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We present networks for directly estimating the polynomial invariants of multiparty quantum states under
local transformations. The structure of these networks is closely related to the structure of the invariants
themselves and this lends a physical interpretation to these otherwise abstract mathematical quantities. Spe-
cifically, our networks estimate the invariants under local unitary(LU) transformations and under stochastic
local operations and classical communication(SLOCC). Our networks can estimate the LU invariants for
multiparty states, where each party can have a Hilbert space of arbitrary dimension and the SLOCC invariants
for multiqubit states. We analyze the statistical efficiency of our networks compared to methods based on
estimating the state coefficients and calculating the invariants.
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I. INTRODUCTION

Entanglement is a key resource in quantum information
and computation since it can be used to perform tasks such
as teleportation, superdense coding, and key distribution.
Therefore, it is important to find ways of classifying and
quantifying the entanglement properties of quantum states.
Central to this is the idea that locally invariant quantities can
be used to characterize entanglement. Invariants under local
unitary (LU) and more general transformations, such as, sto-
chastic local operations and classical communication
(SLOCC), have been extensively studied in this context
[1–13].

However, invariants are rather abstract mathematical ob-
jects and it is natural to ask whether any physical meaning
can be given to them. One way of doing this is to investigate
how these quantities might be measured given a number of
copies of an unknown state. This could be done by simply
measuring the coefficients of the state and then calculating
the invariants. However, finding procedures to measure the
invariants directly may be more efficient and also lends the
invariants a physical interpretation as “collective observ-
ables” of the state.

For bipartite pure states, the Schmidt coefficients are a
complete set of LU invariants and optimal protocols for mea-
suring them were given in Ref.[14]. Also, in Ref. [15] a
method was given for estimating the polynomial SLOCC
invariants of a general two-qubit state.

In this paper we present networks for estimating two
classes of polynomial invariants for multiparty states: the LU

invariants for multiparty states with arbitrary local Hilbert-
space dimension and the SLOCC invariants for multiqubit
states. In both cases, the protocol works for both pure and
mixed states. In particular, the structure of the networks re-
flects the structure of the invariants in a very simple way.

In Sec. II, we review the construction of local invariants
under LU transformations. We merely sketch the theory of
polynomial invariants here and no proofs of the results are
given. The interested reader can find the mathematical details
in Refs.[16,17]. In Sec. III, the networks for measuring these
invariants are presented. We then turn to invariants under
SLOCC transformations, reviewing their construction in Sec.
IV and presenting networks to measure them in Sec. V. In
order to construct the networks for SLOCC invariants we
make use of the structural physical approximation(SPA) to
nonphysical maps introduced in Ref.[18]. The relevant de-
tails of this are presented in Sec. VI. Finally, in Sec. VII we
evaluate estimation protocols based on our networks by com-
paring them to simple techniques based on estimating the
state coefficients.

II. POLYNOMIAL INVARIANTS UNDER LU
TRANSFORMATIONS

A. Pure states

Two n-party pure statesucl , uc8lP ^ j=1
n Cdj are equivalent

under LU transformations if

uc8l = U1 ^ U2 ^ ¯ ^ Unucl, s1d

whereUj PUsdjd is a unitary operation acting on the Hilbert
space of thej th party. States on the same orbit under this
action have the same entanglement properties. Given a
particular state, we might be interested in determining
which orbit it belongs to. This can be done by establishing
a canonical point on each orbit, such as the Schmidt form
for bipartite states. However, canonical forms rapidly be-
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come more complicated as the number of parties is in-
creased. Alternatively, we can construct polynomial func-
tions of the state coefficients that are invariant on each
orbit. Theorems from invariant theory guarantee that a
finite set of such polynomials is enough to distinguish the
generic orbits under this action. We now review the con-
struction of such a set.

1. One party

Consider the stateucl=oi=1
d aiuil in a single party Hilbert

spaceCd, wherehuilj is an orthonormal basis. The only inde-
pendent invariant under unitary transformations of this state
is the normkc ucl. This may be written as

kcucl = o
i

aiai
* = o

i,j
aidi

ja j
* , s2d

where di
j is the Kronecker delta.di

j is the Usdd invariant
tensor and invariants for larger numbers of parties are
formed by similar contractions of the state coefficients with
their complex conjugates.

