overview of This Talk

	Operational Circuit Models
	Gates
	Special Types of Gate
	Example: Quantum Theory
	Circuits
	Operational Circuit Models

	Block Universe Ontological Models
	Block Universe Ontological Models
	Constraint Models
	Probabilistic Constraint Models

	Locality
	Einstein Separability
	Generalized Bell Locality
	PR-Box Model
	PR-Box Model
	A Quantum Model

	Retrocausality
	Causal Models
	Identifying Retrocausality
	Are Non-Causal Models Always Retrocausal?
	Huw Price's take on Bell's Theorem Revisited

	Conclusions
	Further Ideas and Open Questions


