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Measuring polynomial invariants of multiparty quantum states
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We present networks for directly estimating the polynomial invariants of multiparty quantum states under
local transformations. The structure of these networks is closely related to the structure of the invariants
themselves and this lends a physical interpretation to these otherwise abstract mathematical quantities. Spe-
cifically, our networks estimate the invariants under local unitaty) transformations and under stochastic
local operations and classical communicati@LOCQ. Our networks can estimate the LU invariants for
multiparty states, where each party can have a Hilbert space of arbitrary dimension and the SLOCC invariants
for multiqubit states. We analyze the statistical efficiency of our networks compared to methods based on
estimating the state coefficients and calculating the invariants.
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I. INTRODUCTION invariants for multiparty states with arbitrary local Hilbert-
) ) ] _ space dimension and the SLOCC invariants for multiqubit
Entanglement is a key resource in quantum informationstates. In both cases, the protocol works for both pure and
and computation since it can be used to perform tasks suGhixed states. In particular, the structure of the networks re-
as teleportation, superdense coding, and key distributionjects the structure of the invariants in a very simple way.
Therefore, it is important to find ways of classifying and | sec. 11, we review the construction of local invariants
quantifying the entanglement properties of quantum stategnder LU transformations. We merely sketch the theory of
Central to this is the idea that locally invariant quantities Cayolynomial invariants here and no proofs of the results are
be used to characterize entanglement. Invariants under locglven. The interested reader can find the mathematical details
unitary (LU) and more general transformations, such as, Stop Refs.[16,17. In Sec. lll, the networks for measuring these
chastic local operations and classical communicationnyariants are presented. We then turn to invariants under
(SLOCO, have been extensively studied in this contexts| occ transformations, reviewing their construction in Sec.
[1-13. o _ IV and presenting networks to measure them in Sec. V. In
However, invariants are rather abstract mathematical oy der to construct the networks for SLOCC invariants we
jects and it is natural to ask whether any physical meaning,ske use of the structural physical approximati&®PA) to
can be given to them. One way of doing this is to investigatgyonphysical maps introduced in R¢L8]. The relevant de-
how these quantities might be measured given a number @fjis of this are presented in Sec. VI. Finally, in Sec. VIl we
copies of an unknown state. This could be done by simplyya|yate estimation protocols based on our networks by com-

the invariants. However, finding procedures to measure thgiate coefficients.

invariants directly may be more efficient and also lends the
invariants a physical interpretation as “collective observ-

ables” of the state. Il. POLYNOMIAL INVARIANTS UNDER LU
For bipartite pure states, the Schmidt coefficients are a TRANSEFORMATIONS
complete set of LU invariants and optimal protocols for mea-
suring them were given in Refl14]. Also, in Ref.[15] a A. Pure states
method was given for estimating the polynomial SLOCC  Two n-party pure stateby),|y) e ®?:1Cdj are equivalent
invariants of a general tWO-QUbit state. under LU transformations if
In this paper we present networks for estimating two
classes of polynomial invariants for multiparty states: the LU [y =U1®@Uy® -+ @ Uy, (1)

whereU; e U(d)) is a unitary operation acting on the Hilbert
space of thgth party. States on the same orbit under this
*Present address: Perimeter Institute for Theoretical Physics, 3action have the same entanglement properties. Given a
King Street North, Waterloo, Ontario, N2J 2W9, Canada. Emailparticular state, we might be interested in determining

address: mleifer@perimeterinstitute.ca which orbit it belongs to. This can be done by establishing
"Present address: Department of Mathematics, University of Brisa canonical point on each orbit, such as the Schmidt form
tol, University Walk, Bristol, BS8 1TW, United Kingdom. for bipartite states. However, canonical forms rapidly be-
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Y e .. =3 dkijke). (5
1 /. 3 k..
:\ ° A general polynomial function of the state coefficients and
2w T ? their complex conjugates can be written as
FIG. 1. Diagrammatic representation of the quartic two-qubit ik ik inioko... .
LU invariant J, given in Eq.(4). The first index of each term is Cilf Ky igigky QU TETQEEZ g (6)