2. Two qubits

As an example, consider a two-qubit stateucl
=oi,j=0

1 ai j ui j l. There is only one independent quadratic in-
variant, which is simply the norm of the state. However, at
quartic order we find the following invariant, which is alge-
braically independent of the norm,

J = o ai1j1ai2j2di1

i3di2

i4d j1

j4d j2

j3ai3j3
* ai4j4

* =o ai1j1ai2j2ai1j2
* ai2j1

* .

s3d

For two qubits, we know that this is the only other indepen-
dent invariant because every state has a canonical Schmidt
form ucl=Îpu00l+Î1−pu11l, with 1/2øpø1 andJ=2sp2

−pd+1 determinesp uniquely.
Another useful way of representing the invariant is to de-

fine two permutationss ,t on the seth1,2j wheres is the
identity permutation andts1d=2,ts2d=1. Then

Jss,td = o ai1j1ai2j2aiss1d jts1d

* aiss2d jts2d

* . s4d

This also suggests a diagrammatic way of representing the
invariant ssee Fig. 1d.

3. General case

A multipartite pure state can be written in terms of an
orthonormal basis as follows:

ucl = o
i,j ,k. . .

ai jk. . .ui jk¯l. s5d

A general polynomial function of the state coefficients and
their complex conjugates can be written as

o ci1j1k1¯i2j2k2¯

ir j rkr¯ ai1j1k1¯ai2j2k2¯
¯air j rkr¯

*
¯ . s6d

If the polynomials6d has equal numbers ofa’s anda* ’s and
all the indices of thea’s are contracted using the invariant
tensord with those of thea* ’s, each index being contracted
with an index corresponding to the same party then the poly-
nomial is manifestly invariant under LU transformations.

Such polynomials can be written in terms of permutations
on the indices. Letr be the degree of the polynomial ina
(and hence also the degree ina*). Let s ,t ,m. . . be permuta-
tions acting on the seth1,2, . . . ,rj and letsW =ss ,t ,m , . . .d.
Then the invariants can be written as

JsW = o ai1j1k1¯ai2j2k2¯
¯aiss1d jts1dkms1d¯

* aiss2d jts2dkms2d¯

*
¯ .

s7d

In fact, s can always be chosen to be the identity permuta-
tion by permuting thea terms in this expression, provided
the remaining permutations are redefined appropriately. Ad-
ditionally, eachJsW can be associated with a diagram con-
structed in the same way as Fig. 1.

The invariantsJsW are enough to completely distinguish the
generic orbits under LU transformations. In fact, invariant
theory guarantees that only a finite collection of them are
needed to do this. However, except in a few simple cases, it
is unknown whichJsW invariants form minimal complete sets.

B. Mixed states

Two mixed statesr ,r8 are equivalent under LU transfor-
mations if

r8 = U1 ^ U2 ^ ¯ ^ UnrU1
†

^ U2
†

^ ¯ ^ Un
†. s8d

The LU invariants for mixed states can be derived by rewrit-
ing the pure state invariantss7d in terms of the density matrix
r= uclkcu and noting that the resulting expressions are still
invariant under LU transformations for general density ma-
trices. This can be done by noting that terms such as
ai1j1¯ai2j2¯

* are elements of the density matrix. A general
density matrix may be written in terms of an orthonormal
basis as

r = o rmnp. . .
i jk¯ ui jk¯lkmnp¯ u, s9d

and the corresponding expression for an LU invariant is

JsW = o riss1d jts1dkms1d¯

i1j1k1¯ riss2d jts2dkms2d¯

i2j2k2¯
¯rissrd jtsrdkmsrd¯

ir j rkr¯ . s10d

III. MEASURING INVARIANTS UNDER LU
TRANSFORMATIONS

Network construction

The general construction of the network used to measure
the LU invariants is shown in Fig. 2. It generalizes networks

FIG. 1. Diagrammatic representation of the quartic two-qubit
LU invariant J, given in Eq.(4). The first index of each term is
represented by a circle and the second by a square. A line joins
indices that are contracted with ad.
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for estimating functionals of bipartite states given in Refs.
[15,19,20]. To measure an LU invariant of degreer in a (and
also degreer in a*) we taker copies of the unknown stater.
In addition, we take a single qubit in the stateu0l and apply
a Hadamard rotationH to transform the state tos1/Î2dsu0l
+ u1ld. In the next step, we apply a unitary operationU on the
r copies ofr controlled by the Hadamard rotated qubit. Fi-
nally we perform a measurement on the single qubit in the
hu0l , u1lj basis. The expectation value of this measurement
will be

kZl = RefTrsUr^rdg. s11d

Whenr= uclkcu is a pure state then this is equivalent to

kZl = Rekcu^rUucl^r . s12d

In order to determine networks for measuring the LU invari-
ants, it only remains to show that there is aU such that the
invariants can be expressed in the forms11d.

