Tag Archives: talks

Q+ Hangout: Howard Wiseman

Here are the details of the next Q+ hangout.

Date/time: Wed. 26th Nov. 2014 10pm GMT/UTC

Speaker: Howard Wiseman (Griffith University)

Title: After 50 years, Bell’s Theorem Still Reverberates

Abstract:
Fifty years ago this month, Belfast-born physicist John Bell submitted for publication a paper [1] which has been described as “the most profound discovery in science” [2]. However, its significance is still much disputed by physicists and philosophers [3, 4].
I will explain what is so puzzling about the types of correlations Bell introduced, by a specific example based on [5]. (For those well-versed in Bell inequalities this may still be of pedagogical interest.)
But what exactly do these Bell-type correlations violate? Bell’s original answer [1] was the joint assumptions of determinism and locality. His later answer [6] was the single assumption of local causality (which, confusingly, he sometimes also called locality). Different ‘camps’ of physicists – operationalists and realists respectively – prefer the different versions of Bell’s theorem.

Which of Bell’s notions, locality or local causality, expresses the causal structure of Einstein’s theory of relativity? I will argue for the answer: neither [3,4]. Both notions require an additional causal assumption, and the one required for local causality is a stronger one. I will discuss how the different assumptions fit with the ideologies of the two camps, and how they can best be reconciled.

[1]  J. S. Bell, “On the Einstein-Podolsky-Rosen paradox”, Physics 1, 195-200 (1964).
[2]  H. P. Stapp, “Are superluminal connections necessary?”, Nuovo Cim. 40B, 191 (1977).
[3]  H. M. Wiseman, “The two Bell’s theorems of John Bell”, J. Phys. A 47, 424001 (2014) (Invited Review for Special Issue, 50 years of Bell’s theorem)
[4]  H. M. Wiseman, “Bell’s theorem still reverberates”, Nature 510, 467-9 (2014).
[5] P. K. Aravind, “Bell’s theorem without inequalities and only two distant observers”,  Found. Phys. Lett. 15, 397 (2002).
[6]  J. S. Bell, “The Theory of Local Beables”, Epistemological Lett. 9, 11-24 (1976).

To watch the talk live, visit the event page at the appointed hour.

To keep up to date on the latest news about Q+ hangouts, you can follow us on:

or visit our website.

Q+ Hangout: Marco Piani

Here are the details of the next Q+ hangout:

Date: Monday 27th October 2pm GMT/UTC

Spekaer: Marco Piani (University of Strathclyde)

Title: Usefulness of entanglement and steering in the discrimination of physical processes

Abstract: Not all entangled states are created equal: they are all special, but some are more special than others. In particular, this is true in an operational characterization of quantum correlations based on their usefulness in the discrimination of physical processes. We will discuss how every entangled state of a probe-ancilla composite system is useful as a resource for the problem of minimum-error channel discrimination. We will then focus on the subset of entangled states that exhibit steering. The latter is the entanglement-based quantum effect that embodies the “spooky action at a distance” disliked by Einstein and scrutinized by Einstein, Podolsky, and Rosen. We prove that, for any fixed steerable state, there are instances of a generalization of the channel discrimination problem, which we dub quantum subchannel discrimination, where such a state allows a correct discrimination with strictly higher probability than in absence of entanglement, even when measurements are restricted to local measurements aided by one-way communication. On the other hand, unsteerable states are useless under such a restriction, even when entangled. We also prove that the above steering advantage can be exactly quantified in terms of the steering robustness, which is a natural measure of the steerability exhibited by the state.
This talk is based on joint work with J. Watrous, arXiv:1406.0530.

To watch live, visit the hangout page at the appointed hour.

To keep up to date with the latest news on Q+ hangouts, you can follow us on:

or visit our website.

Q+ Hangout: Daniel Gottesman

Here are the details of the next Q+ hangout. To watch live, visit this link at the appointed hour.

Date/time: Tue. May 20th 2014 2pm BST/UTC+1

Speaker: Daniel Gottesman (Perimeter Institute)

Title: Fault-tolerant quantum computation with constant overhead

Abstract: The threshold theorem for fault tolerance tells us that it is possible to build arbitrarily large reliable quantum computers provided the error rate per physical gate or time step is below some threshold value. Most research on the threshold theorem so far has gone into optimizing the tolerable error rate under various assumptions, with other considerations being secondary. However, for the foreseeable future, the number of qubits may be an even greater restriction than error rates. The overhead, the ratio of physical qubits to logical qubits, determines how expensive (in qubits) a fault-tolerant computation is. Earlier results on fault tolerance used a large overhead which grows even larger (albeit slowly) with the size of the computation. I show that it is possible in principle to do fault-tolerant quantum computation with the overhead constant in the size of the computation, and with a low constant at that. The result depends on recent progress on quantum low-density parity check codes.