represented by a circle and the second by a square. A line join

indices that are contracted withs it the polynomial(6) has equal numbers afs anda’s and

all the indices of then’s are contracted using the invariant
. ... tensoré with those of thea"’s, each index being contracted
come more complicated as the number of parties is ing;it an index corresponding to the same party then the poly-
qreased. Alternatively, we can construct' poly_nomlal func-nomial is manifestly invariant under LU transformations.
tions of the state coefficients that are invariant on each g, polynomials can be written in terms of permutations

orbit. Theorems from invariant theory guarantee that g, yhe jndices. Let be the degree of the polynomial i
finite set of such polynomials is enough to distinguish the(and hence also the degreed). Let o, 7, ... be permuta-
generic orbits under this action. We now review the con<jog acting on the seft, 2 'r} and |été':'(0 i)

struction of such a set. Then the invariants can be written as

1. One party 35= 2 altikglelde .. i nnku) - Y@l aokue

Consider the stathy)=3%,a/|i) in a single party Hilbert 7)
spaceCd, where{|i)} is an orthonormal basis. The only inde-
pendent invariant under unitary transformations of this stat
is the norm(y| ). This may be written as

dn fact, o can always be chosen to be the identity permuta-

tion by permuting thex terms in this expression, provided

the remaining permutations are redefined appropriately. Ad-

(U= da =2, aiéfa;, 2) ditionallyz eachJ; can be assqciated with a diagram con-
i ij structed in the same way as Fig. 1.

The invariantsl; are enough to completely distinguish the
eneric orbits under LU transformations. In fact, invariant
heory guarantees that only a finite collection of them are
needed to do this. However, except in a few simple cases, it
is unknown whichl; invariants form minimal complete sets.

where & is the Kronecker deltad is the U(d) invariant
tensor and invariants for larger numbers of parties ar
formed by similar contractions of the state coefficients with
their complex conjugates.

2. Two qubits B. Mixed states

As an example, consider a two-qubit state)) Two mixed statep,p’ are equivalent under LU transfor-
:Eﬁjzo Alij). There is only one independent quadratic in- mations if
variant, which is simply the norm of the state. However, at L + T t
quartic order we find the following invariant, which is alge- p'=U1®U® - @UppUy @ Uy @ - @ Uy (8)
braically independent of the norm, The LU invariants for mixed states can be derived by rewrit-
_ i i dadadada ** _ i i k% ing the pure state invarian(®) in terms of the density matrix
= 1010/22838484883c - o . = Wigl22qr - -
J=2 dilia IR ERICER 2 da Figip%igiy” p=|#)y and noting that the resulting expressions are still
(3) invariant under LU transformations for general density ma-

E bi K hat this is th v other ind trices. This can be done by noting that terms such as
or two quibits, we know that this Is the only other indepen- ‘i, . are elements of the density matrix. A general
dent invariant because every state has a canonical Schmi fensit zjrzﬁétrix mav be written in terms of an orthonormal

form |¢)=1p|00)+1-p|11), with 1/2<p=1 andJ=2(p? y y

X . basis as
-p)+1 determines uniquely.
_ Another useful way of representing the invariant is to de p=> plrlnnp..||]k. -}mnp--+], (9)
fine two permutationsr, 7 on the set{1,2} whereo is the
identity permutation and(1)=2,7(2)=1. Then and the corresponding expression for an LU invariant is
— i1 020 o = i1j1Kq. .. i2joKo. .. itk
Y= 2 althial? i Hiool ) @ =2 k- Pk Pioirokur (10
This also suggests a diagrammatic way of representing the
invariant(see Fig. 1 lIl. MEASURING INVARIANTS UNDER LU
TRANSFORMATIONS
3. General case Network construction

A multipartite pure state can be written in terms of an  The general construction of the network used to measure
orthonormal basis as follows: the LU invariants is shown in Fig. 2. It generalizes networks
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Measure Measure
o H T H 10> vs[1> % H T H 105 vsl1>
p— | A P g %\/ii
. | P — A, — _
i, U e —
" FIG. 3. Network for measuring the two-qubit quartic
p : invariant.