To do this for pure states, we have to express polynomials
of the form (7) in the form of Eq.(12). First, we note that
ai jk¯=ki jk¯ ucl, ai jk¯

* =kc u i jk¯l, and to each permutation
s in Eq. (7) we associate a permutation matrix

Ps = o
i1,i2,. . .,ir=1

d

uiss1diss2d¯issrdlki1i2 ¯ i ru, s13d

wherePs acts on the Hilbert space of the same party for each
of the r copies of the stateucl. Then to eachsW we associate
the permutation matrix

PsW = Ps ^ Pt ^ Pm ^ ¯ , s14d

where Ps ,Pt ,Pm , . . . act on theHilbert space of the same
party ass ,t ,m , . . . in Eq.s7d on each of ther copies of the
state. Then Eq.s7d can be written as

JsW = kcu^rPsW ucl^r . s15d

Note that the tensor product that appears in this equation is
different from that of Eq.s14d. Each component of the prod-
uct in Eq. s14d acts on the Hilbert space of a single party
across all ther copies of the state in Eq.s15d. SincePsW is
unitary these invariants can be estimated with the network in
Fig. 2 by settingU=PsW to obtain the real part andU= iPsW to

obtain the imaginary part. For the specific example of the
two-qubit invariants3d we have

Jss,td = kcuA1B1
kcuA2B2

IA1A2
^ SWAPB1B2

uclA1B1
uclA2B2

.

s16d

Note also that the physical construction ofPsW is closely re-
lated to the diagram associated withJsW scompare Figs. 1 and
3, for exampled.

Finally, note that ifr is a mixed state then applying the
same procedure without modification will give the invariants
of Eq. (10).

It has previously been noted[6] that all homogeneous
polynomial LU invariants are determined by the expectation
values of two observables onr copies of a state. Here, we
have given an explicit network for measuring these observ-
ables. Also, similar constructions can be made to estimate
other polynomial functionals of quantum states[20] and
these can be modified to enable the estimation to proceed by
local operations and classical communication(LOCC) [21],
i.e., with no collective operations over then parties. A simi-
lar modification would enable the LU invariants to be esti-
mated by LOCC, but this would affect the efficiency of the
estimation discussed in Sec. VII B.

IV. POLYNOMIAL INVARIANTS UNDER SLOCC

When attempting to classify entanglement, it is often use-
ful to consider invariants under local transformations that are
more general than unitary transformations. An important
class of transformations, SLOCC was introduced in Ref.
[22]; and invariants under SLOCC were studied in Refs.
[7–13]. In Sec. V we construct a network to measure the
modulus squared of these invariants for the case where each
party has a single qubit[i.e., the Hilbert space issC2d^n].

A. Pure states

Two n-party pure statesucl and uc8l are equivalent under
SLOCC if it is possible to obtainuc8l with nonzero probabil-
ity via a sequence of LOCC starting from a single copy of
ucl and vice versa. In Ref.[23], this criterion was shown to
be equivalent to

uc8l = M1 ^ M2 ^ ¯ ^ Mnucl, s17d

where Mj PGLsdjd is an invertible linear transformation
acting on thedj-dimensional Hilbert space of thej th party.

FIG. 2. General construction of network to measure polynomial
LU invariants.

FIG. 3. Network for measuring the two-qubit quartic
invariant.
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In what follows, we find polynomial invariants for the
special case whereMj PSLs2d, i.e., the transformation has
unit determinant and each party has a single qubit. Networks
to determine the modulus squared of these invariants will be
given in Sec. V. Note that it is not possible to measure the
SLs2dn invariants directly because they are not invariant un-
der global phase transformationsucl→eiuucl, which have no
physical significance. It is for this reason that we instead
measure the modulus squared, which is invariant under these
phase transformations.