To keep up to date on the latest news about Q+ hangouts you can follow us on:

or visit our website.

Q+ hangout: Chris Richardson

Here are the details of the next Q+ hangout.

Date/time: 22nd April 2014 2pm BST/UTC+1

Speaker: Chris Richardson (University of Liege)

Title: On the Uncertainty of the Ordering of Nonlocal Wavefunction Collapse when Relativity is Considered

Abstract: The temporal measurement order and therefore the originator of the instantaneous collapse of the wavefunction of a spatiality entangled particle pair can change depending on the reference frame of an observer. This can lead to a paradox in which its seems that both measurements collapsed the wavefunction before the other. We resolve this paradox by demonstrating how attempting to determine the order of measurement of the entangled pair introduces uncertainty which makes the measurement order impossible to know.

To watch the talk live, go to the event page at the appointed hour.

To keep up to date on the latest news about Q+ hangouts you can follow us on:

or visit our website.

Q+ Hangout: Tobias Fritz

Here are the details of the next Q+ hangout. To watch live, visit the event page at the appointed hour. Be aware of the fact that although North America has switched to DST, the UK has not yet and the time is still listed in GMT/UTC.

Date/time: Tuesday 25th March 2014 2pm GMT/UTC

Speaker: Tobias Fritz (Perimeter Institute)

Title: A Combinatorial Approach to Nonlocality and Contextuality

Abstract:
Most work on contextuality so far has focused on specific examples and concrete proofs of the Kochen-Specker theorem, while general definitions and theorems about contextuality are sparse. For example, it is commonly believed that nonlocality is a special case of contextuality, but what exactly does this mean? After a brief discussion of previous work, I will introduce our “device-independent” approach to contextuality based on the mathematics of test spaces and explain how nonlocality is indeed a special case of contextuality. This work builds on the graph-theoretic approach of Cabello, Severini and Winter by improving on several of its shortcomings and merging it with the work of Foulis and Randall on test spaces. Our results include:

(1) various relationships to graph invariants, similar to CSW;

(2) a proof that our set of quantum models cannot be characterized by a graph invariant;

(3) a proof that the set of all models satisfying the Consistent Exclusivity principle at any number of copies is not convex;

(4) new results on the Shannon capacity of graphs;

(5) an “inverse sandwich conjecture” with ramifications for C*-algebra theory and quantum logic.

This talk is based on arXiv:1212.4084.

To keep up to date with the latest news about Q+ hangouts you can follow us on:

or visit our website.

Q+ Hangout: Nicholas Brunner

Here are the details of the next Q+ hangout.

Date/time: Tue. 25th Feb. at 4pm GMT/UTC

Speaker: Nicholas Brunner (University of Geneva)

Title: Dimension of Physical Systems

Abstract: The dimension of a physical system refers loosely speaking to the number of degrees of freedom relevant to describe it. Here we ask how quantum theory compares to more general models (such as Generalized Probabilistic Theories) from the point of view of dimension. This gives insight to information processing and thermodynamics in GPTs.

To watch the talk live, visit the event page at the appointed hour.

To keep up to date on the latest news about Q+ hangouts you can follow us on:

or visit our website http://qplus.burgarth.de

Q+ Hangout: Troels Frimodt Rønnow

Here are the details of the next Q+ hangout

Date: 28th January 2014

Time: 2pm UTC/GMT

Speaker: Troels Frimodt Rønnow (ETH Zurich)

Title: Quantum annealing on 503 qubits

Abastract: Quantum speedup refers to the advantage of quantum devices can over classical ones in solving classes of computational problems. In this talk we show how to correctly define and measure quantum speedup in experimental devices. We show how to avoid issues that might mask or fake quantum speedup. As illustration we will compare the performance of a D-Wave Two quantum annealing device on random spin glass instances to simulated classical and quantum annealers, and other classical solvers.

To watch the talk live go to http://gplus.to/qplus at the appointed hour.

To keep up to date on the latest news about Q+ hangouts you can follow us on:

or visit our website at http://qplus.burgarth.de