FIG. 2. General construction of network to measure polynomialobtain the imaginary part. For the specific example of the
LU invariants. two-qubit invariant(3) we have

for estimating functionals of bipartite states given in Refs. Yo7 = (lap,(Ha, a0, ® SwAPs g, |1 B, | a8,
[15,19,2Q. To measure an LU invariant of degreeé « (and (16)
also degree in ) we taker copies of the unknown stage
In addition, we take a single qubit in the st#@ and apply ~ Note also that the physical constructionRf is closely re-
a Hadamard rotatiol to transform the state ttil/y2)(|0) lated to the diagram associated with(compare Figs. 1 and
+|1)). In the next step, we apply a unitary operatldron the 3, for example.
r copies ofp controlled by the Hadamard rotated qubit. Fi-  Finally, note that ifp is a mixed state then applying the
nally we perform a measurement on the single qubit in thesame procedure without modification will give the invariants
{|0y,|1)} basis. The expectation value of this measuremeneof Eq. (10).
will be It has previously been notefb] that all homogeneous
polynomial LU invariants are determined by the expectation
(Z)=Rd Tr(Up®"]. (1)  values of two observables ancopies of a state. Here, we
) o ) have given an explicit network for measuring these observ-
Whenp=|y)(y] is a pure state then this is equivalent to  apjes " Also, similar constructions can be made to estimate
_ or or other polynomial functionals of quantum statgZ0] and
(2)=Re(yf*U[)"". (12) these can be modified to enable the estimation to proceed by

In order to determine networks for measuring the LU invari-/0cal operations and classical communicat{@®CC) [21],

ants, it only remains to show that there i&Jasuch that the I-€- With no collective operations over tineparties. A simi-
invariants can be expressed in the fofh). lar modification would enable the LU invariants to be esti-

To do this for pure states, we have to express polynomial§ated by LOCC, but this would affect the efficiency of the
of the form(7) in the form of Eq.(12). First, we note that &stimation discussed in Sec. VII B.
@k =(ijk- | ), ajy...=(ylijk--+), and to each permutation

o in Eq. (7) we associate a permutation matrix IV. POLYNOMIAL INVARIANTS UNDER SLOCC
d When attempting to classify entanglement, it is often use-
P,= > lioio@)y Aoz i, (13)  ful to consider invariants under local transformations that are
ipig. . dr=1 more general than unitary transformations. An important

. class of transformations, SLOCC was introduced in Ref.
whereP, acts on the Hilbert space of the same party for eadf22]; and invariants under SLOCC were studied in Refs.

of ther copies of the statg)). Then to eachr we associate [7-13. In Sec. V we construct a network to measure the

the permutation matrix modulus squared of these invariants for the case where each
- arty has a single qubjt.e., the Hilbert space i€?)®"].
P;=P,®@P,®P,® -, (14 PAY gle qubf p 8091
where P,,P.,P,,... act on theHilbert space of the same A. Pure states
party aso,7,u,... in EQ.(7) on each of the copies of the

state. Then Eq(7) can be written as Two n-party pure statepy) and|’) are equivalent under

SLOCC if it is possible to obtaihy’) with nonzero probabil-
J:= (P )" (15) ity via a sequence of LOCC starting from a single copy of

| and vice versa. In Ref23], this criterion was shown to

Note that the tensor product that appears in this equation ise equivalent to

different from that of Eq(14). Each component of the prod-

uct in Eqg. (14) acts on the Hilbert space of a single party [fY=M; @My, ® -+ & M|, 17

across all the copies of the state in Eq15). SinceP; is

unitary these invariants can be estimated with the network iwhere M; e GL(d;) is an invertible linear transformation