Under general GLs2dn transformations, the polynomial
SLs2dn invariants are still invariant up to a multiplicative
factor, which is just some power of the determinant ofM1
^ M2 ^ ¯ ^ Mn. Thus, ratios of appropriate powers of these
polynomials will be invariants under GLs2dn.

1. Two qubits

In order to illustrate the polynomial invariants under
SLs2dn, first consider the case wheren=2. Two statesucl
=o j ,k=1

2 a jku jkl and uc8l=o j ,k=1
2 a8 jku jkl satisfy Eq.(17) if

a8 = M1aM2
T. s18d

This means that detsad=detsa8d is an SLs2d3SLs2d invari-
ant, since detsM1d=detsM2d=1. This may be written as

det a = o ei1i2
e j1j2

ai1j1ai2j2, s19d

where the totally antisymmetric tensorei j is the SLs2d in-
variant tensor. For two-qubit pure states, all other
SLs2d3SLs2d invariants that can be constructed are alge-
braically dependent on this one.

2. General case

The SLs2dn invariants can be constructed in a similar way
to the LU invariants except the invariant tensor is nowei j ,
and we contracta’s with a’s instead ofa* ’s. Thus, polyno-
mials of the form

KsW = o
1

2

ei1i2
e j1j2

ek1k2
¯ eir−1ir

e j r−1j r
ekr−1kr

aiss1d jts1dkms1d¯

3aiss2d jts2dkms2d¯
¯ aissrd jtsrdkmsrd¯ s20d

are manifestly invariant and all other invariants are algebra-
ically dependent on thesef16g. Note that it is straightforward
to generalize this construction to the case where each party
has ad-dimensional Hilbert space by contracting with the
SLsddn invariant tensorei1i2. . .id

instead ofei j . However, it
is not yet clear how to measure these invariants because
the effect of the higher ranke tensors cannot be physically
implemented by linear transformations on states.

B. Mixed states

In general, two mixed statesr ,r8 are equivalent under
SLOCC if there exists two completely positive mapsE1,E2
which are implementable via LOCC with nonzero probabil-
ity of success such thatr8=E1srd andr=E2sr8d. In order to
derive invariants using the expressions from the preceding

section, we will restrict to the case wherer andr8 are related
by

r8 = M1 ^ M2 ^ ¯ ^ MnrM1
†

^ M2
†

^ ¯ ^ Mn
†

s21d

with Mj PSLs2d. The resulting expressions may not be in-
variant under more general SLOCC transformations, but
are related to important quantities in entanglement theory
as described in Sec. IV C

Unlike the LU invariants, it is clear that Eq.(20) cannot
be written simply in terms of the coefficients of the density
matrix r= uclkcu. However,uKsW u2 can be written as follows:

uKsW u2 = o
1

2

ei1i2
e j1j2

ek1k2
¯ eir−1ir

e j r−1j r
ekr−1kr

3em1m2en1n2ep1p2
¯ emr−1mrenr−1nrepr−1pr

3rmss1dnts1dpms1d¯

iss1d jts1dkms1d¯ rmss2dnts2dpms2d¯

iss2d jts2dkms2d¯
¯ rmssrdntsrdpmsrd¯

issrd jtsrdkmsrd¯

s22d

and these will also be SLs2dn invariants for mixed states.

C. Examples of SL„2…n invariants

The KsW invariants are especially interesting in entangle-
ment theory because many important entanglement measures
can be easily calculated from them. For example, in the case
of two qubits, the concurrence[24] is defined as a simple
function of the eigenvalues ofrr̃, where

r̃ = sy ^ syr
Tsy ^ sy, s23d

andT stands for transpose in the computational basis. These
eigenvalues can be calculated from Trfsrr̃dmg for m
=1,2,3,4, which are simply the moduli squared ofKsW

invariants. In Ref.f15g, networks were constructed to es-
timate these invariants for two qubits and we will gener-
alize this construction toKsW invariants for larger number
of parties.

Another interesting example is the 3-tangle[25,26],
which is defined for pure states as the modulus of the fol-
lowing three-qubitKsW invariant.

t3 = o
1

2

ai1j1k1ai2j2k2ei1i3
e j1j3

ek1k4
ei2i4

e j2j4
ek2k3

ai3j3k3ai4j4k4.

s24d

The 3-tangle gives information about the genuine three-party
entanglement between the qubits.

Finally, note that theKsW invariants can be given similar
diagrammatic representations to theJsW invariants. This is il-
lustrated for the 3-tangle in Fig. 4.

V. MEASURING SLOCC INVARIANTS

The modulus squared of the SLOCC invariants can be
measured using a network similar to Fig. 2 except that the
unknown statesr must be preprocessed prior to the

LEIFER, LINDEN, AND WINTER PHYSICAL REVIEW A 69, 052304(2004)

052304-4



controlled-U operation. IfKsW is of degreer in a then we will
needr copies ofr. The preprocessing stage will consist of
collective unitary operations and completely positive maps
that act on the entire Hilbert space of ther copies ofr. The
resulting stater8, will yield the expectation value

kZl = RefTrsUr8dg s25d

for the measurement at the end of the network. In this sec-
tion, we describe the preprocessing operations and unitary
operationsU that enable the modulus squared of the SLOCC
invariants to be written in this form.

First, we apply the inverse of the permutation matrix as-
sociated withsW to the r copies ofr to obtainPsW

†r^rPsW .
The second, and final, part of the preprocessing stage is to

apply a completely positive mapL̄ to the state. To describe
L we first define the multiparty analog of Eq.(23):

r̃ = sy ^ sy ^ ¯ ^ syr
Tsy ^ sy ^ ¯ ^ sy. s26d

Next, we define a mapL that acts on a product ofr states by
applying the tilde operation to the even numbered states as
follows:

Lsr1 ^ r2 ^ ¯ ^ rrd = r1 ^ r̃2 ^ r3 ^ ¯ ^ r̃r ,

s27d

where eachr j is ann-party state.
Unfortunately,L cannot be physically implemented, since

it is not a completely positive map. This can be dealt with by

using the SPA toL, which we will call L̄. L̄ is the “closest”
physical map toL. This is discussed in Sec. VI, but for now
we construct the network as ifL could be implemented per-
fectly.

The final preprocessed stater8 will be

r8 = LsPsW
†r^rPsWd. s28d

Next, the controlledU operation in our network must be
chosen such thatkZl= uKusW

2 whenr8 is used as the input. One
can easily verify that the pairwiseSWAP gate, defined by

Uuf1l ^ uf2l ^ ¯ ^ ufr−1l ^ ufrl

= uf2l ^ uf1l ^ ¯ ^ ufrl ^ ufr−1l, s29d

whereuf jl is ann-party state fulfills this condition.

VI. THE STRUCTURAL PHYSICAL APPROXIMATION

The L operation encountered in the preceding section is
an example of a positive, but not completely positive map.

These cannot be implemented exactly, but instead we can
apply an approximation.

L̄srd = aI + bLsrd, s30d

where I is the identity operator anda ,b are real positive

constants chosen such thatL̄ is completely positive. If we fix

a andb such thatL̄ is trace preserving andb is maximized,
then the results of Ref.f18g imply that

L̄srd =
2s3/2dnr

2s3/2dnr + 1

I

2nr +
1

2s3/2dnr + 1
Lsrd, s31d

wheren is the number of qubits in each copy of the state and
r is the degree of theKsW for which we are estimating the
modulus squared.

On replacingL with L̄ in our network the expectation
value of theZ measurement still allows the modulus squared
of the KsW invariant to be determined via

uKsW u2 = s2s3/2dnr + 1dkZl − 2nr. s32d

However, the SPA does affect the accuracy to which the
invariant is determined. This is discussed further in the fol-
lowing section. Additionally, in Ref.f21g, it is shown that
this sort of SPA can be implemented by LOCC. Thus, the
SLOCC invariants could also be estimated by LOCC, but the
efficiency discussed in Sec. VII B would be affected.

VII. EVALUATION

The main aim of the protocols presented in Secs. III and
V is to provide a physical interpretation for the polynomial
invariants. However, we have not yet addressed the question
of how efficient these measurement protocols are. In this
section, we compare the efficiency of our protocols to proto-
cols based on simply measuring the state coefficients and
calculating the invariants. We use unbiased estimators based
on counting[27–29]. Also, we perform the analysis in the
limit where a large number of copies of the state have been
measured, so that the variances of the estimates are small and
can be treated to first order in all subsequent calculations. We
note that more sophisticated estimation procedures are also
possible[30], but our purpose here is to compare the net-
works to methods that are easily accessible experimentally.