Fig. 2 by settingd=P; to obtain the real part and=iP;to  acting on thed;-dimensional Hilbert space of thj¢h party.
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In what follows, we find polynomial invariants for the section, we will restrict to the case wher@ndp’ are related
special case wherbl; e SL(2), i.e., the transformation has by
unit determinant and each party has a single qubit. Networks . T T T
to determine the modulus squared of these invariants will be P ~ Mi@M;® - ® MppM1 @ M ® -+ ® My,
given in Sec. V. Note that it is not possible to measure the (21

e ) ) . -
?L(Z) invariants directly becguse the%/ are n(_)t invariant un—With M. e SL(2). The resulting expressions may not be in-
er global phase transformatioh® — € ?+), which have no . :
physical significance. It is for this reason that we insteadvarlant under more general SLOCC transformations, but
measure the modulus squared, which is invariant under the8® relat(_ad to important quantities in entanglement theory
phase transformations. as described in Sec. IV C

Under general G2)" transformations, the polynomial Unl_|ke th_e LU Invariants, It is clear _th_at E¢20) cannot .
n . - . -~ be written simply in terms of the coefficients of the density
SL(2)" invariants are still invariant up to a multiplicative

S . matrix p= . However, |K;|? can be written as follows:
factor, which is just some power of the determinantMbf P14l Ks

®M,® -+ ®M,. Thus, ratios of appropriate powers of these 2
_ : ) ) n 2_
polynomials will be invariants under G2)". IKs2=>, €16, €k ky " €, i €j, i €k ik,
1
1. Two qubits X MM Nie P12 . .. cMrogMy gl Pr— 1Py
In order to illustrate the polynomial invariants under (0] ALK ok ik
. . oI ADKu(D) - Jlo@Id2Ku@-- ... Sl n)Ku(r)-
SL(2)", f|.rst consider the case .Where=2. Two stateq ) Xpm‘,(l)nﬂféml)..ng(z)nf(z)ﬁ,i(z}.‘ ma(r)nfmlﬁﬂ(r)...
=320, ojk) and|y)=2%_; o'jk) satisfy Eq.(17) if 22)
a’' =MjaMy;. (18)  and these will also be $R)" invariants for mixed states.
This means that det)=de{«’) is an SL(2) X SL(2) invari-
ant, since déM,)=de{M,)=1. This may be written as C. Examples of SL(2)" invariants
deta=> eilizfjljzailjla'izjza (19) The K; invariants are especially interesting in entangle-

ment theory because many important entanglement measures
where the totally antisymmetric tenseg is the SL(2) in-  can be easily calculated from them. For example, in the case
variant tensor. For two-qubit pure states, all otherof two qubits, the concurrencg24] is defined as a simple
SL(2) X SL(2) invariants that can be constructed are alge-function of the eigenvalues gfp, where

braically dependent on this one. P=0y® prTUy® ay, (23)
2. General case and stands for transpose in the computational basis. These
eigenvalues can be calculated from[(pp)™ for m
=1,2,3,4,which are simply the moduli squared &f;
invariants. In Ref[15], networks were constructed to es-
timate these invariants for two qubits and we will gener-
alize this construction t&; invariants for larger number

The SL(2)" invariants can be constructed in a similar way
to the LU invariants except the invariant tensor is neyy
and we contract’'s with o’s instead ofa™’s. Thus, polyno-
mials of the form

2 o of parties.

Ko =2 €€,k " €i_i,Eir_yj, & _ o Q0o H0Kutar - Another interesting example is the 3-tang|@5,26,
1 which is defined for pure states as the modulus of the fol-
X @i d2Ku@) -+ o ghonidnKu(r) - (20) lowing three-qubitk; invariant.

are manifestly invariant and all other invariants are algebra- 2

ically dependent on thea6]. Note that it is straightforward 72 = 2 @/V1Mai22%¢ ; € | €\ €, €}, €k, @IF 4,
to generalize this construction to the case where each party !

has ad-dimensional Hilbert space by contracting with the (24)
SL(d)" invariant tensore; i, instead ofe¢;;. However, it

is not yet clear how to measure these invariants becau
the effect of the higher ranktensors cannot be physically
implemented by linear transformations on states.

SThe 3-tangle gives information about the genuine three-party
eentanglement between the qubits.

Finally, note that the&K; invariants can be given similar
diagrammatic representations to thginvariants. This is il-

lustrated for the 3-tangle in Fig. 4.
B. Mixed states

In general, two mixed states,p’ are equivalent under
SLOCC if there exists two completely positive mapsé,
which are implementable via LOCC with nonzero probabil- The modulus squared of the SLOCC invariants can be
ity of success such that =&;(p) andp=E,(p’). In order to  measured using a network similar to Fig. 2 except that the
derive invariants using the expressions from the precedingnknown statesp must be preprocessed prior to the

V. MEASURING SLOCC INVARIANTS
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0 o 000 o ¢ These cannot be implemented exactly, but instead we can
1 m /: 3 apply an approximation.
= —a Alp) = al +BA(p), (30)

FIG. 4. Diagrammatic representation of the 3-tangle. The first h | is the identit t & | iti
index of each term is represented by a circle, the second by wherel IS the idenuty operator an ./ are real positive

square, and the third by a triangle. A line joins indices that areconstants chosen such thiais completely positive. If we fix

contracted with are. a and B such thatA is trace preserving and is maximized,
then the results of Ref18] imply that

controlledV operation. IfK;; is of degree in « then we will

needr copies ofp. The preprocessing stage will consist of 220

collective unitary operations and completely positive maps Alp) = o(3/2)nr 4 1 onr + 2(32nr 1A(p)’ (31
that act on the entire Hilbert space of theopies ofp. The
resulting statey’, will yield the expectation value wheren is the number of qubits in each copy of the state and
_ , r is the degree of th&; for which we are estimating the
(2)=ReTr(Up")] (29 modulus squared.

for the measurement at the end of the network. In this sec- On replacingA with A in our network the expectation
tion, we describe the preprocessing operations and unitaryalue of theZ measurement still allows the modulus squared
operationdJ that enable the modulus squared of the SLOCCof the K; invariant to be determined via
invariants to be written in this form.

First, we apply the inverse of the permutation matrix as- IKs
sociated witho to ther copies ofp to obtain P]}p‘g”P(;.

The second, and final, part of the preprocessing stage is tdowever, the SPA does affect the accuracy to which the

apply a completely positive map to the state. To describe invariant is determined. This is discussed further in the fol-

A we first define the multiparty analog of E@®3): lowing section. Additionally, in Ref[21], it is shown that
this sort of SPA can be implemented by LOCC. Thus, the

pP=oy®0y® - @oyploy®o,® - ®oy. (26)  SLOCC invariants could also be estimated by LOCC, but the
efficiency discussed in Sec. VII B would be affected.

2= (2B 4 1)(7) — 20, (32

Next, we define a map that acts on a product ofstates by
applying the tilde operation to the even numbered states as
follows: VII. EVALUATION

APp1®pr®  @p)=p1®@Pa® p3® -+ Py, The main aim of the protocols presented in Secs. Ill and
(27) V is to provide a physical interpretation for the polynomial
invariants. However, we have not yet addressed the question
where eaclp; is ann-party state. of how efficient these measurement protocols are. In this
Unfortunately,A cannot be physically implemented, since section, we compare the efficiency of our protocols to proto-
it is not a completely positive map. This can be dealt with bycols based on simply measuring the state coefficients and
using the SPA to\, which we will call A. A is the “closest”  calculating the invariants. We use unbiased estimators based
physical map to\. This is discussed in Sec. VI, but for now on counting[27-29. Also, we perform the analysis in the
we construct the network as & could be implemented per- limit where a large number of copies of the state have been

fectly. measured, so that the variances of the estimates are small and
The final preprocessed stgié will be can be treated to first order in all subsequent calculations. We
note that more sophisticated estimation procedures are also
p' = A(P5p™"P;). (28)  possible[30], but our purpose here is to compare the net-

works to methods that are easily accessible experimentally.
Measuring the state coefficients would clearly be a more
straightforward procedure to perform experimentally than