Measuring the state coefficients would clearly be a more
straightforward procedure to perform experimentally than
using our network. Although more parameters have to be
determined, this does not necessarily mean that it is a less
efficient method for estimating the invariants than using our
networks. There are several quite general reasons why this
might be the case.

First, suppose that we are interested in measuring a com-
plete set of polynomial LU invariants for some unknown
state ofn parties, where each party has ad-dimensional Hil-
bert space. In general, we do not know how many we would
need to measure, but parameter counting arguments[1–3]
show that the number of local degrees of freedom is linear in

FIG. 4. Diagrammatic representation of the 3-tangle. The first
index of each term is represented by a circle, the second by a
square, and the third by a triangle. A line joins indices that are
contracted with ane.
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n whereas the total number of degrees of freedom is expo-
nential inn. Thus, for largen almost all the degrees of free-
dom are nonlocal. Even for moderately sizedn, there are
nearly as many algebraically independent invariants as there
are state coefficients[35]. In addition, the invariants are typi-
cally highly nonlinear functions of the state coefficients. For
these reasons, we expect that measuring a complete set of
invariants directly will generally not be more efficient than
measuring the state coefficients for largen. Similar consid-
erations also apply to the SLOCC invariants.

Despite these considerations, it may be the case that our
networks are more efficient if we are only interested in mea-
suring a small incomplete subset of the invariants. Also, they
may be more efficient for estimating complete sets whenn is
small. For this reason, and for simplicity, we concentrate on
estimating two-qubit invariants in this section.

There are also other reasons why our protocols may not
be efficient. For example, our protocols only employ a two-
outcome measurement for eachr copies of the state whereas
estimating the state coefficients uses a two-outcome mea-
surement on each copy. Also, for theKsW invariants, we will
see that using the SPA introduces a lot of noise into the
measurement. Nonetheless, there are still some cases where
using our networks is more efficient than estimating the state
coefficients.

A. Statistical analysis of the network

For a particular setup in our network we make repeated
measurements of an observableZ, with expectation valueF
=TrsUr8d. Z is a random variable[36] with distribution

psZ = + 1d = 1
2s1 + Fd,

psZ = − 1d = 1
2s1 − Fd. s33d

If we define the eventZ= +1 as a success and setp
=PsZ= +1d then repeating the networkN times is equivalent
to performingN Bernoulli trials. The number of successesNs
is a random variable with a binomial distribution and its
expectation value iskNsl=Np=sN/2ds1+Fd. In an actual ex-

periment, the observed number of successesN̂s can be used
to compute an unbiased estimator forF, given by

F̂ = 2
N̂s

N
− 1 s34d

with variance

varsF̂d =
1

N
s1 − F2d. s35d

We are interested in determining how many trials are needed

in order for the estimateF̂ to be reasonably accurate. Spe-
cifically, we would like to quantify how many trials are

needed to make the variance of varsF̂døe for somee.0. In
an experimental situation, we would not be able to calcu-

late varsF̂d from our data, so we would have to estimate it

using the sample variance, varˆ sF̂d. However, in the limit

N→` we can use the fact that varsF̂d=OsN−1d and

varfvarˆ sF̂dg=OsN−4d, i.e., varˆ sF̂d converges to the true vari-

ance much faster thanF̂ converges toF so varˆ sF̂d
<varsF̂d. Thus, in this limit we have that

N *
1

e
s1 − F2d. s36d

Recall that for the LU invariants, the real and imaginary
parts of the invariant are estimated independently and that
each use of the network requiresr copies of the state, where
r is the degree of the invariant ina. If we use the same
number of samples for estimating both the real and imagi-
nary parts then the total number of copies required is

M *
r

e
s2 − uJsW u2d. s37d

In some cases, we knowa priori that the invariant is always
real or always imaginary. If this is the case, then we can
achieve the same accuracy with

M *
r

e
s1 − uJsW u2d. s38d

For the SLOCC invariants, each use of the network requires
r copies of the state, wherer is the degree of the invariant in
a. Also the estimate of the invariant must take into account
the use of the SPA via Eq.s32d. In this case, the total number
of copies required is

M *
r

e
fs2s3/2dnr + 1d2 − suKsW u2 + 2nrd2g. s39d

Notice that the 23nr term will dominate the term in the square
bracket for largen andr. This is due to the noise introduced
into the measurement by the SPA.