Next, the controlled) operation in our network must be
chosen such thgz)=|K (Z;Whenp’ is used as the input. One

can easily verify that the pairwisewap gate, defined by using our network. Although more parameters have to be
Uld) ® [dp) @ ++ @ |br_1) © | by def[e_rmined, this does not necessqrily mean that it i_s a less

efficient method for estimating the invariants than using our
=2 ® ) ® - @ [hr) ® |1, (290 networks. There are several quite general reasons why this

might be the case.
First, suppose that we are interested in measuring a com-
plete set of polynomial LU invariants for some unknown
VI. THE STRUCTURAL PHYSICAL APPROXIMATION state ofn parties, where each party hasl-aimensional Hil-
bert space. In general, we do not know how many we would
The A operation encountered in the preceding section isieed to measure, but parameter counting argumidnig]
an example of a positive, but not completely positive mapshow that the number of local degrees of freedom is linear in

Where|¢j> is ann-party state fulfills this condition.
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n whereas the total number of degrees of freedom is eXxpoy .« we can use the fact that (& =O(NY and
nential inn. Thus, for largen almost all the degrees of free-
dom are nonlocal. Even for moderately sizedthere are var[var(F)] ON™), i.e., va(F) converges to the true vari-
nearly as many algebraically independent invariants as the@nce much faster tharF converges toF so va(F)

are state coefficien{85]. In addition, the invariants are typi- ~var(F). Thus, in this limit we have that

cally highly nonlinear functions of the state coefficients. For

these reasons, we expect that measuring a complete set of N = l(l -F? (36)
invariants directly will generally not be more efficient than € '

measuring the state coefficients for langeSimilar consid- . . . .
erations also apply to the SLOCC invariants. Recall that for the LU invariants, the real and imaginary

Despite these considerations, it may be the case that ofarts of the invariant are estimated independently and that
networks are more efficient if we are only interested in meaeaCh use of the network requiresopies of the state, where
suring a small incomplete subset of the invariants. Also, they is the degree of the invariant in. If we use the same
may be more efficient for estimating complete sets whés number of samples for estimating both the real and imagi-
small. For this reason, and for simplicity, we concentrate orfary parts then the total number of copies required is
estimating two-qubit invariants in this section. r

There are also other reasons why our protocols may not M= =(2-[3,%. (37)
be efficient. For example, our protocols only employ a two- €
outcome measurement for eachopies of the state whereas In some cases, we knoavpriori that the invariant is always
estimating the state coefficients uses a two-outcome meaeal or always imaginary. If this is the case, then we can
surement on each copy. Also, for tKe invariants, we will  achieve the same accuracy with
see that using the SPA introduces a lot of noise into the
measurement. Nonetheless, there are still some cases where M = f(l -
using our networks is more efficient than estimating the state €
coefficients.

J;?). (38)

For the SLOCC invariants, each use of the network requires
r copies of the state, whereis the degree of the invariant in
A. Statistical analysis of the network a. Also the estimate of the invariant must take into account
éhe use of the SPA via E@32). In this case, the total number

For a particular setup in our network we make repeate
P P P of copies required is

measurements of an observaBlewith expectation valué&

=Tr(Up'). Z is a random variabl€36] with distribution M= _[(2(3/2 "y 1)2

) 7L (39
p(Z=+1)=35(1+F),

Notice that the 3" term will dominate the term in the square
p(Z=-1)= %(1 -F). (33) bracket for largen andr. This is due to the noise introduced

_ into the measurement by the SPA.
If we define the eventZ=+1 as a success and spt

=P(Z=+1) then repeating the netwoik times is equivalent B. Comparison to methods based on state estimation

to performingN Bernoulli trials. The number of successés In order to evaluate our protocols, we compare them to

Iesx ae(r:?;[?oonmva\lllﬁga}zl\lz !V,'\tlh _a(’\? ;gin;)d'litr;auggﬂj ;Z‘i S methods based on estimating the density matrix of the state
P P= and then calculating the invariants. We do this by estimating
periment, the observed number of succeddesan be used each state coefficient using observations on single copies of

to compute an unbiased estimator fargiven by the state. This is known as homodyne tomogra(dee Ref.
~ [30] for an overview and also Reff27—-29). This is not the
F= 2&5 1 (34) optimal way of reconstructing the state in geng8dl], but it
N will greatly simplify the analysis.
with variance 1. Example: Two-qubit LU invariants
~ 1 A general two-qubit density matrix can be written as
var(F) = —(1 -F?). (35)

1<|2® |2+EajaJ ® |2+E bil, ® g +E Rio; @ ak)
We are interested in determlnlng how many trials are needed 4

in order for the estimaté to be reasonably accurate. Spe- (40)

cifically, we would like to quantify how many trials are . . ) . )
. ~ The two-qubit LU invariant(3) can be written in terms of
needed to make the variance of (ar< e for somee>0. In
these coefficients as

an expenmental situation, we would not be able to calcu-
late va(F) from our data, so we would have to estimate it j= Tl’(pB) _ <1 +E bz)

- (41)
using the sample variance; Vaj. However, in the limit
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Eachb; can be determined by simply performingog 2. Example: Two-qubit SLOCC invariants

measurement oiN; copies of Bob's half of the state. The For the two-qubit SLOCC invariants we take the qua-
probability distributions of the associated random variablesiratic invariant(19) as an example. In terms of the decom-

are given by position (40) this can be written as
1
p(a;= +1) =3(1+by), |K|2:Z[1_E(ajz+bj2)+2 R2|. (47)
j ik
ploj=-1) = %(1 -by). (42 If we estimate this by measuring all 15 of tseate coeffi-

cients an equal number of times then by a similar analysis

Thus, eaclb; can be estimated in the same wayFRai to the LU case we find that we need at least

Eq. (34) and we have that

15
T Nz—[z[af(l—af)+bj(1—bf)]
var(b)) = TL (43) de|
J + SR —Rfk)} (49
We can then construct an estimator fogiven by jk

-1 ~ copies of the state to get a variange.
J= —<1 +> b,-2>, (44) Taking averages, one finds that fewer copies are needed in
2 i the state coefficient protocol by a facts x 10° despite the
: . . . - fact that many more parameters have to be estimated in this
which will be biased, but in the lard; limit protocol than when using our network. This is largely due to
1-p2 the factor 22 that appears in Eq39), which arises from the
v~ o 11
i i

(45) noise introduced by the SPA. This suggests that other esti-
mation and detection protocols based on the $P3,19
may be less efficient than parameter counting arguments
to first order in vafb). would imply. In fact, there are no states for which our net-
If we make the additional restriction that each observablevork performs better than the coefficient estimation method.
o is sampled the same number of tim@s., N;=N/3) then  Even in the best possible case for our network, the state

we must take coefficient method requires fewer states by about three or-
ders of magnitude.
3
N=—2 bj(1-bf) (46) VIIl. CONCLUSIONS
j
We have presented networks for measuring the polyno-
for our estimate to have variancge. mial invariants of quantum states under LU and SLOCC

One way to compare this to the result for our network istransformations. The structure of these networks is closely
to take an average over all pure states. If we assume that aklated to the structure of the invariants themselves and thus
pure states are equally likely, i.e., integréBec. VII B)and  gives the invariants a physical interpretation. Comparison of
Eq. (46) using Haar measurgor details see Ref32]), then these networks with methods based on estimating the state
we find that on average we will need 3/2 times as manycoefficients indicate that the networks are of limited practical
copies of the state if we use the coefficient estimationuse for estimating complete sets of invariants. Indeed, our
method. This is half of what one might expect from param-results suggest that any estimation procedure that employs
eter counting alone, since three times as many parameters gre SPA is statistically inefficient even when the number of
estimated in the state coefficient method. The factor of two iparties is smal[37].
explained by the fact that each use of our network uses two We know that no procedure for estimating invariants di-
copies of the state. rectly can outperform protocols based on estimating the state

However, it is possible to find parameter ranges in whichcoefficients as the number of parties is increased. For small
the state coefficient method performs better than our netaumber of parties it seems that there can be some increase in
works. One such range is given by settilg=b,=0, efficiency, but the optimal protocol is not known in general.
—y3/5<by<3/5. This illustrates the fact that parameter
counting does not always reflect the statistical efficiency of a ACKNOWLEDGMENTS
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