B. Comparison to methods based on state estimation

In order to evaluate our protocols, we compare them to
methods based on estimating the density matrix of the state
and then calculating the invariants. We do this by estimating
each state coefficient using observations on single copies of
the state. This is known as homodyne tomography(see Ref.
[30] for an overview and also Refs.[27–29]). This is not the
optimal way of reconstructing the state in general[31], but it
will greatly simplify the analysis.

1. Example: Two-qubit LU invariants

A general two-qubit density matrix can be written as

r =
1

4SI2 ^ I2 + o
j

ajs j ^ I2 + o
j

bjI2 ^ s j + o
j ,k

Rjks j ^ skD .

s40d

The two-qubit LU invariants3d can be written in terms of
these coefficients as

J = TrsrB
2d =

1

2S1 + o
j

bj
2D . s41d
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Each bj can be determined by simply performing as j
measurement onNj copies of Bob’s half of the state. The
probability distributions of the associated random variables
are given by

pss j = + 1d = 1
2s1 + bjd,

pss j = − 1d = 1
2s1 − bjd. s42d

Thus, eachbj can be estimated in the same way asF in
Eq. (34) and we have that

varsb̂jd =
1 − bj

2

Nj
. s43d

We can then construct an estimator forJ given by

Ĵ =
1

2S1 + o
j

b̂j
2D , s44d

which will be biased, but in the largeNj limit

varsĴd < o
j

bj
2S1 − bj

2

Nj
D s45d

to first order in varsbjd.
If we make the additional restriction that each observable

s j is sampled the same number of times(i.e., Nj =N/3) then
we must take

N *
3

e
o

j

bj
2s1 − bj

2d s46d

for our estimate to have variance/e.
One way to compare this to the result for our network is

to take an average over all pure states. If we assume that all
pure states are equally likely, i.e., integrate(Sec. VII B) and
Eq. (46) using Haar measure(for details see Ref.[32]), then
we find that on average we will need 3/2 times as many
copies of the state if we use the coefficient estimation
method. This is half of what one might expect from param-
eter counting alone, since three times as many parameters are
estimated in the state coefficient method. The factor of two is
explained by the fact that each use of our network uses two
copies of the state.

However, it is possible to find parameter ranges in which
the state coefficient method performs better than our net-
works. One such range is given by settingb1=b2=0,
−Î3/5,b3,Î3/5. This illustrates the fact that parameter
counting does not always reflect the statistical efficiency of a
given protocol. Any partial information we have available
about the type of states being measured might change our
judgement of which protocol is more efficient.

2. Example: Two-qubit SLOCC invariants

For the two-qubit SLOCC invariants we take the qua-
dratic invariant(19) as an example. In terms of the decom-
position (40) this can be written as

uKu2 =
1

4F1 − o
j

saj
2 + bj

2d + o
jk

Rjk
2 G . s47d

If we estimate this by measuring all 15 of thestate coeffi-
cients an equal number of times then by a similar analysis
to the LU case we find that we need at least

N *
15

4eFoj

faj
2s1 − aj

2d + bjs1 − bj
2dg

+ o
jk

Rjk
2 s1 − Rjk

2 dG s48d

copies of the state to get a variance/e.
Taking averages, one finds that fewer copies are needed in

the state coefficient protocol by a factor<53103 despite the
fact that many more parameters have to be estimated in this
protocol than when using our network. This is largely due to
the factor 212 that appears in Eq.(39), which arises from the
noise introduced by the SPA. This suggests that other esti-
mation and detection protocols based on the SPA[15,19]
may be less efficient than parameter counting arguments
would imply. In fact, there are no states for which our net-
work performs better than the coefficient estimation method.
Even in the best possible case for our network, the state
coefficient method requires fewer states by about three or-
ders of magnitude.

VIII. CONCLUSIONS

We have presented networks for measuring the polyno-
mial invariants of quantum states under LU and SLOCC
transformations. The structure of these networks is closely
related to the structure of the invariants themselves and thus
gives the invariants a physical interpretation. Comparison of
these networks with methods based on estimating the state
coefficients indicate that the networks are of limited practical
use for estimating complete sets of invariants. Indeed, our
results suggest that any estimation procedure that employs
the SPA is statistically inefficient even when the number of
parties is small[37].

We know that no procedure for estimating invariants di-
rectly can outperform protocols based on estimating the state
coefficients as the number of parties is increased. For small
number of parties it seems that there can be some increase in
efficiency, but the optimal protocol is not known in general.

ACKNOWLEDGMENTS

A.W. was supported by the UK Engineering and Physical
Sciences Research Council(EPSRC). We would like to thank
the EC for support for this project through the project RESQ.

MEASURING POLYNOMIAL INVARIANTS OF… PHYSICAL REVIEW A 69, 052304(2004)

052304-7



[1] N. Linden and S. Popescu, Fortschr. Phys.46, 567 (1998).
[2] H. Carteret, N. Linden, S. Popescu, and A. Sudbery, Found.

Phys. 29, 527 (1999).
[3] N. Linden, S. Popescu, and A. Sudbery, Phys. Rev. Lett.83,

243 (1999).
[4] A. Sudbery, J. Phys. A34, 643 (2001).
[5] H. Carteret and A. Sudbery, J. Phys. A33, 4981(2000).
[6] M. Grassl, M. Rötteler, and T. Beth, Phys. Rev. A58, 1833

(1998).
[7] F. Verstraete, J. Dehaene, and B. De Moor, e-print quant-ph/

0105090.
[8] F. Verstraete, J. Dehaene, and B. De Moor, Phys. Rev. A65,

032308(2002).
[9] F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde,

Phys. Rev. A65, 052112(2002).
[10] G. Jaeger, A. Teodorescu-Frumosu, M. Sergienko, B. A. E.

Saleh, and M. C. Teich, Phys. Rev. A67, 032307(2003).
[11] M. Teodorescu-Frumosu and G. Jaeger, Phys. Rev. A67,

052305(2003).
[12] G. Jaeger, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich,

Phys. Rev. A68, 022318(2003).
[13] J.-G. Luque and J.-Y. Thibon, Phys. Rev. A67, 042303

(2003).
[14] A. Acín, R. Tarrach, and G. Vidal, Phys. Rev. A61, 062307

(2000).
[15] P. Horodecki, e-print quant-ph/0111064.
[16] R. Brauer, Ann. Math.38, 857 (1937).
[17] E. M. Rains, IEEE Trans. Inf. Theory46, 54 (2000).
[18] P. Horodecki, e-print quant-ph/0111036.
[19] P. Horodecki and A. Ekert, Phys. Rev. Lett.89, 127902

(2002).
[20] A. K. Ekert et al., Phys. Rev. Lett.88, 217901(2002).
[21] C. M. Alves, P. Horodecki, D. K. L. Oi, L. C. Kwek, and A. K.

Ekert, e-print quant-ph/0304123.
[22] C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A.

V. Thapliyal, Phys. Rev. A63, 012307(2001).
[23] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A62, 062314

(2000).
[24] W. K. Wootters, Phys. Rev. Lett.80, 2245(1998).
[25] W. K. Wootters, Philos. Trans. R. Soc. London356, 1717

(1998).
[26] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A61,

052306(2000).
[27] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys.

Rev. Lett. 70, 1244(1993).
[28] U. Leonhardt,Measuring the Quantum State of Light(Cam-

bridge University Press, Cambridge, 1997).
[29] G. M. d’Ariano, C. Macchiavello, and M. G. A. Paris, Phys.

Rev. A 50, 4298(1994).
[30] R. Gill and M. I. Guta, e-print quant-ph/0303020.
[31] O. E. Barndorff-Nielsen, R. Gill, and P. E. Jupp, J. R. Stat.

Soc. Ser. B. Methodol. 65, 1 (2003); URL http://
www.math.uu.nl/people/gill/Preprints/qiread9statsoc.pdf

[32] V. Bužeket al., Chaos, Solitons Fractals10, 981 (1999).
[33] D. R. Cox and D. V. Hinkley,Theoretical Statistics(Chapman

and Hall, London, 1974).
[34] H. A. Carteret, e-print quant-ph/0309212.
[35] Further invariants are required to specify the full ring of in-

variants under LU transformations.
[36] The statistical inference theory used in this section can be

found in many statistics textbooks, such as Ref.[33].
[37] However, since this work first appeared it has been shown[34]

that the SLOCC invariants can be estimated without the need
for introducing noise and circuits have been explicitly con-
structed for the concurrence and 3-tangle. The statistical effi-
ciency of these circuits has not yet been analyzed.

LEIFER, LINDEN, AND WINTER PHYSICAL REVIEW A 69, 052304(2004)

052304-8


